Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease

Key Points

  • Streptococcus pneumoniae (commonly referred to as the pneumococcus) interacts with numerous host structures during respiratory colonization, and several bacterial adhesins have been identified. These include: phosphorylcholine, which mediates bacterial adherence to the platelet-activating-factor receptor; choline-binding protein A, which binds to human secretory component; neuraminidases, which cleave host glycoconjugates; and hyaluronidase and PavA, which bind to extracellular matrix components.

  • Important components of innate and adaptive immunity during respiratory infection include: neutrophil infiltration, complement, phagocytosis, Toll-like receptor (TLR) 2-dependent inflammation, antibody-independent CD4+ T-cell protection and pneumolysin–TLR4 interactions

  • Major pneumococcal-protein virulence factors, such as pneumolysin, neuraminidases, the cell-surface proteins PspA, PspC and LytA and the metal-ion-binding proteins PsaA, PiaA and PiuA, have specific roles in respiratory colonization and disease.

  • The pneumococcal capsule reduces entrapment in the mucus, which allows the pneumococcus to access epithelial surfaces. Capsules are antiphagocytic, and can reduce the total amount of complement that is deposited on the bacterial surface and the number of pneumococcal cells that are trapped in neutrophil extracellular traps.

  • Most pneumococcal isolates that have been investigated display phase variation between two forms that can be distinguished by their opaque or transparent colony morphologies. Here, these morphologies are reviewed in more detail.

  • The important role of capsule regulation in virulence is also discussed.

Abstract

Streptococcus pneumoniae is a Gram-positive bacterial pathogen that colonizes the mucosal surfaces of the host nasopharynx and upper airway. Through a combination of virulence-factor activity and an ability to evade the early components of the host immune response, this organism can spread from the upper respiratory tract to the sterile regions of the lower respiratory tract, which leads to pneumonia. In this Review, we describe how S. pneumoniae uses its armamentarium of virulence factors to colonize the upper and lower respiratory tracts of the host and cause disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nasal colonization by Streptococcus pneumoniae.
Figure 2: Pneumococcal virulence factors.
Figure 3: Steps in Streptococcus pneumoniae capsule biosynthesis.
Figure 4: Model showing the regulation of capsular polysaccharide (CPS) production by tyrosine phosphorylation of CpsD.

Similar content being viewed by others

References

  1. Balakrishnan, I., Crook, P., Morris, R. & Gillespie, S. H. Early predictors of mortality in pneumococcal bacteraemia. J. Infect. Dis. 40, 256–261 (2000).

    CAS  Google Scholar 

  2. Lim, W. S. et al. Study of community acquired pneumonia aetiology (SCAPA) in adults admitted to hospital: implications for management guidelines. Thorax 50, 296–301 (2001).

    Article  Google Scholar 

  3. Denny, F. W. & Loda, F. A. Acute respiratory infections are the leading cause of death in children in developing countries. Am. J. Trop. Med. Hyg. 35, 1–2 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Berkley, J. A. et al. Bacteremia among children admitted to a rural hospital in Kenya. N. Engl. J. Med. 352, 39–47 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Bogaert, D., de Groot, R. & Hermans, P. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect. Dis. 4, 144–154 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Regev-Yochay, G. et al. Association between carriage of Streptococcus pneumoniae and Staphylococcus aureus in children. JAMA 292, 716–720 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Lexau, C. et al. Changing epidemiology of invasive pneumococcal disease among older adults in the era of pediatric pneumococcal conjugate vaccine. JAMA 294, 2043–2051 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. McCool, T. L., Cate, T. R., Moy, G. & Weiser, J. N. The immune response to pneumococcal proteins during experimental human carriage. J. Exp. Med. 195, 359–365 (2002). One of the few studies of pneumococcal pathogenesis in humans. This paper characterizes pneumococcal colonization and the mucosal immune response in human volunteers. It also provides strong circumstantial evidence for the importance of PspA in the colonization of the human nasopharynx by pneumococci.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lipsitch, M. et al. Are anticapsular antibodies the primary mechanism of protection against invasive pneumococcal disease? PLoS Med. 2, e15 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McCool, T. & Weiser, J. Limited role of antibody in clearance of Streptococcus pneumoniae in a murine model of colonisation. Infect. Immun. 72, 5807–5813 (2004). First paper to clearly show that antibodies are not required for the clearance of pneumococcal colonization based on studies that used mice with genetic defects in humoral immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nelson, A. et al. Capsule enhances pneumococcal colonisation by limiting mucus-mediated clearance. Infect. Immun. 75, 83–90 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Kamerling, J. in Streptococcus pneumoniae: Molecular Biology & Mechanisms of Disease (ed. Tomasz, A.) 81–114 (Mary Ann Liebert, New York, 2000).

    Google Scholar 

  13. Weiser, J. N., Austrian, R., Sreenivasan, P. K. & Masure, H. R. Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharyngeal colonisation. Infect. Immun. 62, 2582–2589 (1994). Describes pneumococcal phase variation and its important role in nasopharyngeal colonization and invasive disease, thereby providing an interesting insight into the interaction of the pneumococcus with its host.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cundell, D. R., Gerard, N. P., Gerard, C., Idanpaan-Heikkila, I. & Tuomanen, E. I. Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 377, 435–438 (1995). Shows that the pneumococcus binds to a receptor that is now recognized as being used by several other important pathogens that reside in the airway.

    Article  CAS  PubMed  Google Scholar 

  15. Weiser, J. in Colonisation of Mucosal Surfaces (ed. Nataro, J.) 61–72 (ASM, Washington DC, 2005).

    Google Scholar 

  16. Weiser, J. N. et al. Phosphorylcholine on the lipopolysaccharide of Haemophilus influenzae contributes to persistence in the respiratory tract and sensitivity to serum killing mediated by C-reactive protein. J. Exp. Med. 187, 631–640 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rosenow, C. et al. Contribution of novel choline-binding proteins to adherence, colonisation and immunogenicity of Streptococcus pneumoniae. Mol. Microbiol. 25, 819–829 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Hammerschmidt, S., Talay, S. R., Brandtzaeg, P. & Chhatwal, G. S. SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component. Mol. Microbiol. 25, 1113–1124 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Barocchi, M. et al. A pneumococcal pilus influences virulence and host inflammatory responses. Proc. Natl Acad. Sci. USA 103, 2857–2862 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hava, D. & Camilli, A. Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol. Microbiol. 45, 1389–1406 (2002). Important study that used signature-tagged mutagenesis to identify 387 pneumococcal mutants that were attenuated in murine models of pneumonia.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Andersson, B. et al. Identification of an active dissaccharide unit of a glycoconjugate receptor for pneumococci attaching to human pharyngeal epithelial cells. J. Exp. Med. 158, 559–570 (1983).

    Article  CAS  PubMed  Google Scholar 

  22. Krivan, H. C., Roberts, D. D. & Ginsberg, V. Many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNAcβ1–4Gal found in some glycolipids. Proc. Natl Acad. Sci. USA 85, 6157–6161 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. King, S., Hippe, K. & Weiser, J. Deglycosylation of human glycoconjugates by the sequential activities of exoglycosidases expressed by Streptococcus pneumoniae. Mol. Microbiol. 59, 961–974 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Jedrzejas, M., Mello, L., de Groot, B. & Li, S. Mechanism of hyaluronan degradation by Streptococcus pneumoniae hyaluronate lyase. Structures of complexes with the substrate. J. Biol. Chem. 277, 28287–28297 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Holmes, A. et al. The pavA gene of Streptococcus pneumoniae encodes a fibronectin-binding protein that is essential for virulence. Mol. Microbiol. 41, 1395–1408 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Bergmann, S., Rohde, M., Chhatwal, G. & Hammerschmidt, S. α-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol. Microbiol. 40, 1273–1287 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Kim, J. O. et al. Relationship between cell-surface carbohydrates and intrastrain variation on opsonophagocytosis of Streptococcus pneumoniae. Infect. Immun. 67, 2327–2333 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Weiser, J. et al. Changes in availability of oxygen accentuate differences in capsular polysaccharide expression by phenotypic variants and clinical isolates of Streptococcus pneumoniae. Infect. Immun. 69, 5430–5439 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van Rossum, A., Lysenko, E. & Weiser, J. Host and bacterial factors contributing to the clearance of colonisation by Streptococcus pneumoniae in a murine model. Infect. Immun. 73, 7718–7726 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ratner, A. et al. Epithelial cells are sensitive detectors of bacterial pore-forming toxins. J. Biol. Chem. 281, 12994–12998 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Malley, R. et al. CD4+ T cells mediate antibody-independent acquired immunity to pneumococcal colonisation. Proc. Natl Acad. Sci. USA 102, 4848–4853 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Malley, R. et al. Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc. Natl Acad. Sci. USA 100, 1966–1971 (2003). Demonstrates that the pneumococcal toxin pneumolysin triggers inflammatory responses in host macrophages by interacting with TLR4. Such signalling is crucial for the innate immune response to the pneumococcus, and is a paradigm of the fine balance between the protective and deleterious effects of innate inflammatory responses to mucosal pathogens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wani, J., Gilbert, J., Plaut, A. & Weiser, J. Identification, cloning and sequencing of the immunoglobulin A1 protease gene of Streptococcus pneumoniae. Infect. Immun. 64, 3967–3974 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Szalai, A. J., Briles, D. E. & Volanakis, J. E. Human C-reactive protein is protective against fatal Streptococcus pneumoniae infection in transgenic mice. J. Immunol. 155, 2557–2563 (1995).

    CAS  PubMed  Google Scholar 

  35. Gould, J. & Weiser, J. The inhibitory effect of C-reactive protein on bacterial phosphorylcholine-platelet activating factor receptor mediated adherence is blocked by surfactant. J. Infect. Dis. 186, 361–371 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Aas, J. A. et al. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 43, 5721–5732 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lysenko, E. S., Ratner, A. J., Nelson, A. L. & Weiser, J. N. The role of innate immune responses in the outcome of interspecies competition for colonisation of mucosal surfaces. PLoS Pathog. 1, 1–9 (2005).

    Article  CAS  Google Scholar 

  38. Dawid, S., Roche, A. & Weiser, J. The blp bacteriocins of Streptococcus pneumoniae mediate intraspecies competition both in vitro and in vivo. Infect. Immun. 75, 443–451 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Dowson, C., Coffey, T. & Spratt, B. Origin and molecular epidemiology of penicillin-binding-protein-mediated resistance to β-lactam antibiotics. Trends Microbiol. 2, 361–366 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Lock, R. A., Zhang, Q. Y., Berry, A. M. & Paton, J. C. Sequence variation in the Streptococcus pneumoniae pneumolysin gene affecting haemolytic activity and electrophoretic mobility of the toxin. Infect. Immun. 21, 71–83 (1996).

    CAS  Google Scholar 

  41. Kirkham, L. A. S. et al. Identification of invasive serotype 1 pneumococcal isolates that express nonhemolytic pneumolysin. J. Clin. Microbiol. 44, 151–159 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tilley, S., Orlova, E., Gilbert, R., Andrew, P. & Saibil, H. Structural basis of pore formation by the bacterial toxin pneumolysin. Cell 121, 247–256 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Hirst, R., Kadioglu, A., O'Callaghan, C. & Andrew, P. The role of pneumolysin in pneumococcal pneumonia and meningitis. Clin. Exp. Immunol. 138, 195–201 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kadioglu, A., Coward, W., Colston, M., Hewitt, C. & Andrew, P. CD4-T-lymphocyte interactions with pneumolysin and pneumococci suggest a crucial protective role in the host response to pneumococcal infection. Infect. Immun. 72, 2689–2697 (2004). The first study to demonstrate an early protective role for CD4+ T cells during pneumococcal pneumonia in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mitchell, T. J., Andrew, P. W., Saunders, F. K., Smith, A. N. & Boulnois, G. J. Complement activation and antibody binding by pneumolysin via a region homologous to a human acute phase protein. Mol. Microbiol. 5, 1883–1888 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Rubins, J. et al. Distinct roles for pneumolysin's cytotoxic and complement activities in the pathogenesis of pneumococcal pneumonia. Am. J. Respir. Crit. Care Med. 153, 1339–1346 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Alexander, J. E. et al. Amino acid changes affecting the behaviour of pneumococci in pneumonia. Microb. Pathog. 24, 167–174 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Jounblat, R., Kadioglu, A., Mitchell, T. & Andrew, P. Pneumococcal behavior and host responses during bronchopneumonia are affected differently by the cytolytic and complement-activating activities of pneumolysin. Infect. Immun. 71, 1813–1819 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Baba, H. et al. Induction of gamma interferon and nitric oxide by truncated pneumolysin that lacks pore-forming activity. Infect. Immun. 70, 107–113 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Berry, A. M. et al. Effect of defined point mutations in the pneumolysin gene on the virulence of Streptococcus pneumoniae. Infect. Immun. 63, 1969–1974 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Canvin, J. R. et al. The role of pneumolysin and autolysin in the pathology of pneumonia and septicaemia in mice infected with a type 2 pneumococcus. J. Infect. Dis. 172, 119–123 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Alexander, J. E. et al. Immunization of mice with pneumolysin toxoid confers a significant degree of protection against at least nine serotypes of Streptococcus pneumoniae. Infect. Immun. 62, 5683–5688 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kadioglu, A. et al. Upper and lower respiratory tract infection by Streptococcus pneumoniae is affected by pneumolysin deficiency and differences in capsule type. Infect. Immun. 70, 2886–2890 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Orihuela, C. J., Gao, G. L., Francis, K. P., Yu, J. & Tuomanen, E. I. Tissue-specific contributions of pneumococcal virulence factors to pathogenesis. J. Infect. Dis. 190, 1661–1669 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Berry, A. M., Yother, J., Briles, D. E., Hansman, D. & Paton, J. C. Reduced virulence of a defined pneumolysin-negative mutant of Streptococcus pneumoniae. Infect. Immun. 57, 2037–2042 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Berry, A. M., Ogunniyi, A. D., Miller, D. C. & Paton, J. C. Comparative virulence of Streptococcus pneumoniae strains with insertion-duplication, point, and deletion mutations in the pneumolysin gene. Infect. Immun. 67, 981–985 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kadioglu, A. et al. Host cellular immune response to pneumococcal lung infection in mice. Infect. Immun. 68, 1557–1562 (2000). Demonstrated the central role of pneumolysin in driving the pattern of inflammation and cellular infiltration into the lungs in vivo . Also the first to show an early, pneumolysin-dependent involvement of T cells in respiratory infection.

    Article  Google Scholar 

  58. Benton, K. A., Everson, M. P. & Briles, D. E. A pneumolysin negative mutant of Streptococcus pneumoniae causes chronic bacteremia rather than acute sepsis in mice. Infect. Immun. 63, 448–455 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Friedland, I. R. et al. The limited role of pneumolysin in the pathogenesis of pneumococcal meningitis. J. Infect. Dis. 172, 805–809 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Braun, J. et al. Pneumococcal pneumolysin and H2O2 mediate brain cell apoptosis during meningitis. J. Clin. Invest. 109, 19–27 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wellmer, A. et al. Decreased virulence of a pneumolysin deficient strain of Streptococcus pneumoniae in murine meningitis. Infect. Immun. 70, 6504–6508 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Winter, A. J. et al. in Proc. 7th Intern. Cong. Infect. Dis. Abstr. 73.004 (International Society for Infectious Diseases, Brookline, 1996).

    Google Scholar 

  63. Hirst, R. A. et al. Relative roles of pneumolysin and hydrogen peroxide from Streptococcus pneumoniae in inhibition of ependymal ciliary beat frequency. Infect. Immun. 68, 1557–1562 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hirst, R., Mohammed, B., Mitchell, T., Andrew, P. & O'Callaghan, C. Streptococcus pneumoniae-induced inhibition of rat ependymal cilia is attenuated by antipneumolysin antibody. Infect. Immun. 72, 6694–6698 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hirst, R. A., Kadioglu, A., O'Callaghan, C. & Andrew, P. W. The role of pneumolysin in pneumococcal pneumonia and meningitis. Clin. Exp. Immunol. 138, 195–201 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chanter, N. Streptococcus pneumoniae and equine disease. Equine Vet. J. 26, 5–6 (1994).

    Article  CAS  PubMed  Google Scholar 

  67. Whatmore, A. M. et al. Molecular characterization of equine isolates of Streptococcus pneumoniae: natural disruption of genes encoding the virulence factors pneumolysin and autolysin. Infect. Immun. 67, 2776–2782 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Jedrzejas, M. J. Pneumococcal virulence factors: structure and function. Microbiol. Mol. Biol. Rev. 65, 187–207 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bergmann, S. & Hammerschmidt, S. Versatility of pneumococcal surface proteins. Microbiology 152, 295–303 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Jedrzejas, M. J., Lamani, E. & Becker, R. S. Characterization of selected strains of pneumococcal surface protein A. J. Biol. Chem. 276, 33121–33128 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Hollingshead, S., Becker, R. & Briles, D. Diversity of PSDPA: mosaic genes and evidence for past recombination in Streptococcus pneumoniae. Infect. Immun. 68, 5889–5900 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shaper, M., Hollingshead, S. K., Benjamin, W. H. & Briles, D. E. PspA protects Streptococcus pneumoniae from killing by apolactoferrin, and antibody to PspA enhances killing of pneumococci by apolactoferrin. Infect. Immun. 72, 5031–5040 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Briles, D. E. & Mirza, S. PspA inhibits the antibacterial effect of lactoferrin on Streptococcus pneumoniae. Biochem. Cell Biol. 84, 401 (2006).

    CAS  Google Scholar 

  74. McDaniel, L. S. et al. Use of insertional inactivation to facilitate studies of biological properties of pneumococcal protein A (PspA). J. Exp. Med. 165, 381–394 (1987).

    Article  CAS  PubMed  Google Scholar 

  75. Ren, B., Szalai, A. J., Hollingshead, S. K. & Briles, D. E. Effects of PspA and antibodies to PspA on activation and deposition of complement on the pneumococcal surface. Infect. Immun. 72, 114–122 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Berry, A. & Paton, J. Additive attenuation of virulence of Streptococcus pneumoniae by mutation of genes encoding pneumolysin and other putative pneumococcal virulence proteins. Infect. Immun. 68, 133–140 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Abeyta, M., Hardy, G. G. & Yother, J. Genetic alteration of capsule type but not PspA type affects accessibility of surface-bound complement and surface antigens of Streptococcus pneumoniae. Infect. Immun. 71, 218–225 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rosenow, C. et al. Contribution of novel choline-binding proteins to adherence, colonisation and immunogenicity of Streptococcus pneumoniae. Mol. Microbiol. 25, 819–829 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Hammerschmidt, S., Tillig, M., Wolff, S. & Chaatwal, J. Species specific binding of human secretory component to SpsA protein of Streptococcus pneumoniae via a hexapeptide motif. Mol. Microbiol. 36, 726–736 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Zhang, J. et al. The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 102, 827–837 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Iannelli, F., Chiavolini, D., Ricci, S., Oggioni, M. R. & Pozzi, G. Pneumococcal surface protein C contributes to sepsis caused by Streptococcus pneumoniae in mice. Infect. Immun. 72, 3077–3080 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Quin, L. R. et al. In vivo binding of complement regulator factor H by Streptococcus pneumoniae. J. Infect. Dis. 192, 1996–2003 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Janulczyk, R., Iannelli, F., Sjoholm, A. G., Pozzi, G. & Bjorck, L. Hic, a novel surface protein of Streptococcus pneumoniae that interferes with complement function. J. Biol. Chem. 275, 37257–37263 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Dave, S., Carmicle, S., Hammerschmidt, S., Pangburn, M. & McDonald, L. Dual roles of PspC, a surface protein of Streptococcus pneumoniae, in binding human secretory IgA and factor H. J. Immunol. 173, 471–477 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Cheng, Q., Finkel, D. & Hostetter, M. K. Novel purification scheme and functions for a C3-binding protein from Streptococcus pneumoniae. Biochemistry 39, 5450–5457 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Howard, L. V. & Gooder, H. Specificity of autolysin of Streptococcus (Diplococcus) pneumoniae. J. Bacteriol. 117, 796–804 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Berry, A. M., Lock, R. A., Hansman, D. & Paton, J. C. Contribution of autolysin to virulence of Streptococcus pneumoniae. Infect. Immun. 57, 2324–2330 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Overweg, K. et al. The putative proteinase maturation protein A of Streptococcus pneumoniae is a conserved surface protein with potential to elicit protective immune responses. Infect. Immun. 68, 4180–4188 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hermans, P. W. M. et al. The streptococcal lipoprotein rotamase A (SlrA) is a functional peptidyl-prolyl isomerase involved in pneumococcal colonisation. J. Biol. Chem. 281, 968–976 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Berry, A. M. & Paton, J. C. Sequence heterogeneity of PsaA, a 37-kilodalton putative adhesin essential for virulence of Streptococcus pneumoniae. Infect. Immun. 64, 5255–5262 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Marra, A., Lawson, S., Asundi, J. S., Brigham, D. & Hromockyj, A. E. In vivo characterization of the psa genes from Streptococcus pneumoniae in multiple models of infection. Microbiology 148, 1483–1491 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Johnson, S. E. et al. Inhibition of pneumococcal carriage in mice by subcutaneous immunization with peptides from the common surface protein pneumococcal surface adhesin A. Infect. Immun. 185, 489–496 (2002).

    CAS  Google Scholar 

  93. Sampson, J. S., O'Connor, S. P., Stinson, A. R., Tharpe, J. A. & Russell, H. Cloning and nucleotide-sequence analysis of psaA, the Streptococcus pneumoniae gene encoding a 37-kilodalton protein homologous to previously reported Streptococcus sp. adhesins. Infect. Immun. 62, 319–324 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Briles, D. E. et al. Intranasal immunization of mice with a mixture of the pneumococcal proteins PsaA and PspA is highly protective against nasopharyngeal carriage of Streptococcus pneumoniae. Infect. Immun. 68, 796–800 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Romero-Steiner, S. et al. Inhibition of pneumococcal adherence to human nasopharyngeal epithelial cells by anti-PsaA antibodies. Clin. Diagn. Lab. Immunol. 10, 246–251 (2003).

    PubMed  PubMed Central  Google Scholar 

  96. Dintilhac, A., Alloing, G., Granadel, C. & Claverys, J. P. Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol. Microbiol. 25, 727–739 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. McAllister, L. J. et al. Molecular analysis of the psa permease complex of Streptococcus pneumoniae. Mol. Microbiol. 53, 889–901 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Lawrence, M. C. et al. The crystal structure of pneumococcal surface antigen PsaA reveals a metal-binding site and a novel structure for a putative ABC-type binding protein. Structure 15, 1553–1561 (1998).

    Article  Google Scholar 

  99. Johnston, J. W. et al. Lipoprotein PsaA in virulence of Streptococcus pneumoniae: surface accessibility and role in protection from superoxide. Infect. Immun. 72, 5858–5867 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tseng, H. J., McEwan, A. G., Paton, J. C. & Jennings, M. P. Virulence of Streptococcus pneumoniae: PsaA mutants are hypersensitive to oxidative stress. Infect. Immun. 70, 1635–1639 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Brown, J. S., Gilliland, S. M. & Holden, D. W. A Streptococcus pneumoniae pathogenicity island encoding an ABC transporter involved in iron uptake and virulence. Mol. Microbiol. 40, 572–585 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Brown, J. S., Gilliland, S. M., Ruiz-Albert, J. & Holden, D. W. Characterization of Pit, a Streptococcus pneumoniae iron uptake ABC transporter. Infect. Immun. 70, 4389–4398 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Brown, J. S., Ogunniyi, A. D., Woodrow, M. C., Holden, D. W. & Paton, J. C. Immunization with components of two iron uptake ABC transporters protects mice against systemic Streptococcus pneumoniae infection. Infect. Immun. 69, 6702–6706 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chen, S., Paterson, G. K., Tong, F. H., Mitchell, T. J. & DeMaria, T. F. Sortase A contributes to pneumococcal nasopharyngeal colonisation in the chinchilla model. FEMS Microbiol. Lett. 253, 151–154 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Paterson, G. K. & Mitchell, T. J. The role of Streptococcus pneumoniae sortase A in colonisation and pathogenesis. Microbes Infect. 8, 145–153 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Kharat, A. S. & Tomasz, A. Inactivation of the srtA gene affects localization of surface proteins and decreases adhesion of Streptococcus pneumoniae to human pharyngeal cells in vitro. Infect. Immun. 71, 2758–2765 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. King, S. J. et al. Phase variable desialylation of host proteins that bind to Streptococcus pneumoniae in vivo and protect the airway. Mol. Microbiol. 54, 159–171 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Pettigrew, M. M., Fennie, K. P., York, M. P., Daniels, J. & Ghaffar, F. Variation in the presence of neuraminidase genes among Streptococcus pneumoniae isolates with identical sequence types. Infect. Immun. 74, 3360–3365 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Berry, A. M., Lock, R. A. & Paton, J. C. Cloning and characterization of nanB, a second Streptococcus pneumoniae neuraminidase gene, and purification of the NanB enzyme from recombinant Escherichia coli. J. Bacteriol. 178, 4854–4860 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Manco, S. et al. Pneumococcal neuraminidases A and B both have essential roles during infection of the respiratory tract and sepsis. Infect. Immun. 74, 4014–4020 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Oggioni, M. R. et al. Switch from planktonic to sessile life: a major event in pneumococcal pathogenesis. Mol. Microbiol. 61, 1196–1210 (2006). Describes the interesting role of CSP in pneumococcal virulence and biofilm formation. Also demonstrates different patterns of pneumococcal-gene expression during infection in the host: one that is typical of bacteria in blood and one that is typical of bacteria in tissue, such as brain and lung.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sorensen, U. B. S., Blom, J., Birch-Andersen, A. & Henrichsen, J. Ultrastructural localization of capsules, cell wall polysaccharide, cell wall proteins, and F antigen in pneumococci. Infect. Immun. 56, 1890–1896 (1988).

    Google Scholar 

  113. Sorensen, U. B. S., Henrichsen, J., Chen, H. C. & Szu, S. C. Covalent linkage between the capsular polysaccharide and the cell wall peptidoglycan of Streptococcus pneumoniae revealed by immunochemical methods. Microb. Pathog. 8, 325–334 (1990).

    Article  CAS  PubMed  Google Scholar 

  114. Henrichsen, J. Six newly recognized types of Streptococcus pneumoniae. J. Clin. Microbiol. 33, 2759–2762 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Austrian, R. Some observations on the pneumococcus and on the current status of pneumococcal disease and its prevention. Rev. Infect. Dis. 3, S1–S17 (1981).

    Article  PubMed  Google Scholar 

  116. Martin, M. et al. An outbreak of conjunctivitis due to atypical Streptococcus pneumoniae. N. Engl. J. Med. 348, 1112–1121 (2003).

    Article  PubMed  Google Scholar 

  117. Crum, N. F., Barrozo, C. P., Chapman, F. A., Ryan, M. A. & Russell, K. L. An outbreak of conjunctivitis due to a novel unencapsulated Streptococcus pneumoniae among military trainees. Clin. Infect. Dis. 39, 1148–1154 (2004).

    Article  PubMed  Google Scholar 

  118. Lee, C. J., Banks, S. D. & Li, J. P. Virulence, immunity and vaccine related to Streptococcus pneumoniae. Crit. Rev. Microbiol. 18, 89–114 (1991).

    Article  CAS  PubMed  Google Scholar 

  119. Winkelstein, J. A. The role of complement in the host's defense against Streptococcus pneumoniae. Rev. Infect. Dis. 3, 289–298 (1981).

    Article  CAS  PubMed  Google Scholar 

  120. Musher, D. M. Infections caused by Streptococcus pneumoniae: clinical spectrum, pathogenesis, immunity and treatment. Clin. Infect. Dis. 14, 801–807 (1992).

    Article  CAS  PubMed  Google Scholar 

  121. Abeyta, M., Hardy, G. G. & Yother, Y. Genetic alteration of capsule type but not PspA type affects accessibility of surface-bound complement and surface antigens of Streptococcus pneumoniae. Infect. Immun. 71, 218–225 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wartha, F. et al. Capsule and D-alanylated lipoteichoic acids protect Streptococcus pneumoniae against neutrophil extracellular traps. Cell. Microbiol. 9, 1162–1171 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. MacLeod, C. M. & Krauss, M. R. Relation of virulence of pneumococcal strains for mice to the quantity of capsular polysaccharide formed in vitro. J. Exp. Med. 92, 1–9 (1950). Important early paper that demonstrates the in vivo role of the capsule in pneumococcal virulence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hostetter, M. K. Serotypic variations among virulent pneumococci in deposition and degradation of covalently bound C3b: implications for phagocytosis and antibody production. J. Infect. Dis. 153, 682–693 (1986).

    Article  CAS  PubMed  Google Scholar 

  125. Kang, Y. S. et al. The C-type lectin SIGN-R1 mediates uptake of the capsular polysaccharide of Streptococcus pneumoniae in the marginal zone of the mouse spleen. Proc. Natl Acad. Sci. USA 101, 215–220 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Lanoue, A. et al. SIGN-R1 contributes to protection against lethal pneumococcal infection in mice. J. Exp. Med. 200, 1383–1393 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Fernebro, J. et al. Capsular expression in Streptococcus pneumoniae negatively affects spontaneous and antibiotic-induced lysis and contributes to antibiotic tolerance. J. Infect. Dis. 189, 328–338 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Kelly, T., Dillard, J. P. & Yother, J. Effect of genetic switching of capsular type on virulence of Streptococcus pneumoniae. Infect. Immun. 62, 1813–1819 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Nesin, M., Ramirez, M. & Tomasz, A. Capsular transformation of a multidrug-resistant Streptococcus pneumoniae in vivo. J. Infect. Dis. 177, 707–713 (1998).

    Article  CAS  PubMed  Google Scholar 

  130. Sandgren, A. et al. Virulence in mice of pneumococcal clonal types with known invasive disease potential in humans. J. Infect. Dis. 192, 791–800 (2005).

    Article  PubMed  Google Scholar 

  131. Talbot, U., Paton, A. W. & Paton, J. C. Uptake of Streptococcus pneumoniae by respiratory epithelial cells. Infect. Immun. 64, 3772–3777 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Hammerschmidt, S. et al. Illustration of pneumococcal polysaccharide capsule during adherence and invasion of epithelial cells. Infect. Immun. 73, 4653–4667 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Muñoz, R., Mollerach, M., López, R. & García, E. Molecular organization of the genes required for the synthesis of type 1 capsular polysaccharide of Streptococcus pneumoniae: formation of binary encapsulated pneumococci and identification of cryptic dTDP-rhamnose biosynthesis genes. Mol. Microbiol. 25, 79–92 (1997).

    Article  PubMed  Google Scholar 

  134. Ogunniyi, A. D., Giammarinaro, P. & Paton, J. C. The genes encoding virulence-associated proteins and the capsule of Streptococcus pneumoniae are upregulated and differentially expressed in vivo. Microbiology 148, 2045–2053 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. LeMessurier, K. S., Ogunniyi, A. D. & Paton, J. C. Differential expression of key pneumococcal virulence genes in vivo. Microbiology 152, 305–311 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Morona, J. K., Paton, J. C., Miller, D. C. & Morona, R. Tyrosine phosphorylation of CpsD negatively regulates capsular polysaccharide biosynthesis in Streptococcus pneumoniae. Mol. Microbiol. 35, 1431–1442 (2000). Provides the first evidence for the post-translational regulation of capsule expression through tyrosine phosphorylation of a conserved capsule-biosynthesis protein. The mechanism probably operates in diverse encapsulated bacteria, and is a potential drug target.

    Article  CAS  PubMed  Google Scholar 

  137. Cieslewicz, M. J., Kasper, D. L., Wang, Y. & Wessels, M. R. Functional analysis in type Ia group B Streptococcus of a cluster of genes involved in extracellular polysaccharide production by diverse species of streptococci. J. Biol. Chem. 276, 139–146 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Morona, J. K., Morona, R., Miller, D. C. & Paton, J. C. Mutational analysis of the carboxy-terminal (YGX)4 repeat domain of CpsD, an autophosphorylating tyrosine kinase required for capsule biosynthesis in Streptococcus pneumoniae. J. Bacteriol. 185, 3009–3019 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Morona, J. K., Miller, D. C., Morona, R. & Paton, J. C. The effect that mutations in the conserved capsular polysaccharide biosynthesis genes cpsA, cpsB and cpsD have on virulence of Streptococcus pneumoniae. J. Infect. Dis. 189, 1905–1913 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Bender, M. H., Cartee, R. T. & Yother, J. Positive correlation between tyrosine phosphorylation of CpsD and capsular polysaccharide production in Streptococcus pneumoniae. J. Bacteriol. 185, 6057–6066 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Morona, J. K., Morona, R. & Paton, J. C. Attachment of capsular polysaccharide to the cell wall of Streptococcus pneumoniae type 2 is required for invasive disease. Proc. Natl Acad. Sci. USA 103, 8505–8510 (2006). Demonstrates the involvement of conserved capsule-biosynthesis genes in the attachment of polysaccharide to the cell wall and the importance of this participation for progression from pneumonia to bacteraemia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Giammarinaro, P. & Paton, J. C. Role of RegM, a homologue of the catabolite repressor protein CcpA, in the virulence of Streptococcus pneumoniae. Infect. Immun. 70, 5454–5461 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Mollerach, M., López, R. & García, E. Characterization of the galU gene of Streptococcus pneumoniae encoding a uridine diphosphoglucose pyrophosphorylase: a gene essential for capsular polysaccharide biosynthesis. J. Exp. Med. 188, 2047–2056 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hardy, G. G., Magee, A. D., Ventura, C. L., Caimano, M. J. & Yother, J. Essential role for cellular phosphoglucomutase in virulence of type 3 Streptococcus pneumoniae. Infect. Immun. 69, 2309–2317 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Douglas, R. M., Paton, J. C., Duncan, S. J. & Hansman, D. Antibody response to pneumococcal vaccination in children younger than five years of age. J. Infect. Dis. l48, 131–137 (l983).

  146. Paton, J. C. in The Pneumococcus (eds Tuomanen, E. I., Mitchell, T. J., Morrison, D. A. & Spratt, B. G.) 382–402 (ASM, Washington DC, 2004).

    Google Scholar 

  147. Huang, S. S. et al. Post-PCV7 changes in colonizing pneumococcal serotypes in 16 Massachusetts communities, 2001 and 2004. Pediatrics 116, 408–413 (2005).

    Article  Google Scholar 

  148. Reingold, A. et al. Direct and indirect effects of routine vaccination of children with 7-valent pneumococcal conjugate vaccine on incidence of invasive pneumococcal disease — United States, 1998–2003. MMWR 54, 893–897 (2005).

    Article  Google Scholar 

  149. Steenhoff, A. P., Shah, S. S., Ratner, A. J., Patil, S. M. & McGowan, K. L. Emergence of vaccine-related pneumococcal serotypes as a cause of bacteremia. Clin. Infect. Dis. 42, 907–914 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Ogunniyi, A. D., Folland, R. L., Hollingshead, S., Briles, D. E. & Paton, J. C. Immunization of mice with combinations of pneumococcal virulence proteins elicits enhanced protection against challenge with Streptococcus pneumoniae. Infect. Immun. 68, 3028–3033 (2000). The first paper to demonstrate that immunization with combinations of pneumococcal virulence proteins elicits greater levels of protection against challenge than if the same antigens are used individually. Thus, combinations of protein antigens may be capable of eliciting robust protection against diverse pneumococcal strains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Briles, D. E. et al. Intranasal immunization of mice with a mixture of the pneumococcal proteins PsaA and PspA is highly protective against nasopharyngeal carriage of Streptococcus pneumoniae. Infect. Immun. 68, 796–800 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Briles, D. E. et al. Immunizations with pneumococcal surface protein A and pneumolysin are protective against pneumonia in a murine model of pulmonary infection with Streptococcus pneumoniae. J. Infect. Dis. 188, 339–348 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Ogunniyi, A. D., Grabowicz, M., Briles, D. E., Cook, J. & Paton, J. C. Development of a vaccine against invasive pneumococcal disease based on combinations of virulence proteins of Streptococcus pneumoniae. Infect. Immun. 75, 350–357 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Redd, S. C. et al. The role of human immunodeficiency virus infection in pneumococcal bacteremia in San Francisco residents. J. Infect. Dis. 162, 1012–1017 (1990).

    Article  CAS  PubMed  Google Scholar 

  155. Rodriguez-Barradas, M. C. et al. Colonisation by Streptococcus pneumoniae among human immunodeficiency virus-infected adults prevalence of antibiotic resistance, impact of immunization, and characterization by polymerase chain reaction with BOX primers of isolates from persistent S. pneumoniae carriers. J. Infect. Dis. 175, 590–597 (1997).

    Article  CAS  PubMed  Google Scholar 

  156. Kemp, K., Bruunsgaard, H., Skinhoj, P. & Klarlund Pedersen, B. Pneumococcal infections in humans are associated with increased apoptosis and trafficking of type 1 cytokine-producing T cells. Infect. Immun. 70, 5019–5025 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zhang, Q. et al. Low CD4 T cell immunity to pneumolysin is associated with nasopharyngeal carriage of pneumococci in children. J. Infect. Dis. 195, 1194–1202 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Zhang, Q. et al. Regulation of production of mucosal antibody to pneumococcal protein antigens by T-cell-derived gamma interferon and interleukin-10 in children. Infect. Immun. 74, 4735–4743 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aras Kadioglu.

Related links

Related links

DATABASES

Entrez Genome Project

Actinobacillus actinomycetemcomitans

Haemophilus influenzae

Streptococcus pneumoniae

Entrez Protein

BgaA

CcpA

CpsC

CpsD

CRP

LytA

PiaA

StrH

FURTHER INFORMATION

Aras Kadioglu's homepage

Jeffrey N. Weiser's homepage

Glossary

Naso–oropharynx

The parts of the pharynx that are above and below the palate, respectively.

Carrier state

The state of carrying an organism without manifestation of disease.

Herd immunity

Immunity induced by vaccination that protects a proportion of unvaccinated individuals.

Glycocalyx

Extracellular polysaccharide material that is excreted by epithelial cells and forms an outer layer on epithelial surfaces.

Phase variation

A molecular mechanism that leads to switching of the gene-expression state; for example, on–off expression.

Lipoteichoic acid

A teichoic acid species that is connected to membrane glycolipids. The stereochemistry of LTAs and the biosynthetic origin of the glycerolphosphates are different from those of wall teichoic acids, which have glycerol-phosphate backbones.

Human secretory component

An epithelial glycoprotein that is required for the active transport of polymeric immunoglobulins across mucosal surfaces.

Glycoconjugate

A carbohydrate that is covalently linked to other chemical species.

Basement membrane

A tissue structure that consists of a network of collagen fibres that attach the overlying epithelial layer to the connective tissue underneath.

Complement

A part of the innate immune system that comprises serum proteins which can protect against infection.

Fab fragment

The region of an antibody that binds to an antigen.

Bacteriocin

A bacterially produced, small, heat-stable peptide that is active against other bacteria and to which the producer has a specific immunity mechanism. Bacteriocins can have a narrow or broad target spectrum.

Opsonic antibody

A bacteria-binding (opsonizing) antibody, such as IgG and IgA, that interacts with Fc receptors on phagocytic cells, which leads to an increased uptake of bacteria.

Teichoic acid

A cell-envelope glycopolymer that is composed of many identical sugar-phosphate repeating units, which are usually modified with D-alanine and additional sugars.

Apolactoferrin

The iron-depleted form of the glycoprotein lactoferrin.

Factor H

A component of the alternative complement pathway that is involved in the regulation of complement activation.

C-type lectin

A carbohydrate-binding protein that is found in a wide range of animals. C-type lectins share a highly conserved calcium-dependent carbohydrate-recognition domain that is used to distinguish them from other animal lectins.

Clonal type

A pneumococcal clonal lineage is determined by sequence analysis of a set of housekeeping genes, as opposed to its capsular serotype.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadioglu, A., Weiser, J., Paton, J. et al. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 6, 288–301 (2008). https://doi.org/10.1038/nrmicro1871

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1871

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing