Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Epidemiological interpretation of antibiotic resistance studies – what are we missing?

Abstract

Antimicrobial resistance is an emerging public-health threat. Studies of the relationship between antibiotic use and resistance, as well as surveillance programmes, examine changes in the proportion of isolates that are resistant. Although proportions are helpful to the clinician prescribing empirical therapy, proportion-based analyses can be misleading to the public-health professional as they can yield biased estimates. Proportions do not adequately reflect the burden of resistance, a measure often of interest in public health. A more appropriate measure of this burden is the rate of isolation of resistant organisms, that is, the absolute number of resistant isolates in a population over time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Outcomes of the introduction of four different antibiotics onto a surgical ward.

Similar content being viewed by others

References

  1. NNIS system. National nosocomial infections surveillance (NNIS) system report, data summary from January 1992 through June 2003, issued August 2003. Am. J. Infect. Control 31, 481–98 (2003).

  2. Buchholz, U., Bronzwaer, S. L., Schrijnemakers, P., Monen, J. & Kool, J. L. EARSS activities and results: update. Euro Surveill. 6, 2–5 (2001).

    Article  Google Scholar 

  3. Gordon, K. A. & Jones, R. N. Susceptibility patterns of orally administered antimicrobials among urinary tract infection pathogens from hospitalized patients in North America: comparison report to Europe and Latin America. Results from the SENTRY antimicrobial surveillance program (2000). Diagn. Microbiol. Infect. Dis. 45, 295–301 (2003).

    Article  CAS  Google Scholar 

  4. Cosgrove, S. E., Kaye, K. S., Eliopoulous, G. M. & Carmeli, Y. Health and economic outcomes of the emergence of third-generation cephalosporin resistance in Enterobacter species. Arch. Intern. Med. 162, 185–190 (2002).

    Article  Google Scholar 

  5. Cosgrove, S. E. et al. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin. Infect. Dis. 36, 53–59 (2003).

    Article  Google Scholar 

  6. Kuti, J. L., Nightingale, C. H. & Nicolau, D. P. Optimizing pharmacodynamic target attainment using the MYSTIC antibiogram: data collected in North America in 2002. Antimicrob. Agents Chemother. 48, 2464–2470 (2004).

    Article  CAS  Google Scholar 

  7. Felmingham, D. The need for antimicrobial resistance surveillance. J. Antimicrob. Chemother. 50 (Suppl.), S1–S7 (2002).

    Article  Google Scholar 

  8. Kaye, K. S., Engemann, J. J., Mozaffari, E. & Carmeli, Y. Reference group choice and antibiotic resistance outcomes. Emerg. Infect. Dis. 10, 1125–1128 (2004).

    Article  Google Scholar 

  9. Livermore, D. M. et al. Trends in fluoroquinolone (ciprofloxacin) resistance in enterobacteriaceae from bacteremias, England and Wales, 1990–1999. Emerg. Infect. Dis. 8, 473–478 (2002).

    Article  CAS  Google Scholar 

  10. Zervos, M. J. et al. Relationship between fluoroquinolone use and changes in susceptibility to fluoroquinolones of selected pathogens in ten United States teaching hospitals, 1991–2000. Clin. Infect. Dis. 37, 1643–1648 (2003).

    Article  CAS  Google Scholar 

  11. Fridkin, S. K. et al. Monitoring antimicrobial use and resistance: comparison with a national benchmark on reducing vancomycin use and vancomycin-resistant enterococci. Emerg. Infect. Dis. 8, 702–707 (2002).

    Article  Google Scholar 

  12. Bronzwaer, S. L. et al. A European study on the relationship between antimicrobial use and antimicrobial resistance. Emerg. Infect. Dis. 8, 278–282 (2002).

    Article  Google Scholar 

  13. Harbarth, S., Albrich, W., Goldmann, D. A. & Huebner, J. Control of multiply resistant cocci: do international comparisons help? Lancet Infect. Dis. 1, 251–261 (2001).

    Article  CAS  Google Scholar 

  14. Neuhauser, M. M. et al. Antibiotic resistance among Gram-negative bacilli in US intensive care units: implications for fluoroquinolone use. JAMA 289, 885–888 (2003).

    Article  CAS  Google Scholar 

  15. Gentry, C., Flournoy, D. J. & Reinert, R. Analysis of antimicrobial resistance among Gram-negative bacilli and antimicrobial use in intensive care unit patients for 5 years in a Veterans Affairs medical center. Am. J. Infect. Control 30, 411–416 (2002).

    Article  Google Scholar 

  16. Ernst, E. J. et al. Are United States hospitals following national guidelines for the analysis and presentation of cumulative antimicrobial susceptibility data? Diagn. Microbiol. Infect. Dis. 49, 141–145 (2004).

    Article  Google Scholar 

  17. Bodey, G. P., Jadeja, L. & Elting, L. Pseudomonas bacteremia. Retrospective analysis of 410 episodes. Arch. Intern. Med. 145, 1621–1629 (1985).

    Article  CAS  Google Scholar 

  18. Ibrahim, E. H., Sherman, G., Ward, S., Fraser, V. J. & Kollef, M. H. The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest 118, 146–155 (2000).

    Article  CAS  Google Scholar 

  19. Harbarth, S. et al. Inappropriate initial antimicrobial therapy and its effect on survival in a clinical trial of immunomodulating therapy for severe sepsis. Am. J. Med. 115, 529–535 (2003).

    Article  Google Scholar 

  20. Baquero, F. & Campos, J. The tragedy of the commons in antimicrobial chemotherapy. Rev. Esp. Quimioter. 16, 11–13 (2003).

    CAS  PubMed  Google Scholar 

  21. NCCLS. Analysis and presentation of cumulative antimicrobial susceptibility test data; approved guidelines. NCCLS document M39-A (NCCLS, Philadelphia, 2002).

  22. Pfaller, M. A., Jones, R. N., Doern, G. V. & Kugler, K. Bacterial pathogens isolated from patients with bloodstream infection: frequencies of occurrence and antimicrobial susceptibility patterns from the SENTRY antimicrobial surveillance program (United States and Canada, 1997). Antimicrob. Agents Chemother. 42, 1762–1770 (1998).

    Article  CAS  Google Scholar 

  23. Jones, R. N. MYSTIC (meropenem yearly susceptibility test information collection) conference. Hamburg, Germany, 10 May 2001. Diagn. Microbiol. Infect. Dis. 41, 169 (2001).

    Article  CAS  Google Scholar 

  24. Jacobs, M. R., Felmingham, D., Appelbaum, P. C. & Gruneberg, R. N. The Alexander Project 1998–2000: susceptibility of pathogens isolated from community-acquired respiratory tract infection to commonly used antimicrobial agents. J. Antimicrob. Chemother. 52, 229–246 (2003).

    Article  CAS  Google Scholar 

  25. Cornaglia, G. et al. European recommendations for antimicrobial resistance surveillance. Clin. Microbiol. Infect. 10, 349–383 (2004).

    Article  CAS  Google Scholar 

  26. Morabia, A. On the origin of Hill's causal criteria. Epidemiology 2, 367–369 (1991).

    Article  CAS  Google Scholar 

  27. Rahal, J. J. et al. Class restriction of cephalosporin use to control total cephalosporin resistance in nosocomial Klebsiella. JAMA 280, 1233–1237 (1998).

    Article  CAS  Google Scholar 

  28. Harbarth, S. et al. Effect of delayed infection control measures on a hospital outbreak of methicillin-resistant Staphylococcus aureus. J. Hosp. Infect. 46, 43–49 (2000).

    Article  CAS  Google Scholar 

  29. Wisplinghoff, H. et al. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. 39, 309–317 (2004).

    Article  Google Scholar 

  30. Jones, M. E. et al. Emerging resistance among bacterial pathogens in the intensive care unit — a European and North American Surveillance study (2000–2002). Ann. Clin. Microbiol. Antimicrob. 3, 14 (2004).

    Article  Google Scholar 

  31. Fridkin, S. K. & Gaynes, R. P. Antimicrobial resistance in intensive care units. Clin. Chest Med. 20, 303–316 (1999).

    Article  CAS  Google Scholar 

  32. Cook, P. P., Catrou, P. G., Christie, J. D., Young, P. D. & Polk, R. E. Reduction in broad-spectrum antimicrobial use associated with no improvement in hospital antibiogram. J. Antimicrob. Chemother. 53, 853–859 (2004).

    Article  CAS  Google Scholar 

  33. Last, J. M. (ed.) A Dictionary of Epidemiology, 3rd edition 140 (Oxford Univ. Press, New York, 1995).

    Google Scholar 

  34. Lipsitch, M., Bergstrom, C. T. & Levin, B. R. The epidemiology of antibiotic resistance in hospitals: paradoxes and prescriptions. Proc. Natl Acad. Sci. USA 97, 1938–1943 (2000).

    Article  CAS  Google Scholar 

  35. McCormick, A. W. et al. Geographic diversity and temporal trends of antimicrobial resistance in Streptococcus pneumoniae in the United States. Nature Med. 9, 424–430 (2003).

    Article  CAS  Google Scholar 

  36. Krcmery, V. & Barnes, A. J. Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance. J. Hosp. Infect. 50, 243–260 (2002).

    Article  CAS  Google Scholar 

  37. Regev-Yochay, G. et al. Association between carriage of Streptococcus pneumoniae and Staphylococcus aureus in children. JAMA 292, 716–720 (2004).

    Article  CAS  Google Scholar 

  38. Mendes, C. & Turner, P. J. Unit differences in pathogen occurrence arising from the MYSTIC program European database (1997–2000). Diagn. Microbiol. Infect. Dis. 41, 191–196 (2001).

    Article  CAS  Google Scholar 

  39. Oteo, J., Baquero, F., Vindel, A. & Campos, J. Antibiotic resistance in 3,113 blood isolates of Staphylococcus aureus in 40 Spanish hospitals participating in the European antimicrobial resistance surveillance system (2000–2002). J. Antimicrob. Chemother. 53, 1033–1038 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell J. Schwaber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

Pseudomonas aeruginosa

Staphylococcus aureus

FURTHER INFORMATION

Antimicrobial resistance

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwaber, M., De-Medina, T. & Carmeli, Y. Epidemiological interpretation of antibiotic resistance studies – what are we missing?. Nat Rev Microbiol 2, 979–983 (2004). https://doi.org/10.1038/nrmicro1047

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1047

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing