Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging themes in SecA2-mediated protein export

Key Points

  • The post-translational general secretion (Sec) pathway is powered by the essential ATPase SecA, which works with the SecYEG channel to translocate proteins across the cytoplasmic membrane.

  • Mycobacteria and some Gram-positive bacteria have two non-redundant SecA proteins, SecA1 and SecA2. SecA1 powers the essential canonical Sec pathway, whereas SecA2 mediates export of a limited set of proteins.

  • SecA2 export systems have diverse and important roles in cell envelope biogenesis and bacterial pathogenesis.

  • There are two types of SecA2 systems: SecA2–SecY2 systems and SecA2-only systems.

  • SecA2–SecY2 systems seem to operate mostly independent of the canonical Sec machinery as dedicated transporters of a group of serine-rich glycoproteins that function as adhesins. SecA2–SecY2 systems are encoded by a genomic locus that includes ORFs for glycosylation and export machinery.

  • SecA2-only systems do not contain a SecY2 or an obvious accessory membrane channel. Instead, SecA2-only systems seem to use the canonical SecYEG channel for exporting a diverse assortment of proteins.

  • It is unknown how SecA2 functions in comparison to the well-studied canonical SecA1 proteins. The same structural, biochemical and in vitro reconstitution analyses that have been used to understand canonical Sec-mediated export will surely prove valuable in answering the many mechanistic questions concerning SecA2–SecY2 and SecA2-only systems.

Abstract

The conserved general secretion (Sec) pathway carries out most protein export in bacteria and is powered by the essential ATPase SecA. Interestingly, mycobacteria and some Gram-positive bacteria possess two SecA proteins: SecA1 and SecA2. In these species, SecA1 is responsible for exporting most proteins, whereas SecA2 exports only a subset of substrates and is implicated in virulence. However, despite the impressive body of knowledge about the canonical SecA1, less is known concerning SecA2 function. Here, we review our current understanding of the different types of SecA2 systems and outline future directions for their study.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models of Sec export.
Figure 2: Domain organization of SecA2 proteins.
Figure 3: Organization of secA2 genomic loci.
Figure 4: SecA2–SecY2 system–targeting features.

Similar content being viewed by others

References

  1. du Plessis, D. J., Nouwen, N. & Driessen, A. J. The Sec translocase. Biochim. Biophys. Acta 1808, 851–865 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Taura, T., Baba, T., Akiyama, Y. & Ito, K. Determinants of the quantity of the stable SecY complex in the Escherichia coli cell. J. Bacteriol. 175, 7771–7775 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Harris, C. R. & Silhavy, T. J. Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking. J. Bacteriol. 181, 3438–3444 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tam, P. C., Maillard, A. P., Chan, K. K. & Duong, F. Investigating the SecY plug movement at the SecYEG translocation channel. EMBO J. 24, 3380–3388 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Duong, F. & Wickner, W. The PrlA and PrlG phenotypes are caused by a loosened association among the translocase SecYEG subunits. EMBO J. 18, 3263–3270 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nishiyama, K., Mizushima, S. & Tokuda, H. Preferential interaction of Sec-G with Sec-E stabilizes an unstable Sec-E derivative in the Escherichia coli cytoplasmic membrane. Biochem. Biophys. Res. Commun. 217, 217–223 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Nishiyama, K., Suzuki, T. & Tokuda, H. Inversion of the membrane topology of SecG coupled with SecA-dependent preprotein translocation. Cell 85, 71–81 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Xie, K. & Dalbey, R. E. Inserting proteins into the bacterial cytoplasmic membrane using the Sec and YidC translocases. Nature Rev. Microbiol. 6, 234–244 (2008).

    Article  CAS  Google Scholar 

  10. Shimohata, N., Akiyama, Y. & Ito, K. Peculiar properties of DsbA in its export across the Escherichia coli cytoplasmic membrane. J. Bacteriol. 187, 3997–4004 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Valent, Q. A. et al. Nascent membrane and presecretory proteins synthesized in Escherichia coli associate with signal recognition particle and trigger factor. Mol. Microbiol. 25, 53–64 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Egea, P. F. & Stroud, R. M. Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes. Proc. Natl Acad. Sci. USA 107, 17182–17187 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. von Heijne, G. The signal peptide. J. Membr. Biol. 115, 195–201 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Bechtluft, P., Nouwen, N., Tans, S. J. & Driessen, A. J. SecB—a chaperone dedicated to protein translocation. Mol. Biosyst. 6, 620–627 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Fisher, A. C. & DeLisa, M. P. A little help from my friends: quality control of presecretory proteins in bacteria. J. Bacteriol. 186, 7467–7473 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Arkowitz, R. A., Joly, J. C. & Wickner, W. Translocation can drive the unfolding of a preprotein domain. EMBO J. 12, 243–253 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nouwen, N., Berrelkamp, G. & Driessen, A. J. Bacterial Sec-translocase unfolds and translocates a class of folded protein domains. J. Mol. Biol. 372, 422–433 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Kusters, I. & Driessen, A. J. SecA, a remarkable nanomachine. Cell. Mol. Life Sci. 68, 2053–2066 (2011). A comprehensive review on the structure and function of SecA proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brundage, L., Hendrick, J. P., Schiebel, E., Driessen, A. J. & Wickner, W. The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell 62, 649–657 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Economou, A. & Wickner, W. SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78, 835–843 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Oliver, D. B. & Beckwith, J. E. coli mutant pleiotropically defective in the export of secreted proteins. Cell 25, 765–772 (1981). References 19–21 are among a collection of seminal papers describing SecA-dependent protein export.

    Article  CAS  PubMed  Google Scholar 

  22. Papanikou, E. et al. Identification of the preprotein binding domain of SecA. J. Biol. Chem. 280, 43209–43217 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Gelis, I. et al. Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131, 756–769 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Musial-Siwek, M., Rusch, S. L. & Kendall, D. A. Selective photoaffinity labeling identifies the signal peptide binding domain on SecA. J. Mol. Biol. 365, 637–648 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Auclair, S. M. et al. Mapping of the signal peptide-binding domain of Escherichia coli SecA using Forster resonance energy transfer. Biochemistry 49, 782–792 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Kimura, E., Akita, M., Matsuyama, S. & Mizushima, S. Determination of a region in SecA that interacts with presecretory proteins in Escherichia coli. J. Biol. Chem. 266, 6600–6606 (1991).

    CAS  PubMed  Google Scholar 

  27. Mori, H. & Ito, K. Different modes of SecY–SecA interactions revealed by site-directed in vivo photo-cross-linking. Proc. Natl Acad. Sci. USA 103, 16159–16164 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van der Sluis, E. O. et al. Identification of two interaction sites in SecY that are important for the functional interaction with SecA. J. Mol. Biol. 361, 839–849 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Breukink, E. et al. The C terminus of SecA is involved in both lipid binding and SecB binding. J. Biol. Chem. 270, 7902–7907 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Li, W. et al. The plug domain of the SecY protein stabilizes the closed state of the translocation channel and maintains a membrane seal. Mol. Cell 26, 511–521 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Smith, M. A., Clemons, W. M. Jr, DeMars, C. J. & Flower, A. M. Modeling the effects of prl mutations on the Escherichia coli SecY complex. J. Bacteriol. 187, 6454–6465 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gouridis, G., Karamanou, S., Gelis, I., Kalodimos, C. G. & Economou, A. Signal peptides are allosteric activators of the protein translocase. Nature 462, 363–367 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van der Wolk, J. P., de Wit, J. G. & Driessen, A. J. The catalytic cycle of the Escherichia coli SecA ATPase comprises two distinct preprotein translocation events. EMBO J. 16, 7297–7304 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Paetzel, M., Karla, A., Strynadka, N. C. & Dalbey, R. E. Signal peptidases. Chem. Rev. 102, 4549–4580 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Oliver, D., Kumamoto, C., Quinlan, M. & Beckwith, J. Pleiotropic mutants affecting the secretory apparatus of Escherichia coli. Ann. Microbiol. (Paris) 133, 105–110 (1982).

    Google Scholar 

  36. Murphy, C. K., Stewart, E. J. & Beckwith, J. A double counter-selection system for the study of null alleles of essential genes in Escherichia coli. Gene 155, 1–7 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Nishiyama, K., Hanada, M. & Tokuda, H. Disruption of the gene encoding p12 (SecG) reveals the direct involvement and important function of SecG in the protein translocation of Escherichia coli at low temperature. EMBO J. 13, 3272–3277 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pogliano, J. A. & Beckwith, J. SecD and SecF facilitate protein export in Escherichia coli. EMBO J. 13, 554–561 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Duong, F. & Wickner, W. Distinct catalytic roles of the SecYE, SecG and SecDFYajC subunits of preprotein translocase holoenzyme. EMBO J. 16, 2756–2768 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Economou, A. Following the leader: bacterial protein export through the Sec pathway. Trends Microbiol. 7, 315–320 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Braunstein, M., Brown, A. M., Kurtz, S. & Jacobs, W. R. Jr . Two nonredundant SecA homologues function in mycobacteria. J. Bacteriol. 183, 6979–6990 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rigel, N. W. & Braunstein, M. A new twist on an old pathway – accessory Sec systems. Mol. Microbiol. 69, 291–302 (2008). A review of SecA2 export, including a phylogenetic tree that depicts the evolutionary relationship of SecA2 proteins from both SecA2-only and SecA2–SecY2 systems.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bensing, B. A. & Sullam, P. M. Characterization of Streptococcus gordonii SecA2 as a paralogue of SecA. J. Bacteriol. 191, 3482–3491 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rigel, N. W. et al. The accessory SecA2 system of mycobacteria requires ATP binding and the canonical SecA1. J. Biol. Chem. 284, 9927–9936 (2009). The first demonstration that a SecA2-only system requires one or more components of the canonical Sec pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guo, X. V. et al. Silencing Mycobacterium smegmatis by using tetracycline repressors. J. Bacteriol. 189, 4614–4623 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fagan, R. P. & Fairweather, N. F. Clostridium difficile has two parallel and essential Sec secretion systems. J. Biol. Chem. 286, 27483–27493 (2011). Confirmation that the SecA2-only system from C. difficile requires one or more components of the canonical Sec pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Caspers, M. & Freudl, R. Corynebacterium glutamicum possesses two secA homologous genes that are essential for viability. Arch. Microbiol. 189, 605–610 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Braunstein, M., Espinosa, B. J., Chan, J., Belisle, J. T. & Jacobs, W. R. Jr. SecA2 functions in the secretion of superoxide dismutase A and in the virulence of Mycobacterium tuberculosis. Mol. Microbiol. 48, 453–464 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Kurtz, S., McKinnon, K. P., Runge, M. S., Ting, J. P. & Braunstein, M. The SecA2 secretion factor of Mycobacterium tuberculosis promotes growth in macrophages and inhibits the host immune response. Infect. Immun. 74, 6855–6864 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sullivan, J. T., Young, E. F., McCann, J. R. & Braunstein, M. The Mycobacterium tuberculosis SecA2 system subverts phagosome maturation to promote growth in macrophages. Infect. Immun. 80, 996–1006 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xiong, Y. Q., Bensing, B. A., Bayer, A. S., Chambers, H. F. & Sullam, P. M. Role of the serine-rich surface glycoprotein GspB of Streptococcus gordonii in the pathogenesis of infective endocarditis. Microb. Pathog. 45, 297–301 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu, H., Mintz, K. P., Ladha, M. & Fives-Taylor, P. M. Isolation and characterization of Fap1, a fimbriae-associated adhesin of Streptococcus parasanguis FW213. Mol. Microbiol. 28, 487–500 (1998). References 52 and 53 show that SecA2–SecY2 systems export proteins which are first glycosylated in the cytoplasm.

    Article  CAS  PubMed  Google Scholar 

  54. Siboo, I. R., Chambers, H. F. & Sullam, P. M. Role of SraP, a serine-rich surface protein of Staphylococcus aureus, in binding to human platelets. Infect. Immun. 73, 2273–2280 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lenz, L. L., Mohammadi, S., Geissler, A. & Portnoy, D. A. SecA2-dependent secretion of autolytic enzymes promotes Listeria monocytogenes pathogenesis. Proc. Natl Acad. Sci. USA 100, 12432–12437 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sardis, M. F. & Economou, A. SecA: a tale of two protomers. Mol. Microbiol. 76, 1070–1081 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Sharma, V. et al. Crystal structure of Mycobacterium tuberculosis SecA, a preprotein translocating ATPase. Proc. Natl Acad. Sci. USA 100, 2243–2248 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hunt, J. F. et al. Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA. Science 297, 2018–2026 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Papanikolau, Y. et al. Structure of dimeric SecA, the Escherichia coli preprotein translocase motor. J. Mol. Biol. 366, 1545–1557 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Sianidis, G. et al. Cross-talk between catalytic and regulatory elements in a DEAD motor domain is essential for SecA function. EMBO J. 20, 961–970 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Keramisanou, D. et al. Disorder-order folding transitions underlie catalysis in the helicase motor of SecA. Nature Struct. Mol. Biol. 13, 594–602 (2006).

    Article  CAS  Google Scholar 

  62. Hou, J. M. et al. ATPase activity of Mycobacterium tuberculosis SecA1 and SecA2 proteins and its importance for SecA2 function in macrophages. J. Bacteriol. 190, 4880–4887 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fekkes, P. et al. Preprotein transfer to the Escherichia coli translocase requires the co-operative binding of SecB and the signal sequence to SecA. Mol. Microbiol. 29, 1179–1190 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Fekkes, P., van der Does, C. & Driessen, A. J. The molecular chaperone SecB is released from the carboxy-terminus of SecA during initiation of precursor protein translocation. EMBO J. 16, 6105–6113 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhou, J. & Xu, Z. Structural determinants of SecB recognition by SecA in bacterial protein translocation. Nature Struct. Biol. 10, 942–947 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Fekkes, P., de Wit, J. G., Boorsma, A., Friesen, R. H. & Driessen, A. J. Zinc stabilizes the SecB binding site of SecA. Biochemistry 38, 5111–5116 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. van Wely, K. H., Swaving, J., Freudl, R. & Driessen, A. J. Translocation of proteins across the cell envelope of Gram-positive bacteria. FEMS Microbiol. Rev. 25, 437–454 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Bensing, B. A. & Sullam, P. M. An accessory sec locus of Streptococcus gordonii is required for export of the surface protein GspB and for normal levels of binding to human platelets. Mol. Microbiol. 44, 1081–1094 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Mistou, M. Y., Dramsi, S., Brega, S., Poyart, C. & Trieu-Cuot, P. Molecular dissection of the secA2 locus of group B Streptococcus reveals that glycosylation of the Srr1 LPXTG protein is required for full virulence. J. Bacteriol. 191, 4195–4206 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen, Q., Wu, H. & Fives-Taylor, P. M. Investigating the role of secA2 in secretion and glycosylation of a fimbrial adhesin in Streptococcus parasanguis FW213. Mol. Microbiol. 53, 843–856 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Obert, C. et al. Identification of a candidate Streptococcus pneumoniae core genome and regions of diversity correlated with invasive pneumococcal disease. Infect. Immun. 74, 4766–4777 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Siboo, I. R., Chaffin, D. O., Rubens, C. E. & Sullam, P. M. Characterization of the accessory Sec system of Staphylococcus aureus. J. Bacteriol. 190, 6188–6196 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Samen, U., Eikmanns, B. J., Reinscheid, D. J. & Borges, F. The surface protein Srr-1 of Streptococcus agalactiae binds human keratin 4 and promotes adherence to epithelial HEp-2 cells. Infect. Immun. 75, 5405–5414 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wu, H. & Fives-Taylor, P. M. Identification of dipeptide repeats and a cell wall sorting signal in the fimbriae-associated adhesin, Fap1, of Streptococcus parasanguis. Mol. Microbiol. 34, 1070–1081 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Bensing, B. A., Gibson, B. W. & Sullam, P. M. The Streptococcus gordonii platelet binding protein GspB undergoes glycosylation independently of export. J. Bacteriol. 186, 638–645 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Takamatsu, D., Bensing, B. A. & Sullam, P. M. Four proteins encoded in the gspB-secY2A2 operon of Streptococcus gordonii mediate the intracellular glycosylation of the platelet-binding protein GspB. J. Bacteriol. 186, 7100–7111 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bu, S. et al. Interaction between two putative glycosyltransferases is required for glycosylation of a serine-rich streptococcal adhesin. J. Bacteriol. 190, 1256–1266 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Wu, H., Bu, S., Newell, P., Chen, Q. & Fives-Taylor, P. Two gene determinants are differentially involved in the biogenesis of Fap1 precursors in Streptococcus parasanguis. J. Bacteriol. 189, 1390–1398 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Takamatsu, D., Bensing, B. A. & Sullam, P. M. Genes in the accessory sec locus of Streptococcus gordonii have three functionally distinct effects on the expression of the platelet-binding protein GspB. Mol. Microbiol. 52, 189–203 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Zhou, M., Zhu, F., Dong, S., Pritchard, D. G. & Wu, H. A novel glucosyltransferase is required for glycosylation of a serine-rich adhesin and biofilm formation by Streptococcus parasanguinis. J. Biol. Chem. 285, 12140–12148 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wu, H., Zeng, M. & Fives-Taylor, P. The glycan moieties and the N-terminal polypeptide backbone of a fimbria-associated adhesin, Fap1, play distinct roles in the biofilm development of Streptococcus parasanguinis. Infect. Immun. 75, 2181–2188 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bensing, B. A., Lopez, J. A. & Sullam, P. M. The Streptococcus gordonii surface proteins GspB and Hsa mediate binding to sialylated carbohydrate epitopes on the platelet membrane glycoprotein Ibα. Infect. Immun. 72, 6528–6537 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Stephenson, A. E. et al. The Fap1 fimbrial adhesin is a glycoprotein: antibodies specific for the glycan moiety block the adhesion of Streptococcus parasanguis in an in vitro tooth model. Mol. Microbiol. 43, 147–157 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Seepersaud, R., Bensing, B. A., Yen, Y. T. & Sullam, P. M. Asp3 mediates multiple protein-protein interactions within the accessory Sec system of Streptococcus gordonii. Mol. Microbiol. 78, 490–505 (2010). The finding that glycosylation of a SecA2–SecY2 substrate blocks export by the canonical SecA1–SecYEG pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Takamatsu, D., Bensing, B. A. & Sullam, P. M. Two additional components of the accessory Sec system mediating export of the Streptococcus gordonii platelet-binding protein GspB. J. Bacteriol. 187, 3878–3883 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Peng, Z. et al. Role of gap3 in Fap1 glycosylation, stability, in vitro adhesion, and fimbrial and biofilm formation of Streptococcus parasanguinis. Oral Microbiol. Immunol. 23, 70–78 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Li, Y. et al. A conserved domain of previously unknown function in Gap1 mediates protein–protein interaction and is required for biogenesis of a serine-rich streptococcal adhesin. Mol. Microbiol. 70, 1094–1104 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhou, M., Zhang, H., Zhu, F. & Wu, H. Canonical SecA associates with an accessory secretory protein complex involved in biogenesis of a streptococcal serine-rich repeat glycoprotein. J. Bacteriol. 193, 6560–6566 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhou, M., Zhu, F., Li, Y., Zhang, H. & Wu, H. Gap1 functions as a molecular chaperone to stabilize its interactive partner Gap3 during biogenesis of serine-rich repeat bacterial adhesin. Mol. Microbiol. 83, 866–878 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yen, Y. T., Seepersaud, R., Bensing, B. A. & Sullam, P. M. Asp2 and Asp3 interact directly with GspB, the export substrate of the Streptococcus gordonii accessory Sec System. J. Bacteriol. 193, 3165–3174 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bensing, B. A., Takamatsu, D. & Sullam, P. M. Determinants of the streptococcal surface glycoprotein GspB that facilitate export by the accessory Sec system. Mol. Microbiol. 58, 1468–1481 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Chen, Q., Sun, B., Wu, H., Peng, Z. & Fives-Taylor, P. M. Differential roles of individual domains in selection of secretion route of a Streptococcus parasanguinis serine-rich adhesin, Fap1. J. Bacteriol. 189, 7610–7617 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nita-Lazar, M., Wacker, M., Schegg, B., Amber, S. & Aebi, M. The N-X-S/T consensus sequence is required but not sufficient for bacterial N-linked protein glycosylation. Glycobiology 15, 361–367 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. VanderVen, B. C., Harder, J. D., Crick, D. C. & Belisle, J. T. Export-mediated assembly of mycobacterial glycoproteins parallels eukaryotic pathways. Science 309, 941–943 (2005).

    CAS  PubMed  Google Scholar 

  95. Schwarz, F. & Aebi, M. Mechanisms and principles of N-linked protein glycosylation. Curr. Opin. Struct. Biol. 21, 576–582 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Grass, S. et al. The Haemophilus influenzae HMW1 adhesin is glycosylated in a process that requires HMW1C and phosphoglucomutase, an enzyme involved in lipooligosaccharide biosynthesis. Mol. Microbiol. 48, 737–751 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Choi, K. J. et al. The Actinobacillus pleuropneumoniae HMW1C-like glycosyltransferase mediates N-linked glycosylation of the Haemophilus influenzae HMW1 adhesin. PLoS ONE 5, e15888 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Charbonneau, M. E. & Mourez, M. The Escherichia coli AIDA-I autotransporter undergoes cytoplasmic glycosylation independently of export. Res. Microbiol. 159, 537–544 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Bonardi, F. et al. Probing the SecYEG translocation pore size with preproteins conjugated with sizable rigid spherical molecules. Proc. Natl Acad. Sci. USA 108, 7775–7780 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Bensing, B. A., Siboo, I. R. & Sullam, P. M. Glycine residues in the hydrophobic core of the GspB signal sequence route export toward the accessory Sec pathway. J. Bacteriol. 189, 3846–3854 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bensing, B. A. & Sullam, P. M. Transport of preproteins by the accessory Sec system requires a specific domain adjacent to the signal peptide. J. Bacteriol. 192, 4223–4232 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sibbald, M. J. et al. Synthetic effects of secG and secY2 mutations on exoproteome biogenesis in Staphylococcus aureus. J. Bacteriol. 192, 3788–3800 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lenz, L. L. & Portnoy, D. A. Identification of a second Listeria secA gene associated with protein secretion and the rough phenotype. Mol. Microbiol. 45, 1043–1056 (2002). The first description of SecA2 and an associated exported substrate in Listeria spp.

    Article  CAS  PubMed  Google Scholar 

  104. Sadagopal, S. et al. Reducing the activity and secretion of microbial antioxidants enhances the immunogenicity of BCG. PLoS ONE 4, e5531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Halbedel, S., Hahn, B., Daniel, R. A. & Flieger, A. DivIVA affects secretion of virulence-related autolysins in Listeria monocytogenes. Mol. Microbiol. 83, 821–839 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Mishra, K. K., Mendonca, M., Aroonnual, A., Burkholder, K. M. & Bhunia, A. K. Genetic organization and molecular characterization of secA2 locus in Listeria species. Gene 489, 76–85 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Machata, S., Hain, T., Rohde, M. & Chakraborty, T. Simultaneous deficiency of both MurA and p60 proteins generates a rough phenotype in Listeria monocytogenes. J. Bacteriol. 187, 8385–8394 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Burkholder, K. M. et al. Expression of LAP, a SecA2-dependent secretory protein, is induced under anaerobic environment. Microbes Infect. 11, 859–867 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Hinchey, J. et al. Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis. J. Clin. Invest. 117, 2279–2288 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hinchey, J. et al. Lysine auxotrophy combined with deletion of the secA2 gene results in a safe and highly immunogenic candidate live attenuated vaccine for tuberculosis. PLoS ONE 6, e15857 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rahmoun, M. et al. Priming of protective anti-Listeria monocytogenes memory CD8+ T cells requires a functional SecA2 secretion system. Infect. Immun. 79, 2396–2403 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gibbons, H. S., Wolschendorf, F., Abshire, M., Niederweis, M. & Braunstein, M. Identification of two Mycobacterium smegmatis lipoproteins exported by a SecA2-dependent pathway. J. Bacteriol. 189, 5090–5100 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Archambaud, C., Nahori, M. A., Pizarro-Cerda, J., Cossart, P. & Dussurget, O. Control of Listeria superoxide dismutase by phosphorylation. J. Biol. Chem. 281, 31812–31822 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Calabi, E. et al. Molecular characterization of the surface layer proteins from Clostridium difficile. Mol. Microbiol. 40, 1187–1199 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Fagan, R. P. et al. A proposed nomenclature for cell wall proteins of Clostridium difficile. J. Med. Microbiol. 60, 1225–1228 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Waligora, A. J. et al. Characterization of a cell surface protein of Clostridium difficile with adhesive properties. Infect. Immun. 69, 2144–2153 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Calabi, E., Calabi, F., Phillips, A. D. & Fairweather, N. F. Binding of Clostridium difficile surface layer proteins to gastrointestinal tissues. Infect. Immun. 70, 5770–5778 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Janoir, C., Pechine, S., Grosdidier, C. & Collignon, A. Cwp84, a surface-associated protein of Clostridium difficile, is a cysteine protease with degrading activity on extracellular matrix proteins. J. Bacteriol. 189, 7174–7180 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bramkamp, M. & van Baarle, S. Division site selection in rod-shaped bacteria. Curr. Opin. Microbiol. 12, 683–688 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Zimmer, J., Nam, Y. & Rapoport, T. A. Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature 455, 936–943 (2008). A landmark structural paper showing SecA bound to SecY.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Erlandson, K. J. et al. A role for the two-helix finger of the SecA ATPase in protein translocation. Nature 455, 984–987 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mitchell, C. & Oliver, D. Two distinct ATP-binding domains are needed to promote protein export by Escherichia coli SecA ATPase. Mol. Microbiol. 10, 483–497 (1993).

    Article  CAS  PubMed  Google Scholar 

  123. Ye, J., Osborne, A. R., Groll, M. & Rapoport, T. A. RecA-like motor ATPases—lessons from structures. Biochim. Biophys. Acta 1659, 1–18 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Karamanou, S. et al. A molecular switch in SecA protein couples ATP hydrolysis to protein translocation. Mol. Microbiol. 34, 1133–1145 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Vrontou, E., Karamanou, S., Baud, C., Sianidis, G. & Economou, A. Global co-ordination of protein translocation by the SecA IRA1 switch. J. Biol. Chem. 279, 22490–22497 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Braunstein laboratory for critical reading of this manuscript and N. Rigel for assistance with the graphic of the SecA1 structure in figure 2. Work on SecA2 in the Braunstein laboratory is supported by the US National Institutes of Health grant AI054540.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Braunstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Miriam Braunstein's homepage

Protein Data Bank

Glossary

Preproteins

Proteins that are synthesized with amino-terminal signal peptides for targeting to a particular cellular location.

Signal peptide

An amino-terminal amino acid sequence that is present on preproteins. The signal peptide helps target specific proteins for export out of the bacterial cytoplasm. Sec signal peptides are composed of a tripartite structure with a positively charged N terminus, a hydrophobic core and a signal-peptidase-cleavage site.

In vitro reconstitution

A technique for studying biochemical processes in vitro. Reconstitution of the Sec pathway in vitro involves incubation of preprotein and purified SecA with SecYEG-containing inverted membrane vesicles (IMVs). Preprotein translocation through SecYEG into an IMV is monitored by the loss of preprotein sensitivity to protease.

Glycosyltransferases

Enzymes that catalyse the post-translational addition of carbohydrate mono- or oligosaccharides onto acceptor molecules. Some glycosyl-transferases attach sugars to proteins to form glycoproteins. The sugar composition and structure of glycosyl modifications can be diverse.

O-linked glycosylation

A type of glycosylation in which a saccharide moiety is added to the hydroxyl oxygen of a serine or threonine residue.

Phagosome maturation

The process by which phagosomal vacuoles form around foreign particles or bacteria within a eukaryotic cell and ultimately fuse with lysosomes, resulting in a degradative phagolysosomal compartment.

Autolysin

A hydrolase that breaks the peptidoglycan matrix in the bacterial cell wall. Autolysins are important in bacterial cell growth and division.

S-layer

(Surface layer). An ordered array of protein subunits that form a lattice structure surrounding the bacterial cell wall. S-layers exist in many bacteria, as well as in many archaea. These protein layers serve as scaffolding structures for enzymes, contribute to cell surface adhesion and act as virulence factors, among other functions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feltcher, M., Braunstein, M. Emerging themes in SecA2-mediated protein export. Nat Rev Microbiol 10, 779–789 (2012). https://doi.org/10.1038/nrmicro2874

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2874

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology