Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Why do we need quality-assured diagnostic tests for sexually transmitted infections?

Abstract

The bacterial sexually transmitted infections (STIs) syphilis, gonorrhoea and chlamydia can all be cured with a single dose of antibiotic. Unfortunately, however, these infections often remain undiagnosed as many infected individuals have few if any symptoms. Diagnostic tests with high sensitivity and specificity are available for all three infections but, owing to their expense and the lack of laboratory capacity, most people in developing countries do not have access to these tests. There is a great need for simple, cheap diagnostic tests for STIs that can be performed at the point of care, enabling treatment to be given immediately. It is hoped that recent advances in our understanding of the pathogenesis of these infections, and the availability of the complete genome sequences for each causative organism, will lead to the development of improved point-of-care tests that will reduce the burden of these diseases in developing countries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Estimated new cases of curable sexually transmitted infections among adults.
Figure 2: The rapid plasma reagin test.
Figure 3: The rapid diagnostic test for syphilis.
Figure 4: Schematic representation of a rapid point-of-care test for chlamydia diagnosis.

Similar content being viewed by others

References

  1. WHO. Global Prevalence and Incidence of Selected Curable Sexually Transmitted Infections: Overview and Estimates, <[online]> (WHO, Geneva, 2001).

  2. Schmid, G. Economic and programmatic aspect of congenital syphilis prevention. Bull. World Health Organ. 82, 402– 409 (2004).

    PubMed  PubMed Central  Google Scholar 

  3. Schulz, K. F., Cates, W. & O'Mara, P. R. Pregnancy loss, infant death, and suffering: the legacy of syphilis and gonorrhoea in Africa. Genitourin. Med. 63, 320– 325 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gerbase, A. C., Rowley, J. T. & Mertens, T. E. Global epidemiology of sexually transmitted diseases. Lancet 351, (Suppl. 3), 2– 4 (1998).

    Article  PubMed  Google Scholar 

  5. Fleming, D. T. & Wasserheit, J. N. From epidemiological synergy to public health policy and practice: the contribution of other sexually transmitted diseases to the sexual transmission of HIV infection. Sex. Transm. Infect. 75, 3– 17 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cohen, M. S. et al. Reduction of concentration of HIV-1 in semen after treatment of urethritis: implications for prevention of sexual transmission of HIV-1. Lancet 349, 1868– 1873 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Freeman, E. E. Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta analysis of longitudinal studies. AIDS 20, 73– 83 (2006).

    Article  PubMed  Google Scholar 

  8. Buchacz, K. et al. Syphilis increases HIV viral load and decreases CD4 cell counts in HIV-infected patients with new syphilis infections. AIDS 18, 2075– 2079 (2004).

    Article  PubMed  Google Scholar 

  9. Hayes, R. J. & White, R. G. Amplified HIV transmission during early stage infection. J. Infect. Dis. 193, 604– 605 (2006).

    Article  PubMed  Google Scholar 

  10. Musher, D. M. in Sexually Transmitted Diseases, 3rd edn, (eds Holmes, K. K. et al.) 479– 485 (McGraw-Hill, New York, 1999).

    Google Scholar 

  11. Singh, A. E. & Romanowski, B. Syphilis: review with emphasis on clinical, epidemiologic, and some biologic features. Clin. Microbiol. Rev. 12, 187– 209 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Swartz, M. N., Musher, D. M. & Healy, B. P. in Sexually Transmitted Diseases, 3rd edn, (eds Holmes, K. K. et al.) 487– 509 (McGraw-Hill, New York, 1999).

    Google Scholar 

  13. Romanowski, B., Sutherland, R., Fick, G. H., Mooney, D., Love, E. J. Serologic response to treatment of infectious syphilis. Ann. Intern. Med. 114, 1005– 1009 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Radolf, J. D., Sanchez, P. J., Schulz, K. F. & Murphy, F. K. in Sexually Transmitted Diseases, 3rd edn, (eds Holmes, K. K. et al.) 1165– 1189 (McGraw-Hill, New York, 1999).

    Google Scholar 

  15. Berman, S. M. Maternal syphilis: pathophysiology and treatment. Bull. World Health Organ. 82, 433– 438 (2004).

    PubMed  PubMed Central  Google Scholar 

  16. Genç, M. & Ledger, W. J. Syphilis in pregnancy. Sex. Transm. Infect. 76, 73– 79 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Michelow, I. C. et al. Central nervous system infection in congenital syphilis. N. Engl. J. Med. 346, 1792– 1798 (2002).

    Article  PubMed  Google Scholar 

  18. Sheffield, J. S. et al. Placental histopathology of congenital syphilis. Obstet. Gynecol. 100, 126– 133 (2002).

    PubMed  Google Scholar 

  19. Watson-Jones, D. et al. Syphilis in pregnancy in Tanzania. I. Impact of maternal syphilis on outcome of pregnancy. J. Infect. Dis. 186, 940– 947 (2002).

    Article  PubMed  Google Scholar 

  20. Fiumara, N. J., Fleming, W. L., Downing, J. G. & Good, F. The incidence of prenatal syphilis at the Boston City Hospital. N. Engl. J. Med. 245, 634– 640 (1951).

    Article  CAS  PubMed  Google Scholar 

  21. Hollier, L. M., Harstad, T. W., Sanchez, P. J., Twickler, D. M. & Wendel, G. D. Fetal syphilis: clinical and laboratory characteristics. Obstet. Gynecol. 97, 947– 953 (2001).

    CAS  PubMed  Google Scholar 

  22. Sánchez, P. J. et al. Evaluation of molecular methodologies and rabbit infectivity testing for the diagnosis of congenital syphilis and neonatal central nervous system invasion by Treponema pallidum. J. Infect. Dis. 167, 148– 157 (1993).

    Article  PubMed  Google Scholar 

  23. Riedner, G. et al. Single dose azithromycin versus penicillin G benzathine for the treatment of early syphilis. N. Engl. J. Med. 353, 1236– 1244 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Watson-Jones, D. et al. Syphilis in pregnancy in Tanzania. II. The effectiveness of antenatal syphilis screening and single-dose benzathine penicillin treatment for the prevention of adverse pregnancy outcomes. J. Infect. Dis. 186, 948– 957 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Sheffield, J. S. et al. Congenital syphilis after maternal treatment for syphilis during pregnancy. Am. J. Obstet. Gynecol. 186, 569– 573 (2002).

    Article  PubMed  Google Scholar 

  26. Golden, M. R., Marra, C. M. & Holmes, K. K. Update on syphilis: resurgence of an old problem. JAMA 290, 1510– 1514 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Rolfs, R. T. et al. A randomized trial of enhanced therapy for early syphilis in patients with and without human immunodeficiency virus infection. The Syphilis and HIV Study Group. N. Engl. J. Med. 337, 307– 314 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Tanaka, M. et al. Analysis of mutations within multiple genes associated with resistance in a clinical isolate of Neisseria gonorrhoeae with reduced ceftriaxone susceptibility that shows a multidrug-resistant phenotype. Int. J. Antimicrob. Agents 27, 20– 26 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Alary, M. et al. Evaluation of clinical algorithms for the diagnosis of gonococcal and chlamydial infections among men with urethral discharge or dysuria and women with vaginal discharge in Benin. Sex. Transm. Infect. 74 (Suppl. 1), 44– 49 (1998).

    Google Scholar 

  30. Djajakusumah, T., Sudigdoadi, S., Keersmaekers, K. & Meheus, A. Evaluation of syndromic patient management algorithm for urethral discharge. Sex. Transm. Infect. 74 (Suppl. 1), 29– 33 (1998).

    Google Scholar 

  31. Mayaud, P. et al. Validation of a WHO algorithm with risk assessment for the clinical management of vaginal discharge in Mwanza, Tanzania. Sex. Transm. Infect. 74 (Suppl. 1), 77– 84 (1998).

    Google Scholar 

  32. Mukenge, L. et al. Syndromic versus laboratory-based diagnosis of cervical infections among female sex workers in Benin: implications of non-attendance for return visits. Sex. Transm. Dis. 29, 324– 330 (2002).

    Article  Google Scholar 

  33. Hawkes, S. et al. Reproductive-tract infections in women in low-income, low-prevalence situations: assessment of syndromic management in Matlab, Bangladesh. Lancet 354, 1776– 1781 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Vickerman, P., Watts, C. H., Alary, M., Mabey, D. & Peeling, R. Sensitivity requirements for the point of care diagnosis of Chlamydia trachomatis and Neiserria gonorrhoeae in women. Sex. Transm. Infect. 79, 363– 368 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tapsall, J. Antibiotic resistance in Neisseria gonorrhoeae. Clin. Infect. Dis. 41 (Suppl. 4), 263– 268 (2005).

    Article  Google Scholar 

  36. Garcia-Moreno, C. & Watts, C. H. Violence against women: its importance for HIV/AIDS. AIDS 14 (Suppl. 3), 253– 265 (2000).

    Google Scholar 

  37. Peeling, R. W. & Ye, H. Diagnostic tools for preventing and managing maternal and congenital syphilis: an overview. Bull. World Health Organ. 82, 439– 446 (2004).

    PubMed  PubMed Central  Google Scholar 

  38. von Wassermann, A. P., Neisser, A. & Bruck, C. Eine serodiagnostische Reaktion bei Syphilis. Deutsche medicinische Wochenschrift, Berlin 32, 745– 746 (1906).

    Article  Google Scholar 

  39. Young, H., Aktas, G. & Moyes, A. Enzywell recombinant enzyme immunoassay for the serological diagnosis of syphilis. Int. J. STD AIDS 11, 288– 291 (2000),

    Article  CAS  PubMed  Google Scholar 

  40. WHO/TDR. Laboratory-Based Evaluation of Rapid Syphilis Diagnostics. Sexually Transmitted Diseases Diagnostics Initiative (SDI) Report: Diagnostics Evaluations Series No. 1, <[online]> (WHO/TDR, Geneva, 2003).

  41. Young, H., Moyes, A., de Ste Croix, I. & McMillan, A. A new recombinant antigen latex agglutination test (Syphilis Fast) for the rapid serological diagnosis of syphilis. Int. J. STD AIDS 9, 196– 200 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Fears, M. B. & Pope, V. Syphilis fast latex agglutination test, a rapid confirmatory test. Clin. Diagn. Lab. Immunol. 8, 841– 842 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zarakolu, P. et al. Preliminary evaluation of an immunochromatographic strip test for specific Treponema pallidum antibodies. J. Clin. Microbiol. 40, 3064– 3065 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. West, B., Walraven, G., Morison, L., Brouwers, J. & Bailey, R. Performance of the rapid plasma reagin and the rapid syphilis screening tests in the diagnosis of syphilis in field conditions in rural Africa. Sex. Transm. Infect. 78, 282– 285 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sato, N. S. et al. Assessment of the rapid test based on an immunochromatography technique for detecting anti-Treponema pallidum antibodies Rev. Inst. Med. Trop. Sao Paulo 45, 319– 322 (2003).

    Article  PubMed  Google Scholar 

  46. Diaz, T. et al. Evaluation of the Determine Rapid Syphilis TP assay using sera. Clin. Diagn. Lab. Immunol. 11, 98– 101 (2004).

    PubMed  PubMed Central  Google Scholar 

  47. Siedner, M., Zapitz, V., Ishida, M., De La, R. R. & Klausner, J. D. Performance of rapid syphilis tests in venous and fingerstick whole blood specimens. Sex. Transm. Dis. 31, 557– 560 (2004).

    Article  PubMed  Google Scholar 

  48. Montoya, P. J. et al. Comparison of the diagnostic accuracy of a rapid immunochromatographic test and the rapid plasma reagin test for antenatal syphilis screening in Mozambique. Bull. World Health Organ. 84, 97– 104 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mabey, D. et al. Prospective, multi-centre clinic-based evaluation of four rapid diagnostic tests for syphilis. Sex. Transm. Infect. (in the press).

  50. Vickerman, P. et al. Modelling the cost-effectiveness of introducing rapid syphilis tests into an antenatal syphilis screening programme in Mwanza, Tanzania. Sex. Transm. Infect. (in the press).

  51. Koumans, E. H., Johnson, R. E., Knapp, J. S. & St Louis, M. E. Laboratory testing for Neisseria gonorrhoeae in men and women introduced non-culture tests: a performance review with clinical and public health considerations. Clin. Infect. Dis. 27, 1171– 1180 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Manavi, K., Young, H. & Clutterbuck, D. Sensitivity of microscopy for the rapid diagnosis of gonorrhoea in men and women and the role of gonorrhoeae serovars. Int. J. STD AIDS 14, 390– 394 (2003).

    Article  PubMed  Google Scholar 

  53. Van Dyck, E., Leven, M., Pattyn, S., Van Damme, L. & Laga, M. Detection of Chlamydia trachomatis and Neisseria gonorrhoeae by enzyme immunoassay, culture and three nucleic acid amplified tests. J. Clin. Microbiol. 39, 1751– 1756 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Boyadzhyan, B., Yashida, B., Yatabe, H., Patnaik, M. & Hill, C. S. Comparison of the APTIMA CT and GC assays with the APTIMA COMBO 2 assay, the Abbott LCx assay, and Direct Fluorescent-Antibody and culture assays for detection of Chlamydia trachomatis and Neisseria gonorrhoeae. J. Clin. Microbiol. 42, 3089– 3093 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Darwin, L. H. et al. Comparison of Digene hybrid capture 2 and conventional culture for detection of Chlamydia trachomatis and Neisseria gonorrhoeae in cervical specimens. J. Clin. Microbiol. 40, 641– 644 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Van Dyck, E., Smet, H., Van Damme, L. & Laga, M. Evaluation of the Roche Neisseria gonorrhoeae 16 S rRNA PCR for confirmation of AMPLICOR PCR-positive samples and comparison of its diagnostic performance according to storage conditions and preparation of endocervical specimens. J. Clin. Microbiol. 39, 2280– 2282 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Martin, D., Cammarata, C. & Van Der pol, B. Multicenter evaluation of AMPLICOR and automated COBAS AMPLICOR CT/NG tests for Neisseria gonorrhoeae. J. Clin. Microbiol. 38, 3544– 3549 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Moncada, J. et al. The effect of urine testing in evaluations of the sensitivity of the Gen-Probe APTIMA® Combo 2 assay on endocervical swabs for Chlamydia trachomatis and Neisseria gonorrhoeae. The infected patient standard reduces sensitivity of single site evaluation. Sex. Transm. Dis. 31, 273– 277 (2004).

    Article  PubMed  Google Scholar 

  59. Martin, D. H. et al. Use of multiple nucleic acid amplification tests to define the infected-patient “gold standard” in clinical trials of new diagnostic tests for Chlamydia trachomatis infections. J. Clin. Microbiol. 42, 4749– 4758 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gaydos, C. A. et al. Performance of the APTIMA Combo 2 assay for the multiplex detection of Chlamydia trachomatis and Neisseria gonorrheae in female urine and endocervical swab specimens. J. Clin. Microbiol. 41, 304– 309 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Black, C. M. Current methods of laboratory diagnosis of Chlamydia trachomatis infections. Clin. Microbiol. Rev. 10, 160– 184 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Palmer, H. M., Mallinson, H., Wood, R. & Herring, A. J. Evaluation of the specificities of five DNA amplification methods for the detection of Neisseria gonorrhoeae. J. Clin. Microbiol. 41, 835– 837 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Diermert, D. J., Libman, M. D. & Lebel, P. Confirmation by 16S r RNA PCR of the COBAS AMPLICOR CT/NG test for diagnosis of Neisseria gonorrhoeae infection in a low-prevalence population. J. Clin. Microbiol. 40, 4056– 4059 (2002).

    Article  CAS  Google Scholar 

  64. Benzaken, A. S. The diagnosis of gonococcal infection in high risk women using a rapid test. Sex. Transm. Infect. (in the press).

  65. Yin, Y. P. et al. Clinic-based evaluation of Clearview Chlamydia MF for detection of Chlamydia trachomatis in vaginal and cervical specimens from women at high-risk in China. Sex. Transm. Infect. (in the press).

  66. Petti, C. A., Polage, C. R., Quinn, T. C., Ronald, A. R. & Sande, M. A. Laboratory medicine in Africa: a barrier to effective health care. Clin. Infect. Dis. 42, 377– 82 (2006).

    Article  PubMed  Google Scholar 

  67. Oliff, M., Mayaud, P., Brugha, R. & Semakafu, A. M. Integrating reproductive health services in a reforming health sector: the case of Tanzania. Repro. Health Matters 11, 37– 48 (2003).

    Article  Google Scholar 

  68. World Bank. World Development Report 2004: Making Services work for Poor People, [online] (The World Bank, New York, 2003).

  69. Vickerman, P., Watts, C., Peeling, R. W., Mabey, D. & Alary, M. Modeling the cost-effectiveness of rapid point-of-care diagnostic tests for the control of HIV and other sexually transmitted infections amongst female sex workers in Cotonou, Benin. Sex. Transm. Infect. (in the press).

  70. Gift, T. L., Pate, M. S., Hook, E. W. 3rd, Kassler, W. J. The rapid test paradox: when fewer cases detected lead to more cases treated: a decision analysis of tests for Chlamydia trachomatis. Sex. Transm. Dis. 26, 232– 240 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Mukenge, L. et al. Syndromic versus laboratory-based diagnosis of cervical infections among female sex workers in Benin: implications of non-attendance for return visits. Sex. Transm. Dis. 29, 324– 330 (2002).

    Article  Google Scholar 

  72. Connor, N., Roberts, J. & Nicoll, A. Strategic option for antenatal screening for syphilis in the United Kingdom: a cost effectiveness analysis. J. Med. Screen. 7, 7– 13 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Terris Prestholt, F. et al. Is antenatal syphilis screening still cost effective in sub-Saharan Africa. Sex. Transm. Infect. 79, 375– 381 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rotchford, K., Lombard, C., Zuma, K. & Wilkinson, D. Impact on perinatal mortality of missed opportunities to treat maternal syphilis in rural South Africa: baseline results from a clinic randomized controlled trial. Trop. Med. Int. Health 5, 800– 804 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Dorigo-Zetsma, J. W. Performance of routine syphilis serology in the Ethiopian cohort on HIV/AIDS. Sex. Transm. Infect. 80, 96– 99 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Temmerman, M., Mohamedali, F. & Fransen, L. Syphilis prevention in pregnancy: an opportunity to improve reproductive and child health in Kenya. Health Policy Plan. 8, 122– 127 (1993).

    Article  Google Scholar 

  77. Gloyd, S., Chai, S. & Mercer, M. A. Antenatal syphilis in sub-Saharan Africa: missed opportunities for mortality reduction. Health Policy Plan. 16, 29– 34 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Vickerman, P., Peeling, R. W., Watts, C. & Mabey, D. Detection of gonococcal infection: pros and cons of a rapid test. Mol. Diagn. 9, 175– 179 (2005).

    PubMed  Google Scholar 

  79. Michel, C. E. C. et al. A rapid point-of-care assay to target antibiotic treatment for trachoma elimination. Lancet 367, 1585 (2006).

    Article  PubMed  Google Scholar 

  80. Radolf, J. D., Norgard, M. V. & Schulz, W. W. Outer membrane ultrastructure explains the limited antigenicity of virulent Treponema pallidum. Proc. Natl Acad. Sci. USA 86, 2051– 2055 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cox, D. L., Chang, P., McDowell, A. & Radolf, J. D. The outer membrane, not a coat of host proteins, limits the antigenicity of virulent. Treponema pallidum. Infect. Immun. 60, 1076– 1083 (1992).

    CAS  PubMed  Google Scholar 

  82. Salazar, J. C., Hazlett, K. R. & Radolf, J. D. The immune response to infection with Treponema pallidum, the stealth pathogen. Microbes Infect. 4, 1133– 1140 (2002)

    Article  CAS  PubMed  Google Scholar 

  83. Stamm, L. V. in Sexually Transmitted Diseases, 3rd edn, (eds Holmes, K. K. et al.) 467– 472 (McGraw-Hill, New York, 1999).

    Google Scholar 

  84. Fraser, C. M. et al. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281, 375– 381 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Blanco, D. R., Miller, J. N. & Lovett, M. A. Surface antigens of the syphilis spirochete and their potential as virulence determinants. Emerg. Infect. Dis. 3, 11– 20 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Centurion-Lara, A. et al. Treponema pallidum major sheath protein homologue Tpr K is a target of opsonic antibody and the protective immune response. J. Exp. Med. 189, 647– 656 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Morgan, C. A., Lukehart, S. A. & Van Voorhis, W. C. Protection against syphilis correlates with specificity of antibodies to the variable regions of Treponema pallidum repeat protein K. Infect. Immun. 71, 5605– 5612 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Leader, B. T. Antibody responses elicited against the Treponema pallidum repeat proteins differ during infection with different isolates of Treponema pallidum subsp. pallidum. Infect. Immun. 71, 6054– 6057 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Centurion-Lara, A. et al. Gene conversion: a mechanism for generation of heterogeneity in the tprK gene of Treponema pallidum during infection. Mol. Microbiol. 52, 1579– 1596 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Podwinska, J., Lusiak, M., Zaba, R. & Bowszyc, J. The pattern and level of cytokines secreted by Th1 and Th2 lymphocytes of syphilitic patients correlate to the progression of the disease. FEMS Immunol. Med. Microbiol. 28, 1– 14 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Van Voorhis, W. C. et al. Primary and secondary syphilis lesions contain mRNA for Th1 cytokines. J. Infect. Dis. 173, 491– 495 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Fan, Y. M., Zeng, W. J., Wu, Z. H. & Li, S. F. Immunophenotypes, apoptosis, and expression of Fas and Bcl-2 from peripheral blood lymphocytes in patients with secondary early syphilis. Sex. Transm. Dis. 31, 221– 224 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Wicher, V. & Wicher, K. Pathogensis of maternal-fetal syphilis revisited. Clin. Infect. Dis. 33, 354– 363 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Stephens, R. S. et al. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282, 754– 759 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Zhong, G., Fan, P., Ji, H., Dong, F. & Huang, Y. Identification of a chlamydial protease-like activity factor responsible for the degradation of host transcription factors. J. Exp. Med. 193, 935– 942 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wehrl, W., Brinkmann, V., Jungblut, P. R., Meyer, T. F. & Szczepek, A. J. From the inside out — processing of the chlamydial autotransporter PmpD and its role in bacterial adhesion and activation of human host cells. Mol. Microbiol. 51, 319– 334 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Crane, D. D. et al. Chlamydia trachomatis polymorphic membrane protein D is a species-common pan-neutralizing antigen. Proc. Natl Acad. Sci. USA 103, 1894– 1899 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Carlson, J. H., Porcella, S. F., McClarty, G. & Caldwell, H. D. Comparative genomic analysis of Chlamydia trachomatis oculotropic and genitotropic strains. Infect. Immun. 73, 6407– 6418 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Caldwell, H. D. et al. Polymorphisms in Chlamydia trachomatis tryptophan synthase genes differentiates between genital and ocular Isolates. Implications in pathogenesis and infection tropism. J. Clin. Invest. 111, 1757– 1769 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Belland, R. J. et al. Chlamydia trachomatis cytotoxicity associated with complete and partial cytotoxin genes. Proc. Natl Acad. Sci. USA 24, 13984– 13989 (2001).

    Article  Google Scholar 

  101. Bailey, R., Duong, T., Carpenter, B., Whittle, H. & Mabey, D. The duration of human ocular chlamydial infection is age dependent. Epidemiol. Infect. 123, 479– 486 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang, S. P., Grayston, J. T. & Alexander, E. R. Trachoma vaccine studies in monkeys. Am. J. Ophthalmol. 63, 1615– 1620 (1967).

    Article  Google Scholar 

  103. Peeling, R. W. & Mabey, D. C. W. Heat shock protein expression and immunity in chlamydial infections. Infect. Dis. Obstet. Gynecol. 7, 72– 79 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Peeling, R. W. et al. Antibody response to the 60-kDa chlamydial heat-shock protein is associated with scarring trachoma. J. Infect. Dis, 177, 256– 259 (1998).

    Article  CAS  PubMed  Google Scholar 

  105. Beatty, W., Morrison, R. P. & Byrne, G. I. Persistent chlamydiae: from cell culture to a paradigm for chlamydial pathogenesis. Microbiol. Rev. 58, 686– 699 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Bailey, R. L., Holland, M. J., Whittle, H. C. & Mabey, D. C. W. Subjects recovering from human ocular chlamydial infection have enhanced lymphoproliferative responses to chlamydial antigens compared to persistently diseased controls. Infect. Immun. 63, 389– 392 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Faal, H. et al. Conjunctival FOXP3 expression in trachoma: evidence for T regulatory activity in human Chlamydia trachomatis infection? PloS Medicine 3, e266 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Burton, M. J., Bailey, R. L., Jeffries, D., Mabey, D. C. W. & Holland, M. J. Cytokine and fibrogenic gene expression in the conjunctiva of subjects from a trachoma endemic Gambian community. Infect. Immun. 72, 7352– 7356 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Conway, D. J. et al. Scarring trachoma is associated with polymorphism in the tumour necrosis factor alpha (TNF-α) gene promoter and with elevated TNF-α in tear fluid. Infect. Immun. 1003– 1006 (1997).

  110. Natividad-Sancho, A., Bailey, R., Holland, M., Kwiatkowski, D. & Mabey, D. Susceptibility to trachomatous scarring and trichiasis in Gambians varies with SNP haplotypes at the interferon-gamma and interleukin-10 loci. Genes Immun. 6, 332– 340 (2005).

    Article  CAS  Google Scholar 

  111. Simons, M. P., Nauseef, W. M. & Apicella, M. A. Interactions of Neisseria gonorrhoeae with adherent polymorphonuclear leukocytes. Infect. Immun. 73, 1971– 1977 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Edwards, J. L. & Apicella, M. A. The role of lipooligosaccharide in Neisseria gonorrhoeae pathogenesis of cervical epithelia: lipid A serves as a C3 acceptor molecule. Cell. Microbiol. 4, 585– 598 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Edwards, J. L. & Apicella, M. A. The molecular mechanisms used by Neisseria gonorrhoeae to initiate infection differ between men and women. Clin. Micro. Rev. 17, 965– 981 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cohen, M. S. et al. Human experimentation with Neisseria gonorrhoeae: rationale, methods and implications for the biology of infection and vaccine development. J. Infect. Dis. 169, 532– 537 (1994).

    Article  CAS  PubMed  Google Scholar 

  115. McGee, Z. A. et al. Pathogenic mechanisms for Neisseria gonorrhoeae: observations on damage to human fallopian tubes in organ culture by gonococci of colony type 1 or type 4. J. Infect. Dis. 143, 413– 422 (1981).

    Article  CAS  PubMed  Google Scholar 

  116. Virji, M. et al. The role of common and type-specific antigenic domains in adhesion and virulence of gonococci for human epithelial cells. J. Gen. Microbiol. 130, 1089– 1095 (1984).

    CAS  PubMed  Google Scholar 

  117. Bessen, D. et al. Interactions of gonococci with HeLa cells: attachment, detachment, replication, penetration and the role of protein II. Infect. Immun. 54, 154– 160 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Virji, M. et al. Role of anti-pilus antibody in host defense against gonococcal infection studied with monoclonal anti-pilus antibodies. Infect. Immun. 49, 621– 628 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Boslego, J. et al. Efficacy trial of a parenteral gonococcal pilus vaccine in men. Vaccine 3, 154– 162 (1991).

    Article  Google Scholar 

  120. Koomey, M. et al. Effects of recA mutations on pilus antigenic variation and phase transition in Neisseria gonorrhoeae. Genetics 17, 391– 398 (1987).

    Google Scholar 

  121. Connell, T. D. et al. Recombination among protein II genes of Neisseria gonorrhoeae generates new coding sequences and increases structural variability in the protein II family. Mol. Microbiol. 2, 227– 236 (1988).

    Article  CAS  PubMed  Google Scholar 

  122. Pohlner, J. et al. Genome structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 325, 458– 462 (1987).

    Article  CAS  PubMed  Google Scholar 

  123. Alary, M. et al. Evaluation of a rapid point-of-care test for the detection of gonococcal infection among female sex workers in Benin. Sex. Transm. Infect. (in the press).

  124. Black, C. M. et al. Head-to-head multicenter comparison of DNA probe and nucleic acid amplification tests for Chlamydia trachomatis infection in women performed with an improved reference standard. J. Clin. Microbiol. 40, 3757– 3763 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosanna W. Peeling.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

C. trachomatis serovar A

C. trachomatis serovar D

Neisseria gonorrhoeae

Treponema pallidum

UniprotKB

TprK

FURTHER INFORMATION

Center for Disease Control and Prevention

Neisseria gonorrhoeae strain FA1090 genome sequence

WHO SDI

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peeling, R., Mabey, D., Herring, A. et al. Why do we need quality-assured diagnostic tests for sexually transmitted infections?. Nat Rev Microbiol 4 (Suppl 12), S7–S19 (2006). https://doi.org/10.1038/nrmicro1569

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1569

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing