Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dancing genomes: fungal nuclear positioning

Key Points

  • In fungi, nuclei move in a microtubule- and microtubule motor-dependent manner and can traverse long or short distances depending on the shape and size of the cell.

  • Nuclei undergo closed, open or partially open mitosis and use motor proteins such as dynein to pull and push on cytoplasmic microtubules that slide along the cell cortex to segregate nuclei.

  • Most filamentous fungi have multinucleate hyphae and their cell division is not spatially or temporally coordinated with nuclear division. Dynein plays an important role in maintaining the appropriate spacing between the distinct nuclei.

  • Karyogamy requires interactions between overlapping spindle microtubules emanating from the two merging nuclei.

  • One consequence of the multinucleate state in fungi may be higher levels of, and tolerance of, aneuploidy. Aneuploidy can occur in yeast through a failure of cytokinesis, as well as by non-disjunction, endoreplication or mating between non-haploid strains. Aneuplody can confer fitness advantages or disadvantages.

  • Basidiomycetes such as mushrooms are dikaryotic for much of their life cycle. Mating between compatible partners triggers rapid migration and mixing of the nuclei. To form the dikaryon, nuclei from the two parents pair and then segregate into the same cell, so that nuclei are positioned based on their genotype. How nuclear genotype is recognized at the molecular level is not well understood.

  • Nuclear movements have functions outside of chromosome segregation. For example, chromatin organization changes with the direction of nuclear migration in Neurospora crassa, mechanical removal of the nuclear envelope is mediated by dynein in the open mitoses of Ustilago maydis, autophagy is induced by nuclear movements during plant infection by Magnaporthe grisea and DNA repair or meiotic recombination are coupled with nuclear oscillations in S. cerevisiae and S. pombe, respectively.

  • Finally, nuclei may divide and migrate in a manner that preserves the original template strand in the growing hyphal tip, and this preservation mechanism may be conserved in mammalian cells.

Abstract

The many different mechanisms that fungi use to transmit and share genetic material are mediated by a broad range of chromosome and nuclear dynamics. The mechanics underlying nuclear migration are well integrated into detailed models, in which the forces supplied by plus- and minus-end-directed microtubule motors position and move the nucleus in a cell. Although we know much about how cells move nuclei, we know much less about why the cell invests in so many different nuclear 'dances'. Here, we briefly survey the available models for the mechanics of nuclear migration in fungi and then focus on examples of how fungal cells use these nuclear dances — the movement of intact nuclei in and between cells — to control the integrity, ploidy and assortment of specific genomes or individual chromosomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microtubules and nuclear movement.
Figure 2: Mitotic dynamics in Candida albicans.
Figure 3: Overview of dikaryon formation.

Similar content being viewed by others

References

  1. Sawin, K. E. & Tran, P. T. Cytoplasmic microtubule organization in fission yeast. Yeast 23, 1001–1014 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Petersen, J., Heitz, M. J. & Hagan, I. M. Conjugation in S. pombe: identification of a microtubule-organising centre, a requirement for microtubules and a role for Mad2. Curr. Biol. 8, 963–966 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Tran, P. T., Marsh, L., Doye, V., Inoue, S. & Chang, F. A mechanism for nuclear positioning in fission yeast based on microtubule pushing. J. Cell Biol. 153, 397–411 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yeh, E., Skibbens, R., Cheng, J., Salmon, E. & Bloom, K. Spindle dynamics and cell cycle regulation of dynein in the budding yeast, Saccharomyces cerevisiae. J. Cell Biol. 130, 687–700 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Yeh, E. et al. Dynamic positioning of mitotic spindles in yeast: role of microtubule motors and cortical determinants. Mol. Biol. Cell 11, 3949–3961 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huisman, S. M. & Segal, M. Cortical capture of microtubules and spindle polarity in budding yeast - where's the catch? J. Cell Sci. 118, 463–471 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Dotiwala, F., Haase, J., Arbel-Eden, A., Bloom, K. & Haber, J. E. The yeast DNA damage checkpoint proteins control a cytoplasmic response to DNA damage. Proc. Natl Acad. Sci. USA 104, 11358–11363 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liakopoulos, D., Kusch, J., Grava, S., Vogel, J. & Barral, Y. Asymmetric loading of Kar9 onto spindle poles and microtubules ensures proper spindle alignment. Cell 112, 561–574 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Grava, S., Schaerer, F., Faty, M., Philippsen, P. & Barral, Y. Asymmetric recruitment of dynein to spindle poles and microtubules promotes proper spindle orientation in yeast. Dev. Cell 10, 425–439 (2006). Together with reference 8, this work demonstrates the asymmetrical localizations of Kar9 and the cytoplasmic dynein motor protein. Both localize to the SPB or to microtubules that are bound for the bud and serve to move that end of the spindle into the bud. Phosphorylation of these proteins is necessary for their asymmetrical localization.

    Article  CAS  PubMed  Google Scholar 

  10. Byers, B. & Goetsch, L. Duplication of spindle plaques and integration of the yeast cell cycle. Cold Spring Harb. Symp. Quant. Biol. 38, 123–131 (1974).

    Article  CAS  PubMed  Google Scholar 

  11. Molk, J. N., Salmon, E. D. & Bloom, K. Nuclear congression is driven by cytoplasmic microtubule plus end interactions in S. cerevisiae. J. Cell Biol. 172, 27–39 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Spencer, F. & Simchen, G. Transfer of YAC clones to new hosts by karyogamy-deficient mating. Curr. Protoc. Hum. Genet. Chapter 5, Unit 5. 14 (2001).

    Google Scholar 

  13. Wolkow, T. D., Harris, S. D. & Hamer, J. E. Cytokinesis in Aspergillus nidulans is controlled by cell size, nuclear positioning and mitosis. J. Cell Sci. 109, 2179–2188 (1996).

    CAS  PubMed  Google Scholar 

  14. Xiang, X. & Fischer, R. Nuclear migration and positioning in filamentous fungi. Fungal Genet. Biol. 41, 411–419 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Requena, N. et al. Genetic evidence for a microtubule-destabilizing effect of conventional kinesin and analysis of its consequences for the control of nuclear distribution in Aspergillus nidulans. Mol. Microbiol. 42, 121–132 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, J., Li, S., Fischer, R. & Xiang, X. Accumulation of cytoplasmic dynein and dynactin at microtubule plus ends in Aspergillus nidulans is kinesin dependent. Mol. Biol. Cell 14, 1479–1488 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alberti-Segui, C., Dietrich, F., Altmann-Johl, R., Hoepfner, D. & Philippsen, P. Cytoplasmic dynein is required to oppose the force that moves nuclei towards the hyphal tip in the filamentous ascomycete Ashbya gossypii. J. Cell Sci. 114, 975–986 (2001).

    CAS  PubMed  Google Scholar 

  18. Plamann, M., Minke, P. F., Tinsley, J. H. & Bruno, K. S. Cytoplasmic dynein and actin-related protein Arp1 are required for normal nuclear distribution in filamentous fungi. J. Cell Biol. 127, 139–149 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Xiang, X., Beckwith, S. & Morris, N. Cytoplasmic dynein is involved in nuclear migration in Aspergillus nidulans. Proc. Natl Acad. Sci. USA 91, 2100–2104 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fink, G. & Steinberg, G. Dynein-dependent motility of microtubules and nucleation sites supports polarization of the tubulin array in the fungus Ustilago maydis. Mol. Biol. Cell 17, 3242–3253 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Berman, J. & Sudbery, P. E. Candida albicans: a molecular revolution built on lessons from budding yeast. Nature Rev. Genet. 3, 918–932 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Berman, J. Morphogenesis and cell cycle progression in Candida albicans. Curr. Opin. Microbiol. 9, 595–601 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sudbery, P., Gow, N. & Berman, J. The distinct morphogenic states of Candida albicans. Trends Microbiol. 12, 317–324 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Finley, K. R. & Berman, J. Microtubules in Candida albicans hyphae drive nuclear dynamics and connect cell cycle progression to morphogenesis. Eukaryot. Cell 4, 1697–1711 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Finley, K. R., Bouchonville, K. J., Quick, A. & Berman, J. Dynein-dependent nuclear dynamics affect morphogenesis in Candida albicans by means of the Bub2p spindle checkpoint. J. Cell Sci. 121, 466–476 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Bensen, E. S., Filler, S. G. & Berman, J. A forkhead transcription factor is important for true hyphal as well as yeast morphogenesis in Candida albicans. Eukaryot. Cell 1, 77–98 (2002).

    Article  CAS  Google Scholar 

  27. Gonzalez-Novo, A. et al. Dbf2 is essential for cytokinesis and correct mitotic spindle formation in Candida albicans. Mol. Microbiol. 72, 1364–1378 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Vogel, S. K., Raabe, I., Dereli, A., Maghelli, N. & Tolic-Norrelykke, I. Interphase microtubules determine the initial alignment of the mitotic spindle. Curr. Biol. 17, 438–444 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Daga, R. R. & Nurse, P. Interphase microtubule bundles use global cell shape to guide spindle alignment in fission yeast. J. Cell Sci. 121, 1973–1980 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Ganem, N. J., Storchova, Z. & Pellman, D. Tetraploidy, aneuploidy and cancer. Curr. Opin. Genet. Dev. 17, 157–162 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Rieder, C. L. & Maiato, H. Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev. Cell 7, 637–651 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Andreassen, P. R., Lohez, O. D. & Margolis, R. L. G2 and spindle assembly checkpoint adaptation, and tetraploidy arrest: implications for intrinsic and chemically induced genomic instability. Mutat. Res. 532, 245–253 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Storchova, Z. et al. Genome-wide genetic analysis of polyploidy in yeast. Nature 443, 541–547 (2006). A screen of the yeast deletion collection for triploid and tetraploid mutants that are defective for growth. Almost all of the mutations found are in genes that are involved in homologous recombination, sister chromatid cohesion or mitotic-spindle function. This study also shows that wild-type tetraploids have higher levels of genome instability than diploids and that some of this is due to an increased incidence of defects in the attachment of kinetochores to both spindle poles.

    Article  CAS  PubMed  Google Scholar 

  34. Gerstein, A. C., Chun, H. J., Grant, A. & Otto, S. P. Genomic convergence toward diploidy in Saccharomyces cerevisiae. PLoS Genet 2, e145 (2006). During experimental evolution of haploid, diploid and tetraploid cells for 1,800 doublings, all strains converged to diploidy regardless of the presence or absence of stress, supporting the idea that genome size evolution is constrained and, in S. cerevisiae , favours a diploid genome size.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thompson, D. A., Desai, M. M. & Murray, A. W. Ploidy controls the success of mutators and nature of mutations during budding yeast evolution. Curr. Biol. 16, 1581–1590 (2006). A comparison of wild-type and mismatch-repair-defective diploid and haploid strains grown under stress or non-stress conditions, which shows that diploid strains acquire mutations that allow them to grow well in several stress conditions. By contrast, haploids acquire more specific mutations for improved growth under only the selected condition. Thus, increased mutagenesis favours the adaptation of diploids relative to haploids.

    Article  CAS  PubMed  Google Scholar 

  36. Querol, A. & Bond, U. The complex and dynamic genomes of industrial yeasts. FEMS Microbiol. Lett. 293, 1–10 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Torres, E. M. et al. Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 317, 916–924 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Williams, B. R. et al. Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science 322, 703–709 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Hughes, T. R. et al. Widespread aneuploidy revealed by DNA microarray expression profiling. Nature Genet. 25, 333–337 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Selmecki, A., Forche, A. & Berman, J. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 313, 367–370 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Selmecki, A., Bergmann, S. & Berman, J. Comparative genome hybridization reveals extensive aneuploidies in C. albicans laboratory strains. Mol. Microbiol. 55, 1553–1565 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Chen, X., Magee, B. B., Dawson, D., Magee, P. T. & Kumamoto, C. A. Chromosome 1 trisomy compromises the virulence of Candida albicans. Mol. Microbiol. 51, 551–565 (2003).

    Article  CAS  Google Scholar 

  44. Bouchonville, K., Forche, A., Tang, K. E., Selmecki, A. & Berman, J. Aneuploid chromosomes are highly unstable during DNA transformation of Candida albicans. Eukaryot. Cell. 8, 1554–1566 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Selmecki, A. M., Gerami-Nejad, M., Paulsen, C., Forche, A. & Berman, J. An isochromosome confers drug resistance in vivo by amplification of two genes, ERG11 and TAC1. Mol. Microbiol. 68, 624–641 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Shin, J. H. et al. Changes in karyotype and azole susceptibility of sequential bloodstream isolates from patients with Candida glabrata candidemia. J. Clin. Microbiol. 45, 2385–2391 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Polakova, S. et al. Formation of new chromosomes as a virulence mechanism in yeast Candida glabrata. Proc. Natl Acad. Sci. USA 106, 2688–2693 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hu, G. et al. Comparative hybridization reveals extensive genome variation in the AIDS-associated pathogen Cryptococcus neoformans. Genome Biol. 9, R41 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Harimoto, Y. et al. Expression profiles of genes encoded by the supernumerary chromosome controlling AM-toxin biosynthesis and pathogenicity in the apple pathotype of Alternaria alternata. Mol. Plant Microbe Interact. 20, 1463–1476 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. He, C., Rusu, A. G., Poplawski, A. M., Irwin, J. A. G. & Manners, J. M. Transfer of a supernumerary chromosome between vegetatively incompatible biotypes of the fungus Colletotrichum gloeosporioides. Genetics 150, 1459–1466 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Miao, V. P., Covert, S. F. & VanEtten, H. D. A fungal gene for antibiotic resistance on a dispensable (“B”) chromosome. Science 254, 1773–1776 (1991).

    Article  CAS  PubMed  Google Scholar 

  52. Brown, A. J. & Casselton, L. A. Mating in mushrooms: increasing the chances but prolonging the affair. Trends Genet. 17, 393–400 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Conde, J. & Fink, G. R. A mutant of Saccharomyces cerevisiae defective for nuclear fusion. Proc. Natl Acad. Sci. USA 73, 3651–3655 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kurihara, L. J., Beh, C. T., Latterich, M., Schekman, R. & Rose, M. D. Nuclear congression and membrane fusion: two distinct events in the yeast karyogamy pathway. J. Cell Biol. 126, 911–923 (1994). This classic paper analyzes a series of kar mutants in S. cerevisiae and shows that they affect two distinct processes during nuclear fusion following mating. One class is required for the microtubule-mediated movement of nuclei so that they become juxtaposed. The second class mediates membrane interactions, resulting in nuclear fusion. Double- mutant analysis reveals that the nuclear movement step always precedes the membrane fusion step.

    Article  CAS  PubMed  Google Scholar 

  55. Niederpruem, D. J. Direct studies of dikaryotization in Schizophyllum commune. I. Live inter-cellular nuclear migration patterns. Arch. Microbiol. 128, 162–171 (1980).

    Article  CAS  PubMed  Google Scholar 

  56. Ross, I. K. Nuclear migration rates in Coprinus congregatus: a new record? Mycologia 68, 418–422 (1976).

    Article  Google Scholar 

  57. Raudaskoski, M. The relationship between B-mating-type genes and nuclear migration in Schizophyllum commune. Fungal Genet. Biol. 24, 207–227 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Banuett, F. & Herskowitz, I. Different a alleles of Ustilago maydis are necessary for maintenance of filamentous growth but not for meiosis. Proc. Natl Acad. Sci. USA 86, 5878–5882 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zickler, D., Arnaise, S., Coppin, E., Debuchy, R. & Picard, M. Altered mating-type identity in the fungus Podospora anserina leads to selfish nuclei, uniparental progeny, and haploid meiosis. Genetics 140, 493–503 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Raper, J. R. Genetics of Sexuality in Higher Fungi (The Ronald Press, New York, 1966).

    Google Scholar 

  61. Iwasa, M., Tanabe, S. & Kamada, T. The two nuclei in the dikaryon of the homobasidiomycete Coprinus cinereus change position after each conjugate division. Fungal Genet. Biol. 23, 110–116 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Kues, U. Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol. Mol. Biol. Rev. 64, 316–353 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Okazaki, K. & Niwa, O. Dikaryotic cell division of the fission yeast Schizosaccharomyces pombe. Biosci. Biotechnol. Biochem. 72, 1531–1538 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Clark, T. A. & Anderson, J. B. Dikaryons of the basidiomycete fungus Schizophyllum commune: evolution in long-term culture. Genetics 167, 1663–1675 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. James, T. Y., Stenlid, J., Olson, A. & Johannesson, H. Evolutionary significance of imbalanced nuclear ratios within heterokaryons of the basidiomycete fungus Heterobasidion parviporum. Evolution 62, 2279–2296 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Raper, C. A. B-mating-type genes influence survival of nuclei separated from heterokaryons of Schizophyllum. Exp. Mycol. 9, 149–160 (1985).

    Article  Google Scholar 

  67. Schuurs, T. A., Dalstra, H. J., Scheer, J. M. & Wessels, J. G. Positioning of nuclei in the secondary mycelium of Schizophyllum commune in relation to differential gene expression. Fungal Genet. Biol. 23, 150–161 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Neumann, F. R. & Nurse, P. Nuclear size control in fission yeast. J. Cell Biol. 179, 593–600 (2007). This study addresses the mechanistic basis for control of nuclear size in S. pombe , demonstrating that the size of the nucleus is probably under cytosolic control and that the nucleocytoplasmic ratio is not directly controlled by the DNA content, as mutants with widely varying ploidy have a stable ratio.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Freitag, M., Hickey, P. C., Raju, N. B., Selker, E. U. & Read, N. D. GFP as a tool to analyze the organization, dynamics and function of nuclei and microtubules in Neurospora crassa. Fungal Genet. Biol. 41, 897–910 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Gerlitz, G. et al. Migration cues induce chromatin alterations. Traffic 8, 1521–1529 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Straube, A., Weber, I. & Steinberg, G. A novel mechanism of nuclear envelope break-down in a fungus: nuclear migration strips off the envelope. EMBO J. 24, 1674–1685 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Theisen, U., Straube, A. & Steinberg, G. Dynamic rearrangement of nucleoporins during fungal “open” mitosis. Mol. Biol. Cell 19, 1230–1240 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Byers, B. & Goetsch, L. Behavior of spindles and spindle plaques in the cell cycle and conjugation of Saccharomyces cerevisiae. J. Bacteriol. 124, 511–523 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. De Souza, C. P., Osmani, A. H., Hashmi, S. B. & Osmani, S. A. Partial nuclear pore complex disassembly during closed mitosis in Aspergillus nidulans. Curr. Biol. 14, 1973–1984 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Thrower, D. A., Stemple, J., Yeh, E. & Bloom, K. Nuclear oscillations and nuclear filament formation accompany single-strand annealing repair of a dicentric chromosome in Saccharomyces cerevisiae. J. Cell Sci. 116, 561–569 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Yamamoto, A., Tsutsumi, C., Kojima, H., Oiwa, K. & Hiraoka, Y. Dynamic behavior of microtubules during dynein-dependent nuclear migrations of meiotic prophase in fission yeast. Mol. Biol. Cell 12, 3933–3946 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ding, D. Q., Chikashige, Y., Haraguchi, T. & Hiraoka, Y. Oscillatory nuclear movement in fission yeast meiotic prophase is driven by astral microtubules, as revealed by continuous observation of chromosomes and microtubules in living cells. J. Cell Sci. 111, 701–712 (1998).

    CAS  PubMed  Google Scholar 

  78. Vogel, S. K., Pavin, N., Maghelli, N., Julicher, F. & Tolic-Norrelykke, I. M. Self-organization of dynein motors generates meiotic nuclear oscillations. PLoS Biol. 7, e1000087 (2009). This work combines live-cell imaging, laser ablation and mathematical modelling to build a model for the generation of nuclear oscillations during S. pombe meiosis. Dynein is shown to self-organize in a dynamic pattern, alternating between microtubules that radiate in opposite directions from the SPB.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Veneault-Fourrey, C., Barooah, M., Egan, M., Wakley, G. & Talbot, N. J. Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science 312, 580–583 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Rosenberger, R. F. & Kessel, M. Nonrandom sister chromatid segregation and nuclear migration in hyphae of Aspergillus nidulans. J. Bacteriol. 96, 1208–1213 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Cairns, J. Mutation selection and the natural history of cancer. Nature 255, 197–200 (1975).

    Article  CAS  PubMed  Google Scholar 

  82. Smith, M. L., Bruhn, J. N. & Anderson, J. B. The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 356, 428–431 (1992).

    Article  Google Scholar 

  83. Hodnett, B. & Anderson, J. B. Genomic stability of two individuals of Armillaria gallica. Mycologia 92, 894–899 (2000).

    Article  CAS  Google Scholar 

  84. Conboy, M. J., Karasov, A. O. & Rando, T. A. High incidence of non-random template strand segregation and asymmetric fate determination in dividing stem cells and their progeny. PLoS Biol. 5, e102 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Shinin, V., Gayraud-Morel, B. & Tajbakhsh, S. Template DNA-strand co-segregation and asymmetric cell division in skeletal muscle stem cells. Methods Mol. Biol. 482, 295–317 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Neff, M. W. & Burke, D. J. Random segregation of chromatids at mitosis in Saccharomyces cerevisiae. Genetics 127, 463–473 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lew, D. J., Burke, D. J. & Dutta, A. The immortal strand hypothesis: how could it work? Cell 133, 21–23 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Hazan, I., Sepulveda-Becerra, M. & Liu, H. Hyphal elongation is regulated independently of cell cycle in Candida albicans. Mol. Biol. Cell 13, 134–145 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Steinberg, G. Tracks for traffic: microtubules in the plant pathogen Ustilago maydis. New Phytol. 174, 721–733 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Su, W., Li, S., Oakley, B. R. & Xiang, X. Dual color imaging of nuclear division and mitotic spindle elongation in live cells of Aspergillus nidulans. Eukaryot. Cell 3, 553–556 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Oakley, B. R. Tubulins in Aspergillus nidulans. Fungal Genet. Biol. 41, 420–427 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Horio, T. & Oakley, B. R. The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans. Mol. Biol. Cell 16, 918–926 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ukil, L., De Souza, C. P., Liu, H.-L. & Osmani, S. A. Nucleolar separation from chromosomes during Aspergillus nidulans mitosis can occur without spindle forces. Mol. Biol. Cell 20, 2132–2145 (2009). This paper studies the fate of nucleolar components during semi-closed mitosis in A. nidulans , finding that nucleolar proteins that are important for ribosome assembly are extruded from the nucleus into a novel cytoplasmic structure that remains at the site of the metaphase plate. Disruption of spindle assembly blocks this process in wild-type cells but not in checkpoint-deficient mutants, suggesting that the segregation of nuclei and nucleoli is coupled by cell cycle checkpoints.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Alberti-Segui, C., Dietrich, F., Altmann-Johl, R., Hoepfner, D. & Philippsen, P. Cytoplasmic dynein is required to oppose the force that moves nuclei towards the hyphal tip in the filamentous ascomycete Ashbya gossypii. J. Cell Sci. 114, 975–986 (2001).

    CAS  PubMed  Google Scholar 

  95. Gladfelter, A. S., Hungerbuehler, A. K. & Philippsen, P. Asynchronous nuclear division cycles in multinucleated cells. J. Cell Biol. 172, 347–362 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Goffeau, A. et al. Life with 6000 genes. Science 274, 563–567 (1996).

    Google Scholar 

  97. Jones, T. et al. The diploid genome sequence of Candida albicans. Proc. Natl Acad. Sci. USA 101, 7329–7334 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wood, V. et al. The genome sequence of Schizosaccharomyces pombe. Nature 415, 871–880 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Galagan, J. E. et al. The genome sequence of the filamentous fungus Neurospora crassa. Nature 422, 859–868 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Dietrich, F. S. et al. The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304, 304–307 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Kamper, J. et al. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444, 97–101 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Espagne, E. et al. The genome sequence of the model ascomycete fungus Podospora anserina. Genome Biol. 9, R77 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Dean, R. A. et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434, 980–986 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Finley for discussions and critical reading of the manuscript and S. Forsberg for information regarding Schizosaccharomyces pombe. J.B. is supported by the US National Institutes of Health (R01AI0624273, R01AI075096 and R01 DE14666). A.S.G. is supported by the National Science Foundation (MCB-0719126) and is the recipient of a Basil O'Connor award from the March of Dimes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Berman.

Related links

Supplementary information

Glossary

Dikaryon

A hyphal cell in which two compatible nuclei are maintained without karyogamy (nuclear fusion). Ascomycete dikaryons can produce crozier cells, whereas basidiomycete dikaryons can produce clamp connections for the formation of the dikaryotic state.

Aneuploid

A cell with an abnormal number of chromosomes; for example, in a diploid organism, the lack of one copy of a chromosome (monosomy) or the presence of an extra copy of a chromosome (triploidy).

Microtubule-organizing centre

(MTOC). A structure that nucleates and often retains a connection to microtubules. MTOCs at the centrosome (or centriole or spindle pole body) organize the mitotic (and meiotic) spindle apparatus.

Spindle pole body

In yeast cells, the microtubule-organizing centre that functions like a centrosome and is usually associated with the nuclear membrane for part or all of the cell cycle.

Dynein

A minus-end-directed microtubule motor protein that transports cellular cargo along microtubules. In fungi, dynein is a key motor protein that is responsible for nuclear movement through interactions with astral microtubules.

Cytoduction

The production of a cell with a mixed cytoplasm but only one of the two parental nuclei. In Saccharomyces cerevisiae, cytoduction is accomplished by mating cells with defects in nuclear fusion (karyogamy).

Supernumerary chromosomes

Small extra chromosomes that are generally dispensable for normal cell functions but that, in some cases, are required for pathogenicity and thus are 'conditionally dispensable'.

Dicentric

A chromosome that has two functional centromeres. When they are tethered to opposite poles of the mitotic spindle the chromosome will break during mitosis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gladfelter, A., Berman, J. Dancing genomes: fungal nuclear positioning. Nat Rev Microbiol 7, 875–886 (2009). https://doi.org/10.1038/nrmicro2249

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2249

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing