Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens

Key Points

  • Mammals have evolved an elaborate, multifaceted immune system to respond to the ever-present threat of infection by pathogenic microorganisms. Bacterial, protozoan and fungal pathogens have responded by evolving equally elaborate systems to avoid destruction by their hosts. This process of coevolution has resulted in the development of complex genetic systems that underlie antigenic variation by numerous pathogenic microorganisms.

  • The process of antigenic variation is focused at the host–pathogen interface, and in particular at the cell surface of the infectious organisms. Molecules displayed on the cell surface of pathogens often mediate adhesion within specific niches and are frequently virulence determinants.

  • Some systems of antigenic variation involve the activation and silencing of genes that encode molecules exposed to the immune system of the infected host. In its simplest form, this entails changes in the expression of genes that are regulated individually, an on–off process referred to as phase variation.

  • In other organisms, a single expression site is present for a key protein, with multiple silent gene copies or cassettes present elsewhere in the genome. The sequence of the expressed gene changes by gene conversion (or duplicative transposition) of large or small DNA sequences from the silent pseudogenes into the expression site.

  • In more sophisticated systems, the pathogen has evolved large, multicopy gene families, with each copy encoding a different form of the surface antigen. In these organisms, each individual gene has all of the elements necessary for expression, and each undergoes silencing and activation as described above; however, there is an additional layer of regulation to ensure that only a single gene is active at any particular time. Gene silencing and activation within the family is therefore coordinated and strictly mutually exclusive.

  • Although many of the genetic systems underlying antigenic variation — for example, slipped-strand mispairing or gene conversion — involve alterations to the genome, in several organisms changes in gene expression do not involve any alterations in the primary DNA sequence. These systems instead rely on epigenetic modifications to control gene activation and silencing, the hallmarks of which include histone modifications, the use of modified nucleotides, changes in chromatin structure and nuclear organization.

  • In a few cases, the order in which specific antigen variants are expressed over the course of an infection is determined by the sequence of the encoding genes. This can help to extend the length of an infection or the infectious stage, thereby increasing the likelihood of transmission to a new host.

  • Antigenic variation also enhances the capacity of a pathogen to infect a host that has resolved (or been cured of) prior infection (reinfection), or is persistently infected with the same organism (superinfection). This both expands the population of susceptible hosts and permits genetic exchange between organisms.

Abstract

The complex relationships between infectious organisms and their hosts often reflect the continuing struggle of the pathogen to proliferate and spread to new hosts, and the need of the infected individual to control and potentially eradicate the infecting population. This has led, in the case of mammals and the pathogens that infect them, to an 'arms race', in which the highly adapted mammalian immune system has evolved to control the proliferation of infectious organisms and the pathogens have developed correspondingly complex genetic systems to evade this immune response. We review how bacterial, protozoan and fungal pathogens from distant evolutionary lineages have evolved surprisingly similar mechanisms of antigenic variation to avoid eradication by the host immune system and can therefore maintain persistent infections and ensure their transmission to new hosts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relationship between the number of phase variant genes and the number of phenotypes.
Figure 2: Phase variation through slipped-strand mispairing.
Figure 3: Regulation of phase variation at the level of mRNA translation.
Figure 4: Antigenic variation through DNA recombination.
Figure 5: 'Programmed' sequence changes in Borrelia hermsii.

Similar content being viewed by others

References

  1. Berg, R. D. The indigenous gastrointestinal microflora. Trends Microbiol. 4, 430–435 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Zeig, J., Silverman, M., Hilmen, H. & Simon, M. Recombinational switching for gene expression. Science 196, 170–175 (1977).

    Article  Google Scholar 

  3. Merz, A. J. & So, M. Interactions of pathogenic Neisseriae with epithelial cell membranes. Annu. Rev. Cell Dev. Biol. 16, 423–457 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Plant, L. & Jonsson, A. B. Contacting the host: insights and implications of pathogenic Neisseria cell interactions. Scand. J. Infect. Dis. 35, 608–613 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Gray-Owen, S. D. Neisserial Opa proteins: impact on colonization, dissemination and immunity. Scand. J. Infect. Dis. 35, 614–618 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Edwards, J. L. & Apicella, M. A. The molecular mechanisms used by Neisseria gonorrhoeae to initiate infection differ between men and women. Clin. Microbiol. Rev. 17, 965–981 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Leader, B. T. et al. Antibody responses elicited against the Treponema pallidum repeat proteins differ during infection with different isolates of Treponema pallidum subsp. pallidum. Infect. Immun. 71, 6054–6057 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brinkman, M. B. et al. Reactivity of antibodies from syphilis patients to a protein array representing the Treponema pallidum proteome. J. Clin. Microbiol. 44, 888–891 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McKevitt, M. et al. Genome scale identification of Treponema pallidum antigens. Infect. Immun. 73, 4445–4450 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Giacani, L. et al. Quantitative analysis of tpr gene expression in Treponema pallidum isolates: differences among isolates and correlation with T-cell responsiveness in experimental syphilis. Infect. Immun. 75, 104–112 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Fraser, C. M. et al. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281, 375–388 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Giacani, L., Lukehart, S. & Centurion-Lara, A. Length of guanosine homopolymeric repeats modulates promoter activity of subfamily II tpr genes of Treponema pallidum ssp. pallidum. FEMS Immunol. Med. Microbiol. 51, 289–301 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jonsson, A., Nyberg, G. & Normark, S. Phase variation of gonococcal pili by frameshift mutation in pilC, a novel gene for pilus assembly. EMBO J. 10, 477–488 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Koomey, J. M., Gotschlich, E. C., Robbins, K., Berstrom, S. & Swanson, J. Effects of recA mutations on pilus antigenic variation and phase transitions in Neisseria gonorrhoeae. Genetics 117, 391–398 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. van der Ende, A. et al. Variable expression of class 1 outer membrane protein in Neisseria meningitidis is caused by variation in the spacing between the −10 and −35 regions of the promoter. J. Bacteriol. 177, 2475–2480 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blyn, L. B., Braaten, B. A. & Low, D. A. Regulation of pap pilin phase variation by a mechanism involving differential dam methylation states. EMBO J. 9, 4045–4054 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hernday, A., Krabbe, M., Braaten, B. & Low, D. Self-perpetuating epigenetic pili switches in bacteria. Proc. Natl Acad. Sci. USA 99 (Suppl. 4), 16470–16476 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Peterson, S. N. & Reich, N. O. Competitive Lrp and Dam assembly at the pap regulatory region: implications for mechanisms of epigenetic regulation. J. Mol. Biol. 383, 92–105 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Holden, N., Totsika, M., Dixon, L., Catherwood, K. & Gally, D. L. Regulation of P-fimbrial phase variation frequencies in Escherichia coli CFT073. Infect. Immun. 75, 3325–3334 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Domergue, R. et al. Nicotinic acid limitation regulates silencing of Candida adhesins during UTI. Science 308, 866–870 (2005). Demonstrates how pathogenic fungi can react to environmental conditions to express appropriate surface proteins.

    Article  CAS  PubMed  Google Scholar 

  21. Stern, A., Brown, M., Nickel, P. & Meyer, T. F. Opacity genes in Neisseria gonorrhoeae: control of phase and antigenic variation. Cell 47, 61–67 (1986).

    Article  CAS  PubMed  Google Scholar 

  22. Stern, A., Nickel, P., Meyer, T. F. & So, M. Opacity determinants of Neisseria gonorrhoeae: gene expression and chromosomal linkage to the gonococcal pilus gene. Cell 37, 447–456 (1984).

    Article  CAS  PubMed  Google Scholar 

  23. Keely, S. P. et al. Gene arrays at Pneumocystis carinii telomeres. Genetics 170, 1589–1600 (2005). Describes the complete sequences of five clusters of genes encoding surface antigens that have the potential to generate high-frequency antigenic variation, which is likely to be a strategy by which this parasitic fungus prolongs its survival in the rat lung.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Berendt, A. R., Ferguson, D. J. P. & Newbold, C. I. Sequestration in Plasmodium falciparum malaria: sticky cells and sticky problems. Parasitol. Today 6, 247–254 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. Salanti, A. et al. Evidence for the involvement of VAR2CSA in pregnancy-associated malaria. J. Exp. Med. 200, 1197–1203 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Amulic, B., Salanti, A., Lavstsen, T., Nielsen, M. A. & Deitsch, K. W. An upstream open reading frame controls translation of var2csa, a gene implicated in placental malaria. PLoS Pathog. 5, e1000256 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Morris, D. R. & Geballe, A. P. Upstream open reading frames as regulators of mRNA translation. Mol. Cell Biol. 20, 8635–8642 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Prucca, C. G. et al. Antigenic variation in Giardia lamblia is regulated by RNA interference. Nature 456, 750–754 (2008). This paper was the first to describe RNA interference as a mechanism for regulating mutually exclusive expression of a large multicopy gene family responsible for antigenic variation.

    Article  CAS  PubMed  Google Scholar 

  29. Gray, R. R. et al. Molecular evolution of the tprC, D, I, K, G, and J genes in the pathogenic genus Treponema. Mol. Biol. Evol. 23, 2220–2233 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Taylor, J. E. & Rudenko, G. Switching trypanosome coats: what's in the wardrobe? Trends Genet. 22, 614–620 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Baruch, D. I. et al. Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell 82, 77–87 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Smith, J. D. et al. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 82, 101–110 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Su, X. et al. A large and diverse gene family (var) encodes 200–350 kD proteins implicated in the antigenic variation and cytoadherence of Plasmodium falciparum-infected erythrocytes. Cell 82, 89–100 (1995). References 31–33 describe the discovery of the var gene family, which encodes the primary surface antigen and virulence factor of the human malaria parasite P. falciparum .

    Article  CAS  PubMed  Google Scholar 

  34. Nash, T. E. Surface antigenic variation in Giardia lamblia. Mol. Microbiol. 45, 585–590 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Allred, D. R. et al. The ves multigene family of B. bovis encodes components of rapid antigenic variation at the infected erythrocyte surface. Mol. Cell 5, 153–162 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Filler, S. G. Candida–host cell receptor–ligand interactions. Curr. Opin. Microbiol. 9, 333–339 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Kitten, T. & Barbour, A. G. Juxtaposition of expressed variable antigen genes with a conserved telomere in the bacterium Borrelia hermsii. Proc. Natl Acad. Sci. USA 87, 6077–6081 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Barbour, A. G., Burman, N., Carter, C. J., Kitten, T. & Bergstrom, S. Variable antigen genes of the relapsing fever agent Borrelia hermsii are activated by promoter addition. Mol. Microbiol. 5, 489–493 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, J. R. & Norris, S. J. Genetic variation of the Borrelia burgdorferi gene vlsE involves cassette-specific, segmental gene conversion. Infect. Immun. 66, 3698–3704 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, J. R. & Norris, S. J. Kinetics and in vivo induction of genetic variation of vlsE in Borrelia burgdorferi. Infect. Immun. 66, 3689–3697 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Criss, A. K., Kline, K. A. & Seifert, H. S. The frequency and rate of pilin antigenic variation in Neisseria gonorrhoeae. Mol. Microbiol. 58, 510–519 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Serkin, C. D. & Seifert, H. S. Frequency of pilin antigenic variation in Neisseria gonorrhoeae. J. Bacteriol. 180, 1955–1958 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Haas, R. & Meyer, T. F. The repertoire of silent pilus genes in Neisseria gonorrhoeae: evidence for gene conversion. Cell 44, 107–115 (1986).

    Article  CAS  PubMed  Google Scholar 

  44. Bernards, A. et al. Activation of trypanosome surface glycoprotein genes involves a duplication-transposition leading to an altered 3′ end. Cell 27, 497–505 (1981). Describes the correlation between transcription of an msg gene and its residence at the unique locus in the genome that promotes transcription of adjacent msg genes.

    Article  CAS  PubMed  Google Scholar 

  45. Barbet, A. F., Lundgren, A., Yi, J., Rurangirwa, F. R. & Palmer, G. H. Antigenic variation of Anaplasma marginale by expression of MSP2 mosaics. Infect. Immun. 68, 6133–6138 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brayton, K. A., Palmer, G. H., Lundgren, A., Yi, J. & Barbet, A. F. Antigenic variation of Anaplasma marginale msp2 occurs by combinatorial gene conversion. Mol. Microbiol. 43, 1151–1159 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Centurion-Lara, A. et al. Gene conversion: a mechanism for generation of heterogeneity in the tprK gene of Treponema pallidum during infection. Mol. Microbiol. 52, 1579–1596 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Sunkin, S. M. & Stringer, J. R. Residence at the expression site is necessary and sufficient for the transcription of surface antigen genes of Pneumocystis carinii. Mol. Microbiol. 25, 147–160 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Stringer, J. R. Antigenic variation in Pneumocystis. J. Eukaryot. Microbiol. 54, 8–13 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. al Khedery, B. & Allred, D. R. Antigenic variation in Babesia bovis occurs through segmental gene conversion of the ves multigene family, within a bidirectional locus of active transcription. Mol. Microbiol. 59, 402–414 (2006). Describes the identification of an expression site for the primary surface antigen of B. bovis , including the possibility that the genes encoding the two subunits are expressed from a single, bidirectional promoter.

    Article  CAS  PubMed  Google Scholar 

  51. Kraemer, S. M. et al. Patterns of gene recombination shape var gene repertoires in Plasmodium falciparum: comparisons of geographically diverse isolates. BMC Genomics 8, 45 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Frank, M. et al. Frequent recombination events generate diversity within the multi-copy variant antigen gene families of Plasmodium falciparum. Int. J. Parasitol. 38, 1099–1109 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Iverson-Cabral, S. L., Astete, S. G., Cohen, C. R. & Totten, P. A. mgpB and mgpC sequence diversity in Mycoplasma genitalium is generated by segmental reciprocal recombination with repetitive chromosomal sequences. Mol. Microbiol. 66, 55–73 (2007). The first paper to describe segmental reciprocal recombination as a mechanism of antigenic variation.

    Article  CAS  PubMed  Google Scholar 

  54. Ma, L. et al. Mycoplasma genitalium: an efficient strategy to generate genetic variation from a minimal genome. Mol. Microbiol. 66, 220–236 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Flitman-Tene, R., Mudahi-Orenstein, S., Levisohn, S. & Yogev, D. Variable lipoprotein genes of Mycoplasma agalactiae are activated in vivo by promoter addition via site-specific DNA inversions. Infect. Immun. 71, 3821–3830 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Glew, M. D. et al. Characterization of a multigene family undergoing high-frequency DNA rearrangements and coding for abundant variable surface proteins in Mycoplasma agalactiae. Infect. Immun. 68, 4539–4548 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lysnyansky, I., Rosengarten, R. & Yogev, D. Phenotypic switching of variable surface lipoproteins in Mycoplasma bovis involves high-frequency chromosomal rearrangements. J. Bacteriol. 178, 5395–5401 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lysnyansky, I., Ron, Y. & Yogev, D. Juxtaposition of an active promoter to vsp genes via site-specific DNA inversions generates antigenic variation in Mycoplasma bovis. J. Bacteriol. 183, 5698–5708 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Neyrolles, O. et al. Antigenic characterization and cytolocalization of P35, the major Mycoplasma penetrans antigen. Microbiology 145, 343–355 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Bhugra, B., Voelker, L. L., Zou, N., Yu, H. & Dybvig, K. Mechanism of antigenic variation in Mycoplasma pulmonis: interwoven, site-specific DNA inversions. Mol. Microbiol. 18, 703–714 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Sitaraman, R., Denison, A. M. & Dybvig, K. A unique, bifunctional site-specific DNA recombinase from Mycoplasma pulmonis. Mol. Microbiol. 46, 1033–1040 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Roske, K. et al. Phase variation among major surface antigens of Mycoplasma penetrans. Infect. Immun. 69, 7642–7651 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Goldmit, M. & Bergman, Y. Monoallelic gene expression: a repertoire of recurrent themes. Immunol. Rev. 200, 197–214 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Casadesus, J. & Low, D. Epigenetic gene regulation in the bacterial world. Microbiol. Mol. Biol. Rev. 70, 830–856 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hakimi, M. A. & Deitsch, K. W. Epigenetics in Apicomplexa: control of gene expression during cell cycle progression, differentiation and antigenic variation. Curr. Opin. Microbiol. 10, 357–362 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Cross, G. A. M. Antigenic variation in trypanosomes: secrets surface slowly. Bioessays 18, 283–291 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Greaves, D. R. & Borst, P. Trypanosoma brucei variant-specific glycoprotein gene chromatin is sensitive to single-strand-specific endonuclease digestion. J. Mol. Biol. 197, 471–483 (1987).

    Article  CAS  PubMed  Google Scholar 

  68. Hughes, K. et al. A novel ISWI is involved in VSG expression site downregulation in African trypanosomes. EMBO J. 26, 2400–2410 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Figueiredo, L. M., Janzen, C. J. & Cross, G. A. A histone methyltransferase modulates antigenic variation in African trypanosomes. PLoS Biol. 6, e161 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gommers-Ampt, J. H. et al. β-D-glucosyl-hydroxymethyluracil: a novel modified base present in the DNA of the parasitic protozoan T. brucei. Cell 75, 1129–1136 (1993).

    Article  CAS  PubMed  Google Scholar 

  71. Van Leeuwen, F. et al. Localization of the modified base J in telomeric VSG gene expression sites of Trypanosoma brucei. Genes Dev. 11, 3232–3241 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Vanhamme, L. et al. Differential RNA elongation controls the variant surface glycoprotein gene expression sites of Trypanosoma brucei. Mol. Microbiol. 36, 328–340 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Gunzl, A. et al. RNA polymerase I transcribes procyclin genes and variant surface glycoprotein gene expression sites in Trypanosoma brucei. Eukaryot. Cell 2, 542–551 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Navarro, M. & Gull, K. A pol I transcriptional body associated with VSG mono-allelic expression in Trypanosoma brucei. Nature 414, 759–763 (2001). Reports the first evidence for a specific subnuclear expression site where active transcription of the gene encoding the primary cell surface antigen takes place; provides the basis for a model for mutually exclusive expression that relies on only a single antigen-encoding gene having access to the expression site at a time.

    Article  CAS  PubMed  Google Scholar 

  75. Scherf, A. et al. Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum. EMBO J. 17, 5418–5426 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Freitas-Junior, L. H. et al. Telomeric heterochromatin propagation and histone acetylation control mutually exclusive expression of antigenic variation genes in malaria parasites. Cell 121, 25–36 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Chookajorn, T. et al. Epigenetic memory at malaria virulence genes. Proc. Natl Acad. Sci. USA 104, 899–902 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lopez-Rubio, J. J. et al. 5′ flanking region of var genes nucleate histone modification patterns linked to phenotypic inheritance of virulence traits in malaria parasites. Mol. Microbiol. 66, 1296–1305 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Duraisingh, M. T. et al. Heterochromatin silencing and locus repositioning linked to regulation of virulence genes in Plasmodium falciparum. Cell 121, 13–24 (2005). References 76 and 79 provide the first descriptions of chromatin modifications associated with mutually exclusive var gene expression in malaria parasites.

    Article  CAS  PubMed  Google Scholar 

  80. Ralph, S. A., Scheidig-Benatar, C. & Scherf, A. Antigenic variation in Plasmodium falciparum is associated with movement of var loci between subnuclear locations. Proc. Natl Acad. Sci. USA 102, 5414–5419 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kyes, S. et al. Plasmodium falciparum var gene expression is developmentally controlled at the level of RNA polymerase II-mediated transcription initiation. Mol. Microbiol. 63, 1237–1247 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Dzikowski, R. et al. Mechanisms underlying mutually exclusive expression of virulence genes by malaria parasites. EMBO Rep. 8, 959–965 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dzikowski, R. & Deitsch, K. W. Active transcription is required for maintenance of epigenetic memory in the malaria parasite Plasmodium falciparum. J. Mol. Biol. 382, 288–297 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kulakova, L., Singer, S. M., Conrad, J. & Nash, T. E. Epigenetic mechanisms are involved in the control of Giardia lamblia antigenic variation. Mol. Microbiol. 61, 1533–1542 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. De Las Peñas, A. et al. Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. Genes Dev. 17, 2245–2258 (2003).

    Article  CAS  Google Scholar 

  86. Stoenner, H. G., Dodd, T. & Larsen, C. Antigenic variation of Borrelia hermsii. J. Exp. Med. 156, 1297–1311 (1982).

    Article  CAS  PubMed  Google Scholar 

  87. Dai, Q. et al. Antigenic variation by Borrelia hermsii occurs through recombination between extragenic repetitive elements on linear plasmids. Mol. Microbiol. 60, 1329–1343 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Barbour, A. G., Dai, Q., Restrepo, B. I., Stoenner, H. G. & Frank, S. A. Pathogen escape from host immunity by a genome program for antigenic variation. Proc. Natl Acad. Sci. USA 103, 18290–18295 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Marcello, L. & Barry, J. D. From silent genes to noisy populations-dialogue between the genotype and phenotypes of antigenic variation. J.Eukaryot. Microbiol. 54, 14–17 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Frank, M., Dzikowski, R., Amulic, B. & Deitsch, K. Variable switching rates of malaria virulence genes are associated with chromosomal position. Mol. Microbiol. 64, 1486–1498 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Horrocks, P., Pinches, R., Christodoulou, Z., Kyes, S. A. & Newbold, C. I. Variable var transition rates underlie antigenic variation in malaria. Proc. Natl Acad. Sci. USA 101, 11129–11134 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jensen, A. T. et al. Plasmodium falciparum associated with severe childhood malaria preferentially expresses PfEMP1 encoded by group A var genes. J. Exp. Med. 199, 1179–1190 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rottmann, M. et al. Differential expression of var gene groups is associated with morbidity caused by Plasmodium falciparum infection in Tanzanian children. Infect. Immun. 74, 3904–3911 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kaestli, M. et al. Virulence of malaria is associated with differential expression of Plasmodium falciparum var gene subgroups in a case-control study. J. Infect. Dis. 193, 1567–1574 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Salanti, A. et al. Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria. Mol. Microbiol. 49, 179–191 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Cadavid, D., Thomas, D. D., Crawley, R. & Barbour, A. G. Variability of a bacterial surface protein and disease expression in a possible mouse model of systemic Lyme borreliosis. J. Exp. Med. 179, 631–642 (1994).

    Article  CAS  PubMed  Google Scholar 

  97. Alugupalli, K. R. et al. The resolution of relapsing fever borreliosis requires IgM and is concurrent with expansion of B1b lymphocytes. J. Immunol. 170, 3819–3827 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Fikrig, E. et al. Sera from patients with chronic Lyme disease protect mice from Lyme borreliosis. J. Infect. Dis. 169, 568–574 (1994).

    Article  CAS  PubMed  Google Scholar 

  99. Barthold, S. W. & Bockenstedt, L. K. Passive immunizing activity of sera from mice infected with Borrelia burgdorferi. Infect. Immun. 61, 4696–4702 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Johnson, R. C., Kodner, C. & Russell, M. Passive immunization of hamsters against experimental infection with the Lyme disease spirochete. Infect. Immun. 53, 713–714 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Lukehart, S. A. & Miller, J. N. Demonstration of the in vitro phagocytosis of Treponema pallidum by rabbit peritoneal macrophages. J. Immunol. 121, 2014–2024 (1978).

    CAS  PubMed  Google Scholar 

  102. Morgan, C. A., Molini, B. J., Lukehart, S. A. & Van Voorhis, W. C. Segregation of B and T cell epitopes of Treponema pallidum repeat protein K to variable and conserved regions during experimental syphilis infection. J. Immunol. 169, 952–957 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. LaFond, R. E., Molini, B. J., Van Voorhis, W. C. & Lukehart, S. A. Antigenic variation of TprK V regions abrogates specific antibody binding in syphilis. Infect. Immun. 74, 6244–6251 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. McGregor, I. A. Studies in the acquisition of immunity of Plasmodium falciparum infections in Africa. Trans. R. Soc. Trop. Med. Hyg. 58, 80–92 (1964).

    Article  CAS  PubMed  Google Scholar 

  105. Baruch, D. I., Gormley, J. A., Ma, C., Howard, R. J. & Pasloske, B. L. Plasmodium falciparum erythrocyte membrane protein 1 is a parasitized erythrocyte receptor for adherence to CD36, thrombospondin, and intercellular adhesion molecule 1. Proc. Natl Acad. Sci. USA 93, 3497–3502 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bouharoun-Tayoun, H., Oeuvray, C., Lunel, F. & Druilhe, P. Mechanisms underlying the monocyte-mediated antibody-dependent killing of Plasmodium falciparum asexual blood stages. J. Exp. Med. 182, 409–418 (1995).

    Article  CAS  PubMed  Google Scholar 

  107. Badell, E. et al. Human malaria in immunocompromised mice: an in vivo model to study defense mechanisms against Plasmodium falciparum. J. Exp. Med. 192, 1653–1660 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. O'Connor, R. M. & Allred, D. R. Selection of Babesia bovis-infected erythrocytes for adhesion to endothelial cells coselects for altered variant erythrocyte surface antigen isoforms. J. Immunol. 164, 2037–2045 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Baker-Zander, S. A., Shaffer, J. M. & Lukehart, S. A. Characterization of the serum requirement for macrophage-mediated killing of Treponema pallidum ssp. pallidum: relationship to the development of opsonizing antibodies. FEMS Immunol. Med. Microbiol. 6, 273–279 (1993).

    Article  CAS  PubMed  Google Scholar 

  110. Lukehart, S. A., Shaffer, J. M. & Baker-Zander, S. A. A subpopulation of Treponema pallidum is resistant to phagocytosis: possible mechanism of persistence. J. Infect. Dis. 166, 1449–1453 (1992).

    Article  CAS  PubMed  Google Scholar 

  111. Sell, S., Gamboa, D., Baker-Zander, S. A., Lukehart, S. A. & Miller, J. N. Host response to Treponema pallidum in intradermally-infected rabbits: evidence for persistence of infection at local and distant sites. J. Invest. Dermatol. 75, 470–475 (1980).

    Article  CAS  PubMed  Google Scholar 

  112. Lukehart, S. A., Baker-Zander, S. A., Lloyd, R. M. & Sell, S. Characterization of lymphocyte responsiveness in early experimental syphilis. II. Nature of cellular infiltration and Treponema pallidum distribution in testicular lesions. J. Immunol. 124, 461–467 (1980).

    CAS  PubMed  Google Scholar 

  113. Baker-Zander, S. A. & Lukehart, S. A. Macrophage-mediated killing of opsonized Treponema pallidum. J. Infect. Dis. 165, 69–74 (1992).

    Article  CAS  PubMed  Google Scholar 

  114. Futse, J. E., Brayton, K. A., Dark, M. J., Knowles, D. P. Jr & Palmer, G. H. Superinfection as a driver of genomic diversification in antigenically variant pathogens. Proc. Natl Acad. Sci. USA 105, 2123–2127 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Montgomery, J. et al. Differential var gene expression in the organs of patients dying of falciparum malaria. Mol. Microbiol. 65, 959–967 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Miller, L. H., Good, M. F. & Milon, G. Malaria pathogenesis. Science 264, 1878–1883 (1994).

    Article  CAS  PubMed  Google Scholar 

  117. Barry, A. E. et al. Population genomics of the immune evasion (var) genes of Plasmodium falciparum. PLoS Pathog. 3, e34 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Anderson, R. M. & May, R. M. Population biology of infectious diseases: part I. Nature 280, 361–367 (1979).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S. Frank for valuable discussions concerning the possible role of antigenic variation in the duration of infectious syphilis lesions. Work in the laboratory of K.W.D. is supported by a grant from the US National Institutes of Health (AI 52390) and the United States–Israel Binational Science Foundation. The Department of Microbiology and Immunology at Weill Medical College of Cornell University acknowledges the support of the William Randolph Hearst Foundation. K.W.D. is a Stavros S. Niarchos Scholar. Work in the laboratory of S.A.L. is supported by the National Institutes of Health (AI42143 and AI63940) and work in the laboratory of J.R.S. is supported by a grant from the National Institute of Allergy and Infectious Diseases (5R01AI036701-14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirk W. Deitsch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Anaplasma marginale

Babesia bovis

Borrelia hermsii

Borrelia burgdorferi

Candida albicans

Candida glabrata

Escherichia coli

Giardia lamblia

Mycoplasma agalactiae

Mycoplasma bovis

Mycoplasma genitalium

Mycoplasma penetrans

Mycoplasma pulmonis

Neisseria gonorrhoeae

Neisseria meningitidis

Plasmodium falciparum

Pneumocystis carinii

Treponema pallidum

Trypanosoma brucei

FURTHER INFORMATION

Kirk W. Deitsch's homepage

Sheila A. Lukehart's homepage

James R. Stringer's homepage

Glossary

Antigenic variation

Changes in the antigenic molecules of an invasive organism exposed to the immune system over the course of an infection. This can incorporate mechanisms of phase variation, DNA recombination, epigenetic modifications or mutually exclusive expression.

Phase variation

Regulation of gene expression in which an individual gene switches between 'on' and 'off' states. This can be regulated at the level of either transcription initiation or RNA translation.

Epigenetic

Inheritance of particular patterns of gene expression that is not based on changes in DNA sequence. This phenomenon is often associated with DNA modifications (in particular DNA methylation) and/or with alterations in chromatin structure. Post-translational modifications to histones are a well-studied example of chromatin marks associated with epigenetic inheritance.

Mutually exclusive expression

The expression of a single gene from a multicopy gene family. Typically, switches in gene expression do not require DNA recombination and are strictly coordinated so that activation of one gene involves the simultaneous silencing of the previously active gene.

Gene conversion

Also called duplicative transposition. The copying of an entire gene or segment of a gene from one position in the genome to a different position in the genome. The silent copy of the gene is often referred to as the donor, and gene conversion results in its duplication within the genome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deitsch, K., Lukehart, S. & Stringer, J. Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens. Nat Rev Microbiol 7, 493–503 (2009). https://doi.org/10.1038/nrmicro2145

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2145

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing