Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections

Key Points

  • When bacteria become quiescent (that is, slow growing or non-growing), they can avoid being killed by bactericidal antibiotics. This phenomenon extends the period of morbidity experienced by the patient and necessitates prolonged antibiotic treatment to achieve a cure.

  • The effects of such bacteria are evident from several infections that typically contain these organisms, such as biofilm diseases, osteomyeletis and tuberculosis granuloma.

  • In the first decade of the new millenium, the discovery and development of antibiotics that target the function of the membrane have provided new paradigms with which to combat persisting bacteria.

  • In one approach, agents disorganize the structure and function of the membrane bilayer, causing subsequent multiple antibacterial effects in cells. Many of these membrane-active agents are reported to kill bacterial biofilms.

  • Moreover, agents that inhibit the function of bacterial respiratory and redox enzymes, thereby causing membrane depolarization and energy depletion, have been shown to kill dormant Mycobacterium tuberculosis.

  • The effects of membrane-active agents on quiescent cell types arise from the fact that all living bacteria require an intact, functional membrane and all living cells require energy to sustain their viability, even without growth.

  • Our understanding of slow-growing or non-growing bacteria has improved, as well as our knowledge about the mechanisms of membrane-acting agents. There are many opportunities for obtaining new classes of drugs based on our current understanding of the mechanisms behind these antimicrobials, as well as many challenges.

Abstract

Persistent infections involving slow-growing or non-growing bacteria are hard to treat with antibiotics that target biosynthetic processes in growing cells. Consequently, there is a need for antimicrobials that can treat infections containing dormant bacteria. In this Review, we discuss the emerging concept that disrupting the bacterial membrane bilayer or proteins that are integral to membrane function (including membrane potential and energy metabolism) in dormant bacteria is a strategy for treating persistent infections. The clinical applicability of these approaches is exemplified by the efficacy of lipoglycopeptides that damage bacterial membranes and of the diarylquinoline TMC207, which inhibits membrane-bound ATP synthase. Despite some drawbacks, membrane-active agents form an important new means of eradicating recalcitrant, non-growing bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A generalized view of the action of agents targeting the bacterial membrane and electron transport chain.
Figure 2: Chemical structures of various membrane-active agents.
Figure 3: Chemical structures of agents that disrupt mycobacterial respiration.

Similar content being viewed by others

References

  1. Coates, A. R. & Hu, Y. Targeting non-multiplying organisms as a way to develop novel antimicrobials. Trends Pharmacol. Sci. 29, 143–150 (2008). This review provides an excellent description of why antibiotics are needed against slow-growing and non-growing organisms.

    Article  CAS  PubMed  Google Scholar 

  2. Levin, B. R. & Rozen, D. E. Non-inherited antibiotic resistance. Nature Rev. Microbiol. 4, 556–562 (2006). Using mathematical modelling and computer simulations, this paper describes how non-inherited resistance could extend the duration of antibiotic treatment, cause treatment failure and lead to the emergence of genetic resistance.

    Article  CAS  Google Scholar 

  3. Chopra, I., Hesse, L. & O'Neill, A. J. Exploiting current understanding of antibiotic action for discovery of new drugs. J. Appl. Microbiol. 92, S4–S15 (2002).

    Article  Google Scholar 

  4. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Wright, J. A. & Nair, S. P. Interaction of staphylococci with bone. Int. J. Med. Microbiol. 300, 193–204 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lewis, K. Persister cells, dormancy and infectious disease. Nature Rev. Microbiol. 5, 48–56 (2007). This article presents an excellent description of different types of bacterial mechanisms of persistence, their clinical importance and plausible approaches to counteract them.

    Article  CAS  Google Scholar 

  7. Stewart, G. R., Robertson, B. D. & Young, D. B. Tuberculosis: a problem with persistence. Nature Rev. Microbiol. 1, 97–105 (2003).

    Article  CAS  Google Scholar 

  8. Mader, J. T., Shirtliff, M. E., Bergquist, S. C. & Calhoun, J. Antimicrobial treatment of chronic osteomyelitis. Clin. Orthop. Relat. Res. 360, 47–65 (1999).

    Article  Google Scholar 

  9. Baddour, L. M. et al. Infective endocarditis: diagnosis, antimicrobial therapy, and management of complications: a statement for healthcare professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, and the Councils on Clinical Cardiology, Stroke, and Cardiovascular Surgery and Anesthesia, American Heart Association: endorsed by the Infectious Diseases Society of America. Circulation 111, e394–e434 (2005).

    Article  PubMed  Google Scholar 

  10. Coates, A., Hu, Y., Bax, R. & Page, C. The future challenges facing the development of new antimicrobial drugs. Nature Rev. Drug Discov. 1, 895–910 (2002). This is an excellent discussion on new directions for drug discovery against non-growing bacteria, indicating how these new approaches limit the emergence of drug resistance.

    Article  CAS  Google Scholar 

  11. O'Neill, A. J. in Emerging Trends in Antibacterial Discovery Ch. 9 (eds Miller, A. A. & Miller, P. F.) (Horizon Scientific, in the press). This review details various theories regarding bacterial persistence and develops the term 'antibiotic survival' as a new description.

  12. Roveta, S., Schito, A. M., Marchese, A. & Schito, G. C. Activity of moxifloxacin on biofilms produced in vitro by bacterial pathogens involved in acute exacerbations of chronic bronchitis. Int. J. Antimicrob. Agents 30, 415–421 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Hu, Y., Coates, A. R. & Mitchison, D. A. Comparison of the sterilising activities of the nitroimidazopyran PA-824 and moxifloxacin against persisting Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis. 12, 69–73 (2008).

    CAS  PubMed  Google Scholar 

  14. Lenaerts, A. J. et al. Preclinical testing of the nitroimidazopyran PA-824 for activity against Mycobacterium tuberculosis in a series of in vitro and in vivo models. Antimicrob. Agents Chemother. 49, 2294–2301 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rose, W. E. & Poppens, P. T. Impact of biofilm on the in vitro activity of vancomycin alone and in combination with tigecycline and rifampicin against Staphylococcus aureus. J. Antimicrob. Chemother. 63, 485–488 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Boshoff, H. I. & Barry, C. E. 3rd. Tuberculosis — metabolism and respiration in the absence of growth. Nature Rev. Microbiol. 3, 70–80 (2005). This article provides an understanding of how M. tuberculosis adapts and survives during long-term persistence.

    Article  CAS  Google Scholar 

  17. Stewart, P. S. & Franklin, M. J. Physiological heterogeneity in biofilms. Nature Rev. Microbiol. 6, 199–210 (2008).

    Article  CAS  Google Scholar 

  18. Yoon, S. S. et al. Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev. Cell 3, 593–603 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Resch, A., Rosenstein, R., Nerz, C. & Gotz, F. Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Appl. Environ. Microbiol. 71, 2663–2676 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Falsetta, M. L., McEwan, A. G., Jennings, M. P. & Apicella, M. A. Anaerobic metabolism occurs in the substratum of gonococcal biofilms and may be sustained in part by nitric oxide. Infect. Immun. 78, 2320–2328 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barry, C. E. 3rd., et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nature Rev. Microbiol. 7, 845–855 (2009). This study provides new insights to the biology of TB disease from non-human primates and new ways of combating M. tuberculosis .

    Article  CAS  Google Scholar 

  22. Ojha, A. K. et al. Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol. Microbiol. 69, 164–174 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bigger, J. W. Treatment of staphylococcal infections with penicillin. Lancet 244, 497–500 (1944).

    Article  Google Scholar 

  24. Tuomanen, E., Durack, D. T. & Tomasz, A. Antibiotic tolerance among clinical isolates of bacteria. Antimicrob. Agents Chemother. 30, 521–527 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, Y. M. & Rock, C. O. Transcriptional regulation in bacterial membrane lipid synthesis. J. Lipid Res. 50, S115–S119 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nolan, E. M. & Walsh, C. T. How nature morphs peptide scaffolds into antibiotics. Chembiochem. 10, 34–53 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Payne, D. J., Gwynn, M. N., Holmes, D. J. & Pompliano, D. L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nature Rev. Drug Discov. 6, 29–40 (2007).

    Article  CAS  Google Scholar 

  28. Verkleij, A. J. et al. The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim. Biophys. Acta 323, 178–193 (1973).

    Article  CAS  PubMed  Google Scholar 

  29. Straus, S. K. & Hancock, R. E. Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. Biochim. Biophys. Acta 1758, 1215–1223 (2006). This article presents a useful summary of the daptomycin mode of action.

    Article  CAS  PubMed  Google Scholar 

  30. Domenech, O., Dufrene, Y. F., Van Bambeke, F., Tukens, P. M. & Mingeot-Leclercq, M. P. Interactions of oritavancin, a new semi-synthetic lipoglycopeptide, with lipids extracted from Staphylococcus aureus. Biochim. Biophys. Acta 1798, 1876–1885 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Domenech, O. et al. Interactions of oritavancin, a new lipoglycopeptide derived from vancomycin, with phospholipid bilayers: Effect on membrane permeability and nanoscale lipid membrane organization. Biochim. Biophys. Acta 1788, 1832–1840 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, L., Dhillon, P., Yan, H., Farmer, S. & Hancock, R. E. Interactions of bacterial cationic peptide antibiotics with outer and cytoplasmic membranes of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 44, 3317–3321 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kashket, E. R. Proton motive force in growing Streptococcus lactis and Staphylococcus aureus cells under aerobic and anaerobic conditions. J. Bacteriol. 146, 369–376 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kashket, E. R. Effects of aerobiosis and nitrogen source on the proton motive force in growing Escherichia coli and Klebsiella pneumoniae cells. J. Bacteriol. 146, 377–384 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rao, S. P., Alonso, S., Rand, L., Dick, T. & Pethe, K. The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis. Proc. Nat. Acad. Sci. USA 105, 11945–11950 (2008). This research can be considered a landmark achievement; it demonstrates the importance of the proton motive force in M. tuberculosis and shows why dormant M. tuberculosis is killed by agents that affect this property.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Vandal, O. H., Nathan, C. F. & Ehrt, S. Acid resistance in Mycobacterium tuberculosis. J. Bacteriol. 191, 4714–4721 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hu, Y., Shamaei-Tousi, A., Liu, Y. & Coates, A. A new approach for the discovery of antibiotics by targeting non-multiplying bacteria: a novel topical antibiotic for staphylococcal infections. PLoS ONE 5, e11818 (2010). This paper reports a novel approach of discovering antibiotics that target non-growing bacteria and of the prioritization of molecules that kill non-growing cells over those with good MICs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pamp, S. J., Gjermansen, M., Johansen, H. K. & Tolker-Nielsen, T. Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol. Microbiol. 68, 223–240 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. McPhee, J. B., Lewenza, S. & Hancock, R. E. Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol. Microbiol. 50, 205–217 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Guskey, M. T. & Tsuji, B. T. A comparative review of the lipoglycopeptides: oritavancin, dalbavancin, and telavancin. Pharmacotherapy 30, 80–94 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Raad, I. et al. Comparative activities of daptomycin, linezolid, and tigecycline against catheter-related methicillin-resistant staphylococcus bacteremic isolates embedded in biofilm. Antimicrob. Agents Chemother. 51, 1656–1660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. LaPlante, K. L. & Mermel, L. A. In vitro activity of daptomycin and vancomycin lock solutions on staphylococcal biofilms in a central venous catheter model. Nephrol. Dial. Transplant. 22, 2239–2246 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Warren, R. E. Daptomycin in endocarditis and bacteraemia: a British perspective. J. Antimicrob. Chemother. 62, 25–33 (2008).

    Article  CAS  Google Scholar 

  44. Weiss, E. C. et al. Impact of sarA on daptomycin susceptibility of Staphylococcus aureus biofilms in vivo. Antimicrob. Agents Chemother. 53, 4096–4102 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mikkelsen, H., Duck, Z., Lilley, K. S. & Welch, M. Interrelationships between colonies, biofilms, and planktonic cells of Pseudomonas aeruginosa. J. Bacteriol. 189, 2411–2416 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lewis, K. Persister Cells. Annu. Rev. Microbiol. 64, 357–372 (2010). This article describes the search for persister genes and findings indicating that multiple genes or pathways are involved.

    Article  CAS  PubMed  Google Scholar 

  47. Chiu, T. H. & Hung., S. A. Effect of age on the membrane lipid composition of Streptococcus sanguis. Biochim. Biophys. Acta 558, 267–272 (1979).

    Article  CAS  PubMed  Google Scholar 

  48. Zhang, Y. M. & Rock, C. O. Membrane lipid homeostasis in bacteria. Nature Rev. Microbiol. 6, 222–233 (2008).

    Article  CAS  Google Scholar 

  49. Mascio, C. T., Alder, J. D. & Silverman, J. A. Bactericidal action of daptomycin against stationary-phase and nondividing Staphylococcus aureus cells. Antimicrob. Agents Chemother. 51, 4255–4260 (2007). This work shows that daptomycin is less active against stationary phase cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ooi, N. et al. XF-70 and XF-73, novel antibacterial agents active against slow-growing and non-dividing cultures of Staphylococcus aureus including biofilms. J. Antimicrob. Chemother. 65, 72–78 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Belley, A. et al. Oritavancin kills stationary-phase and biofilm Staphylococcus aureus cells in vitro. Antimicrob. Agents Chemother. 53, 918–925 (2009). This paper describes the efficient killing of various persistent cells by oritavancin.

    Article  CAS  PubMed  Google Scholar 

  52. LaPlante, K. L. & Mermel, L. A. In vitro activities of telavancin and vancomycin against biofilm-producing Staphylococcus aureus, S. epidermidis, and Enterococcus faecalis strains. Antimicrob. Agents Chemother. 53, 3166–3169 (2009). This article describes the activity of telavancin against biofilm cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Darouiche, R. O. & Mansouri, M. D. Dalbavancin compared with vancomycin for prevention of Staphylococcus aureus colonization of devices in vivo. J. Infect. 50, 206–209 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Ooi, N. et al. XF-73, a novel antistaphylococcal membrane-active agent with rapid bactericidal activity. J. Antimicrob. Chemother. 64, 735–740 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Ganzle, M. G. Reutericyclin: biological activity, mode of action, and potential applications. Appl. Microbiol. Biotechnol. 64, 326–332 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Hurdle, J. G., Yendapally, R., Sun, D. & Lee, R. E. Evaluation of analogs of reutericyclin as prospective candidates for treatment of staphylococcal skin infections. Antimicrob. Agents Chemother. 53, 4028–4031 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Overhage, J. et al. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect. Immun. 76, 4176–4182 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Flemming, K. et al. High in vitro antimicrobial activity of synthetic antimicrobial peptidomimetics against staphylococcal biofilms. J. Antimicrob. Chemother. 63, 136–145 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Benoit, M. R., Conant, C. G., Lonescu-Zanetti, C., Schwartz, M. & Matin, A. New device for high-throughput viability screening of flow biofilms. Appl. Environ. Microbiol. 76, 4136–4142 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dowd, S. E. et al. Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol. 8, 43 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yendapally, R., Hurdle, J. G., Carson, E. I., Lee, R. B. & Lee, R. E. N-substituted 3-acetyltetramic acid derivatives as antibacterial agents. J. Med. Chem. 51, 1487–1491 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Silverman, J. A., Mortin, L. I., Vanpraagh, A. D., Li, T. & Alder, J. Inhibition of daptomycin by pulmonary surfactant: in vitro modeling and clinical impact. J. Infect. Dis. 191, 2149–2152 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Zhanel, G. G. et al. New lipoglycopeptides: a comparative review of dalbavancin, oritavancin and telavancin. Drugs 70, 859–886 (2010). This paper summarizes microbiological and pharmacological aspects of three lipoglycopeptides.

    Article  CAS  PubMed  Google Scholar 

  64. Gotfried, M. H. et al. Intrapulmonary distribution of intravenous telavancin in healthy subjects and effect of pulmonary surfactant on in vitro activities of telavancin and other antibiotics. Antimicrob. Agents Chemother. 52, 92–97 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Van Bambeke, F., Saffran, J., Mingeot-Leclercq, M. P. & Tulkens, P. M. Mixed-lipid storage disorder induced in macrophages and fibroblasts by oritavancin (LY333328), a new glycopeptide antibiotic with exceptional cellular accumulation. Antimicrob. Agents Chemother. 49, 1695–1700 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Van Bambeke, F., Mingeot-Leclercq, M. P., Struelens, M. J. & Tulkens, P. M. The bacterial envelope as a target for novel anti-MRSA antibiotics. Trends Pharmacol. Sci. 29, 124–134 (2008). This review provides a summary of the membrane-active antibiotics that are used against methicillin-resistance S. aureus .

    Article  CAS  PubMed  Google Scholar 

  67. Mangili, A., Bica, I., Snydman, D. R. & Hamer, D. H. Daptomycin-resistant, methicillin-resistant Staphylococcus aureus bacteremia. Clin. Infect. Dis. 40, 1058–1060 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Hayden, M. K. et al. Development of daptomycin resistance in vivo in methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 43, 5285–5287 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mishra, N. N. et al. Analysis of cell membrane characteristics of in vitro-selected daptomycin-resistant strains of methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 53, 2312–2318 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jones, T. et al. Failures in clinical treatment of Staphylococcus aureus infection with daptomycin are associated with alterations in surface charge, membrane phospholipid asymmetry, and drug binding. Antimicrob. Agents Chemother. 52, 269–278 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Ernst, C. M. et al. The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion. PLoS Pathog. 5, e1000660 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kosowska-Shick, K. et al. Activity of telavancin against staphylococci and enterococci determined by MIC and resistance selection studies. Antimicrob. Agents Chemother. 53, 4217–4224 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang, S. J. et al. Enhanced expression of dltABCD is associated with the development of daptomycin nonsusceptibility in a clinical endocarditis isolate of Staphylococcus aureus. J. Infect. Dis. 200, 1916–1920 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Courvalin, P. Vancomycin resistance in gram-positive cocci. Clin. Infect. Dis. 42, S25–S34 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Allen, N. E., LeTourneau, D. L. & Hobbs, J. N. Jr. Molecular interactions of a semisynthetic glycopeptide antibiotic with D-alanyl-D-alanine and D-alanyl-D-lactate residues. Antimicrob. Agents Chemother. 41, 66–71 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Allen, N. E. & Nicas, T. I. Mechanism of action of oritavancin and related glycopeptide antibiotics. FEMS Microbiol. Rev. 26, 511–532 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Arthur, M., Depardieu, F., Reynolds, P. & Courvalin, P. Moderate-level resistance to glycopeptide LY333328 mediated by genes of the vanA and vanB clusters in enterococci. Antimicrob. Agents Chemother. 43, 1875–1880 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Perichon, B. & Courvalin, P. VanA-type vancomycin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 53, 4580–4587 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cholo, M. C., van Rensburg, E. & Anderson, R. Potassium uptake systems of Mycobacterium tuberculosis:genomic and protein organisation and potential roles in microbial pathogenesis and chemotherap. South Afr. J. Epidemiol. Infect. 23, 13–16 (2008).

    Article  Google Scholar 

  80. Oliva, B., O'Neill, A. J., Miller, K., Stubbings, W. & Chopra, I. Anti-staphylococcal activity and mode of action of clofazimine. J. Antimicrob. Chemother. 53, 435–440 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Steel, H. C., Matlola, N. M. & Anderson, R. Inhibition of potassium transport and growth of mycobacteria exposed to clofazimine and B669 is associated with a calcium-independent increase in microbial phospholipase A2 activity. J. Antimicrob. Chemother. 44, 209–216 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Cho, S. H. et al. Low-oxygen-recovery assay for high-throughput screening of compounds against nonreplicating Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 51, 1380–1385 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Adams, L. B., Sinha, I., Franzblau, S. G., Krahenbuhl, J. L. & Mehta, R. T. Effective treatment of acute and chronic murine tuberculosis with liposome-encapsulated clofazimine. Antimicrob. Agents Chemother. 43, 1638–1643 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Reddy, V. M., O'Sullivan, J. F. & Gangadharam, P. R. Antimycobacterial activities of riminophenazines. J. Antimicrob. Chemother. 43, 615–623 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Purdy, G. E., Niederweis, M. & Russell, D. G. Decreased outer membrane permeability protects mycobacteria from killing by ubiquitin-derived peptides. Mol. Microbiol. 73, 844–857 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hancock, R. E. & Sahl, H. G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature Biotech. 24, 1551–1557 (2006).

    Article  CAS  Google Scholar 

  87. Blaser, M. J. & Kirschner, D. The equilibria that allow bacterial persistence in human hosts. Nature 449, 843–849 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Furukawa, S., Kuchma, S. L. & O'Toole, G. A. Keeping their options open: acute versus persistent infections. J. Bacteriol. 188, 1211–1217 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bradshaw, C. S., Chen, M. Y. & Fairley, C. K. Persistence of Mycoplasma genitalium following azithromycin therapy. PLoS ONE 3, e3618 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Taylor-Robinson, D., Webster, A. D., Furr, P. M. & Asherson, G. L. Prolonged persistence of Mycoplasma pneumoniae in a patient with hypogammaglobulinaemia. J. Infect. 2, 171–175 (1980).

    Article  CAS  PubMed  Google Scholar 

  91. Abdelrahman, Y. M. & Belland, R. J. The chlamydial developmental cycle. FEMS Microbiol. Rev. 29, 949–959 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Donati, M. et al. Activity of cathelicidin peptides against Chlamydia spp. Antimicrob. Agents Chemother. 49, 1201–1202 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yasin, B., Harwig, S. S., Lehrer, R. I. & Wagar, E. A. Susceptibility of Chlamydia trachomatis to protegrins and defensins. Infect. Immun. 64, 709–713 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Yasin, B., Pang, M., Lehrer, R. I. & Wagar, E. A. Activity of Novispirin G-10, a novel antimicrobial peptide against Chlamydia trachomatis and vaginosis-associated bacteria. Exp. Mol. Pathol. 74, 190–195 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Yasin, B., Pang, M. & Wagar, E. A. A cumulative experience examining the effect of natural and synthetic antimicrobial peptides vs. Chlamydia trachomatis. J. Pept. Res. 64, 65–71 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Lampe, M. F., Ballweber, L. M., Isaacs, C. E., Patton, D. L. & Stamm, W. E. Killing of Chlamydia trachomatis by novel antimicrobial lipids adapted from compounds in human breast milk. Antimicrob. Agents Chemother. 42, 1239–1244 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Park, N. et al. The cell-penetrating peptide, Pep-1, has activity against intracellular chlamydial growth but not extracellular forms of Chlamydia trachomatis. J. Antimicrob. Chemother. 63, 115–123 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Lazarev, V. N. et al. Induced expression of melittin, an antimicrobial peptide, inhibits infection by Chlamydia trachomatis and Mycoplasma hominis in a HeLa cell line. Int. J. Antimicrob. Agents 19, 133–137 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Lazarev, V. N. et al. Effect of induced expression of an antimicrobial peptide melittin on Chlamydia trachomatis and Mycoplasma hominis infections in vivo. Biochem. Biophys. Res. Commun. 338, 946–950 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Nir-Paz, R., Prevost, M. C., Nicolas, P., Blanchard, A. & Wroblewski, H. Susceptibilities of Mycoplasma fermentans and Mycoplasma hyorhinis to membrane-active peptides and enrofloxacin in human tissue cell cultures. Antimicrob. Agents Chemother. 46, 1218–1225 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Beven, L. & Wroblewski, H. Effect of natural amphipathic peptides on viability, membrane potential, cell shape and motility of mollicutes. Res. Microbiol. 148, 163–175 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Hatch, G. M. & McClarty, G. Phospholipid composition of purified Chlamydia trachomatis mimics that of the eucaryotic host cell. Infect. Immun. 66, 3727–3735 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Wylie, J. L., Hatch, G. M. & McClarty, G. Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis. J. Bacteriol. 179, 7233–7242 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rotem, S. & Mor, A. Antimicrobial peptide mimics for improved therapeutic properties. Biochim. Biophys. Acta 1788, 1582–1592 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Schobert, M. & Tielen, P. Contribution of oxygen-limiting conditions to persistent infection of Pseudomonas aeruginosa. Future Microbiol. 5, 603–621 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Hassett, D. J. et al. Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets. Adv. Drug Deliv. Rev. 54, 1425–1443 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Kana, B. D. et al. in Mycobacterium: Genomics and Molecular Biology (eds Parish, T. & Brown, A.) 35–64 (Caister Academic, Norfolk, UK, 2010). This book chapter provides a well-detailed analysis of the mycobacterial respiratory chain and enzymes involved.

    Google Scholar 

  108. Biswas, L., Biswas, R., Schlag, M., Bertram, R. & Gotz, F. Small-colony variant selection as a survival strategy for Staphylococcus aureus in the presence of Pseudomonas aeruginosa. Appl. Environ. Microbiol. 75, 6910–6912 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Besier, S. et al. Prevalence and clinical significance of Staphylococcus aureus small-colony variants in cystic fibrosis lung disease. J. Clin. Microbiol. 45, 168–172 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Alvarez-Ortega, C. & Harwood, C. S. Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration. Mol. Microbiol. 65, 153–165 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Schlag, S., Nerz, C., Birkenstock, T. A., Altenberend, F. & Gotz, F. Inhibition of staphylococcal biofilm formation by nitrite. J. Bacteriol. 189, 7911–7919 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Boshoff, H. I. et al. The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J. Biol. Chem. 279, 40174–40184 (2004). This research examines transcriptional changes that M. tuberculosis cells undergo in response to various metabolic inhibitors.

    Article  CAS  PubMed  Google Scholar 

  113. Karakousis, P. C. et al. Dormancy phenotype displayed by extracellular Mycobacterium tuberculosis within artificial granulomas in mice. J. Exp. Med. 200, 647–657 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Northen, H. et al. Salmonella enterica serovar Typhimurium mutants completely lacking the F0F1 ATPase are novel live attenuated vaccine strains. Vaccine 28, 940–949 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dhiman, R. K. et al. Menaquinone synthesis is critical for maintaining mycobacterial viability during exponential growth and recovery from non-replicating persistence. Mol. Microbiol. 72, 85–97 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dekkers, L. C. et al. Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and of NADH:ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365. Mol. Plant Microbe Interact. 11, 763–771 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Zhu, L. et al. Characterization of mRNA interferases from Mycobacterium tuberculosis. J. Biol. Chem. 281, 18638–18643 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Melo, A. M., Bandeiras, T. M. & Teixeira, M. New insights into type II NAD(P)H:quinone oxidoreductases. Microbiol. Mol. Biol. Rev. 68, 603–616 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Richardson, A. R., Libby, S. J. & Fang, F. C. A nitric oxide-inducible lactate dehydrogenase enables Staphylococcus aureus to resist innate immunity. Science 319, 1672–1676 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Somerville, G. A. & Proctor, R. A. At the crossroads of bacterial metabolism and virulence factor synthesis in staphylococci. Microbiol. Mol. Biol. Rev. 73, 233–248 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kohanski, M. A., Dwyer, D. J., Hayete, B., Lawrence, C. A. & Collins, J. J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130, 797–810 (2007). This paper (and others by J. J. Collins) explores the cellular mechanisms and responses that are active during the killing of cells by bactericidal antibiotics.

    Article  CAS  PubMed  Google Scholar 

  122. Fuchs, S., Pane-Farre, J., Kohler, C., Hecker, M. & Engelmann, S. Anaerobic gene expression in Staphylococcus aureus. J. Bacteriol. 189, 4275–4289 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bald, D. & Koul, A. Respiratory ATP synthesis: the new generation of mycobacterial drug targets? FEMS Microbiol. Lett. 308, 1–7 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Wade, M. M. & Zhang, Y. Anaerobic incubation conditions enhance pyrazinamide activity against Mycobacterium tuberculosis. J. Med. Microbiol. 53, 769–773 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Zhang, Y., Wade, M. M., Scorpio, A., Zhang, H. & Sun, Z. Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. J. Antimicrob. Chemother. 52, 790–795 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Koul, A. et al. Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis. J. Biol. Chem. 283, 25273–25280 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Andries, K. et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307, 223–227 (2005). This landmark work describes the discovery of the novel drug TMC207.

    Article  CAS  PubMed  Google Scholar 

  128. Petrella, S. et al. Genetic basis for natural and acquired resistance to the diarylquinoline R207910 in mycobacteria. Antimicrob. Agents Chemother. 50, 2853–2856 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ibrahim, M. et al. Synergistic activity of R207910 combined with pyrazinamide against murine tuberculosis. Antimicrob. Agents Chemother. 51, 1011–1015 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Diacon, A. H. et al. The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N. Engl. J. Med. 360, 2397–2405 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Rustomjee, R. et al. Early bactericidal activity and pharmacokinetics of the diarylquinoline TMC207 in treatment of pulmonary tuberculosis. Antimicrob. Agents Chemother. 52, 2831–2835 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lenaerts, A. J. et al. Location of persisting mycobacteria in the guinea pig model of tuberculosis revealed by R207910. Antimicrob. Agents Chemother. 51, 3338–3345 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Deb, C. et al. A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS ONE 4, e6077 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Upadhayaya, R. S. et al. Design, synthesis, biological evaluation and molecular modelling studies of novel quinoline derivatives against Mycobacterium tuberculosis. Bioorg. Med. Chem. 17, 2830–2841 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Yano, T., Li, L. S., Weinstein, E., Teh, J. S. & Rubin, H. Steady-state kinetics and inhibitory action of antitubercular phenothiazines on Mycobacterium tuberculosis type-II NADH-menaquinone oxidoreductase (NDH-2). J. Biol. Chem. 281, 11456–11463 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Weinstein, E. A. et al. Inhibitors of type II NADH:menaquinone oxidoreductase represent a class of antitubercular drugs. Proc. Nat. Acad. Sci. USA 102, 4548–4553 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Amaral, L., Boeree, M. J., Gillespie, S. H., Udwadia, Z. F. & van Soolingen, D. Thioridazine cures extensively drug-resistant tuberculosis (XDR-TB) and the need for global trials is now! Int. J. Antimicrob. Agents 35, 524–526 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. Ordway, D., Viveiros, M., Leandro, C., Arroz, M. J. & Amaral, L. Intracellular activity of clinical concentrations of phenothiazines including thioridiazine against phagocytosed Staphylococcus aureus. Int. J. Antimicrob. Agents 20, 34–43 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Xie, Z., Siddiqi, N. & Rubin, E. J. Differential antibiotic susceptibilities of starved Mycobacterium tuberculosis isolates. Antimicrob. Agents Chemother. 49, 4778–4780 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Mogi, T. et al. Identification of new inhibitors for alternative NADH dehydrogenase (NDH-II). FEMS Microbiol. Lett. 291, 157–161 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Mogi, T. et al. Antibiotics LL-Z1272 identified as novel inhibitors discriminating bacterial and mitochondrial quinol oxidases. Biochim. Biophys. Acta 1787, 129–133 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Cardoso, R. F. et al. Characterization of ndh gene of isoniazid resistant and susceptible Mycobacterium tuberculosis isolates from Brazil. Mem. Inst. Oswaldo Cruz 102, 59–61 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. van den Boogaard, J., Kibiki, G. S., Kisanga, E. R., Boeree, M. J. & Aarnoutse, R. E. New drugs against tuberculosis: problems, progress, and evaluation of agents in clinical development. Antimicrob. Agents Chemother. 53, 849–862 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. de Carvalho, L. P., Lin, G., Jiang, X. & Nathan, C. Nitazoxanide kills replicating and nonreplicating Mycobacterium tuberculosis and evades resistance. J. Med. Chem. 52, 5789–5792 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Hurdle, J. G. et al. A microbiological assessment of novel nitrofuranylamides as anti-tuberculosis agents. J. Antimicrob. Chemother. 62, 1037–1045 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Manjunatha, U., Boshoff, H. I. & Barry, C. E. The mechanism of action of PA-824: Novel insights from transcriptional profiling. Commun. Integr. Biol. 2, 215–218 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sisson, G. et al. Enzymes associated with reductive activation and action of nitazoxanide, nitrofurans, and metronidazole in Helicobacter pylori. Antimicrob. Agents Chemother. 46, 2116–2123 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Shamir, E. R. et al. Nitazoxanide inhibits biofilm production and hemagglutination by enteroaggregative Escherichia coli strains by blocking assembly of AafA fimbriae. Antimicrob. Agents Chemother. 54, 1526–1533 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Tchouaffi-Nana, F. et al. Nitazoxanide inhibits biofilm formation by Staphylococcus epidermidis by blocking accumulation on surfaces. Antimicrob. Agents Chemother. 54, 2767–2774 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Mathur, T., Bhateja, P., Pandya, M., Fatma, T. & Rattan, A. In vitro activity of RBx 7644 (ranbezolid) on biofilm producing bacteria. Int. J. Antimicrob. Agents 24, 369–373 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Kalia, V. et al. Mode of action of ranbezolid against staphylococci and structural modeling studies of its interaction with ribosomes. Antimicrob. Agents Chemother. 53, 1427–1433 (2009).

    Article  CAS  PubMed  Google Scholar 

  152. Smith, P. A. & Romesberg, F. E. Combating bacteria and drug resistance by inhibiting mechanisms of persistence and adaptation. Nature Chem. Biol. 3, 549–556 (2007).

    Article  CAS  Google Scholar 

  153. Hansen, S., Lewis, K. & Vulic, M. Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrob. Agents Chemother. 52, 2718–2726 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Vazquez-Laslop, N., Lee, H. & Neyfakh, A. A. Increased persistence in Escherichia coli caused by controlled expression of toxins or other unrelated proteins. J. Bacteriol. 188, 3494–3497 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. O'Neill, A. J., Miller, K., Oliva, B. & Chopra, I. Comparison of assays for detection of agents causing membrane damage in Staphylococcus aureus. J. Antimicrob. Chemother. 54, 1127–1129 (2004).

    Article  CAS  PubMed  Google Scholar 

  156. Walsh, T. J. et al. Safety, tolerance, and pharmacokinetics of a small unilamellar liposomal formulation of amphotericin B (AmBisome) in neutropenic patients. Antimicrob. Agents Chemother. 42, 2391–2398 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Carlson, R. P., Taffs, R., Davison, W. M. & Stewart, P. S. Anti-biofilm properties of chitosan-coated surfaces. J. Biomater. Sci. Polym. Ed. 19, 1035–1046 (2008).

    Article  CAS  PubMed  Google Scholar 

  158. Savage, P. B. et al. in Microbial Surfaces: Structure, Interactions, and Reactivity (eds Camesano, T. A. & Mello, C. M.) 65–78 (American Chemical Society, Washington DC, 2008).

    Book  Google Scholar 

  159. Brogden, K. A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Rev. Microbiol. 3, 238–250 (2005).

    Article  CAS  Google Scholar 

  160. Hawkey, P. M. Pre-clinical experience with daptomycin. J. Antimicrob. Chemother. 62, 7–14 (2008).

    Article  CAS  Google Scholar 

  161. Epand, R. F., Pollard, J. E., Wright, J., Savage, P. B. & Epand, R. M. Depolarization, bacterial membrane composition and the antimicrobial action of ceragenins. Antimicrob. Agents Chemother. 54, 3708–3713 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Chin, J. N., Rybak, M. J., Cheung, C. M. & Savage, P. B. Antimicrobial activities of ceragenins against clinical isolates of resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 51, 1268–1273 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Coates, T., Bax, R. & Coates, A. Nasal decolonization of Staphylococcus aureus with mupirocin: strengths, weaknesses and future prospects. J. Antimicrob. Chemother. 64, 9–15 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Budha, N. et al. Pharmacokinetically-guided lead optimization of nitrofuranylamide anti-tuberculosis agents. AAPS J. 10, 157–165 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Tangallapally, R. P., Yendapally, R., Daniels, A. J., Lee, R. E. & Lee, R. E. Nitrofurans as novel anti-tuberculosis agents: identification, development and evaluation. Curr. Top. Med. Chem. 7, 509–526 (2007).

    Article  CAS  PubMed  Google Scholar 

  166. Ballard, T. E. et al. Biological activity of modified and exchanged 2-amino-5-nitrothiazole amide analogues of nitazoxanide. Bioorg. Med. Chem. Lett. 20, 3537–3539 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. Tuomanen and E. Mahrous for critical reading of this manuscript. Funding for this research was provided by the US National Institutes of Health grants R01AI062415 and ARRA 1 R01AI079653, and by the American Lebanese Syrian Associated Charities (ALSAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian G. Hurdle.

Ethics declarations

Competing interests

Julian G. Hurdle and Richard E. Lee are patent holders of reutericyclin analogues.

Alex J. O'Neill acknowledges receipt of research funding from Helperby Therapeutics.

Ian Chopra has received research grants from Destiny Pharma for studies on the porphyrin antimicrobials XF70 and XF73, and is also a member of Destiny's scientific advisory board.

Related links

FURTHER INFORMATION

TB Alliance

Otsuka Pharmaceuticals

Glossary

Persistent infection

An infection that persists in the host for a prolonged period, characterized by the presence of slow-growing and/or non-growing microorganisms. These cells are not easily removed by the host immune system or by antibiotic treatment. Persistent infections may be asymptomatic, but may relapse into active disease when cells regain logarithmic growth and metabolic activity.

Quiescent

Pertaining to bacteria: a bacterial population comprising various subpopulations of slow-growing and non-growing bacteria.

Slow-growing

Pertaining to bacteria: cells in which division occurs at a significantly slower rate than the rate in logarithmic bacteria. These cells display reduced metabolic activity.

Dormant

Pertaining to bacteria: cells that are not undergoing cell division. Overall, cellular metabolism is reduced more than in slow-growing cells. These cells are described as metabolically inactive and non-growing.

Persisting bacteria

Bacteria that persist in the host and are refractory to the host immune system and to antibiotic treatment.

Persister cells

A small subpopulation of non-growing bacteria that arises during the stationary phase and can survive exposure to bactericidal antibiotics.

Logarithmic phase

The bacterial growth phase of during which cell division occurs 'rapidly' to increase bacterial biomass. These cells are metabolically active.

Nephrotoxicity

Having a toxic effect on the kidneys.

Myotoxicity

Having a toxic effect on the muscles.

Lysosomal lipid storage disorder

A metabolic disorder involving the harmful accumulation of lipids in body cells, resulting from a disruption to the function of the lysosome.

Safety margin

The difference between the dose of a drug that is required to produce the best therapeutic effect and that which produces a toxic effect. A wider margin is most desired for therapy.

Prodrug nitroheterocyclic antibiotic

One of a diverse class of compounds that contain a nitroheterocyclic chemical group which undergoes bioreductive activation by enzymes to generate the active antimicrobial species.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hurdle, J., O'Neill, A., Chopra, I. et al. Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nat Rev Microbiol 9, 62–75 (2011). https://doi.org/10.1038/nrmicro2474

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2474

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing