Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of gene flow in archaea

Key Points

  • Horizontal gene transfer (HGT) is essential for genome evolution across the tree of life and has an important role in archaeal speciation, adaptation, and maintenance of diversity.

  • Many of the horizontally acquired genes in archaea are involved in metabolism and cell envelope biogenesis and therefore likely provided a selective advantage for adaptation to new environments.

  • The transfer of DNA can also function in DNA repair by providing an intact template for homologous recombination, as has been shown for Sulfolobus spp.

  • Classic bacterial DNA transfer mechanisms, such as transformation, conjugation and transduction, have been identified in certain archaeal species. In addition, DNA exchange through vesicles, through cell fusion and by the recently discovered archaea-specific crenarchaeal exchange of DNA (Ced) system has been observed.

  • Several barriers prevent the transfer and incorporation of foreign DNA in archaeal species; these include physical environmental barriers, the surface layer (S-layer), CRISPR–Cas systems, restriction–modification systems and toxin–antitoxin systems.

  • Newly identified and sequenced species will enable us to uncover more HGT events among and between archaea, bacteria and eukaryotes.

  • With an increasing number of genetically tractable archaeal species, we will be able to elucidate the processes that underlie gene flow in archaea.

Abstract

Archaea are diverse, ecologically important, single-celled microorganisms. They have unique functions and features, such as methanogenesis and the composition of their cell envelope, although many characteristics are shared with the other domains of life, either through ancestry or through promiscuous horizontal gene transfer. The exchange of genetic material is a major driving force for genome evolution across the tree of life and has a role in archaeal speciation, adaptation and maintenance of diversity. In this Review, we discuss our current knowledge of archaeal mechanisms of DNA transfer and highlight the role of gene transfer in archaeal evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA transfer mechanisms in archaea.
Figure 2: DNA transfer in Sulfolobales.
Figure 3: Barriers to HGT.

Similar content being viewed by others

References

  1. Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Cavicchioli, R. Cold-adapted archaea. Nat. Rev. Microbiol. 4, 331–343 (2006).

    CAS  PubMed  Google Scholar 

  3. Chen, X.-P., Zhu, Y.-G., Xia, Y., Shen, J.-P. & He, J.-Z. Ammonia-oxidizing archaea: important players in paddy rhizosphere soil? Environ. Microbiol. 10, 1978–1987 (2008).

    CAS  PubMed  Google Scholar 

  4. Offre, P., Spang, A. & Schleper, C. Archaea in biogeochemical cycles. Annu. Rev. Microbiol. 67, 437–457 (2013).

    CAS  PubMed  Google Scholar 

  5. Makarova, K. S., Yutin, N., Bell, S. D. & Koonin, E. V. Evolution of diverse cell division and vesicle formation systems in Archaea. Nat. Rev. Microbiol. 8, 731–741 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).

    CAS  PubMed  Google Scholar 

  7. Guy, L. & Ettema, T. J. G. The archaeal 'TACK' superphylum and the origin of eukaryotes. Trends Microbiol. 19, 580–587 (2011).

    CAS  PubMed  Google Scholar 

  8. Williams, T. A., Foster, P. G., Nye, T. M. W., Cox, C. J. & Embley, T. M. A congruent phylogenomic signal places eukaryotes within the Archaea. Proc. Biol. Sci. 279, 4870–4879 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).

    CAS  PubMed  Google Scholar 

  11. Nelson-Sathi, S. et al. Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea. Proc. Natl Acad. Sci. USA 109, 20537–20542 (2012). This paper suggests that a single gene transfer event transformed a methanogen in the last haloarchaeal common ancestor.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Cadillo-Quiroz, H. et al. Patterns of gene flow define species of thermophilic Archaea. PLoS Biol. 10, e1001265 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Whitaker, R. J., Grogan, D. W. & Taylor, J. W. Recombination shapes the natural population structure of the hyperthermophilic archaeon Sulfolobus islandicus. Mol. Biol. Evol. 22, 2354–2361 (2005).

    CAS  PubMed  Google Scholar 

  14. Papke, R. T., Koenig, J. E., Rodríguez-Valera, F. & Doolittle, W. F. Frequent recombination in a saltern population of Halorubrum. Science 306, 1928–1929 (2004).

    CAS  PubMed  Google Scholar 

  15. Nelson-Sathi, S. et al. Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature 517, 77–80 (2015). This study provides evidence for high bacteria-to-archaea gene transfer at the origin of deeply branching archaeal taxa.

    CAS  PubMed  Google Scholar 

  16. Worrell, V. E., Nagle, D. P., McCarthy, D. & Eisenbraun, A. Genetic transformation system in the archaebacterium Methanobacterium thermoautotrophicum Marburg. J. Bacteriol. 170, 653–656 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Held, N. L., Herrera, A., Cadillo-Quiroz, H. & Whitaker, R. J. CRISPR associated diversity within a population of Sulfolobus islandicus. PLoS ONE 5, e12988 (2010).

    PubMed  PubMed Central  Google Scholar 

  18. Schleper, C., Holz, I., Janekovic, D., Murphy, J. & Zillig, W. A multicopy plasmid of the extremely thermophilic archaeon Sulfolobus effects its transfer to recipients by mating. J. Bacteriol. 177, 4417–4426 (1995). This study describes the first observation of an archaeal conjugative plasmid.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Naor, A., Lapierre, P., Mevarech, M., Papke, R. T. & Gophna, U. Low species barriers in halophilic archaea and the formation of recombinant hybrids. Curr. Biol. 22, 1444–1448 (2012).

    CAS  PubMed  Google Scholar 

  20. Naor, A. & Gophna, U. Cell fusion and hybrids in Archaea: prospects for genome shuffling and accelerated strain development for biotechnology. Bioengineered 4, 9–8 (2013).

    Google Scholar 

  21. van Wolferen, M., Wagner, A., van der Does, C. & Albers, S.-V. The archaeal Ced system imports DNA. Proc. Natl Acad. Sci. USA 113, 2496–2501 (2016). This study, for the first time, describes proteins that are involved in DNA transport machinery in archaea.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Brochier-Armanet, C. et al. Complete-fosmid and fosmid-end sequences reveal frequent horizontal gene transfers in marine uncultured planktonic archaea. ISME J. 5, 1291–1302 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Deschamps, P., Zivanovic, Y., Moreira, D., Rodriguez-Valera, F. & López-García, P. Pangenome evidence for extensive interdomain horizontal transfer affecting lineage core and shell genes in uncultured planktonic Thaumarchaeota and Euryarchaeota. Genome Biol. Evol. 6, 1549–1563 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. López-García, P., Zivanovic, Y., Deschamps, P. & Moreira, D. Bacterial gene import and mesophilic adaptation in archaea. Nat. Rev. Microbiol. 13, 447–456 (2015).

    PubMed  PubMed Central  Google Scholar 

  25. Allen, M. A. et al. The genome sequence of the psychrophilic archaeon, Methanococcoides burtonii: the role of genome evolution in cold adaptation. ISME J. 3, 1012–1035 (2009).

    CAS  PubMed  Google Scholar 

  26. Deppenmeier, U. et al. The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J. Mol. Microbiol. Biotechnol. 4, 453–461 (2002).

    CAS  PubMed  Google Scholar 

  27. Raymann, K., Forterre, P., Brochier-Armanet, C. & Gribaldo, S. Global phylogenomic analysis disentangles the complex evolutionary history of DNA replication in archaea. Genome Biol. Evol. 6, 192–212 (2014).

    PubMed  PubMed Central  Google Scholar 

  28. Wang, J. C. DNA topoisomerases. Annu. Rev. Biochem. 65, 635–692 (1996).

    CAS  PubMed  Google Scholar 

  29. López-García, P. DNA supercoiling and temperature adaptation: a clue to early diversification of life? J. Mol. Evol. 49, 439–452 (1999).

    PubMed  Google Scholar 

  30. Groussin, M. & Gouy, M. Adaptation to environmental temperature is a major determinant of molecular evolutionary rates in archaea. Mol. Biol. Evol. 28, 2661–2674 (2011).

    CAS  PubMed  Google Scholar 

  31. Williams, D., Gogarten, J. P. & Papke, R. T. Quantifying homologous replacement of loci between haloarchaeal species. Genome Biol. Evol. 4, 1223–1244 (2012).

    PubMed  PubMed Central  Google Scholar 

  32. DeMaere, M. Z. et al. High level of intergenera gene exchange shapes the evolution of haloarchaea in an isolated Antarctic lake. Proc. Natl Acad. Sci. USA 110, 16939–16944 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Papke, R. T. et al. Horizontal gene transfer, dispersal and haloarchaeal speciation. Life (Basel) 5, 1405–1426 (2015).

    CAS  Google Scholar 

  34. Held, N. L., Herrera, A. & Whitaker, R. J. Reassortment of CRISPR repeat-spacer loci in Sulfolobus islandicus. Environ. Microbiol. 11, 3065–3076 (2013).

    Google Scholar 

  35. Krause, D. J. & Whitaker, R. J. Inferring speciation processes from patterns of natural variation in microbial genomes. Syst. Biol. 64, 926–935 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Reno, M. L., Held, N. L., Fields, C. J., Burke, P. V. & Whitaker, R. J. Biogeography of the Sulfolobus islandicus pan-genome. Proc. Natl Acad. Sci. USA 106, 8605–8610 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Brock, T. D., Brock, K. M., Belly, R. T. & Weiss, R. L. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch. Mikrobiol. 84, 54–68 (1972).

    CAS  PubMed  Google Scholar 

  38. Naor, A., Lazary, R., Barzel, A., Papke, R. T. & Gophna, U. In vivo characterization of the homing endonuclease within the polB gene in the halophilic archaeon Haloferax volcanii. PLoS ONE 6, e15833 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Grogan, D. W. Exchange of genetic markers at extremely high temperatures in the archaeon Sulfolobus acidocaldarius. J. Bacteriol. 178, 3207–3211 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ghane, F. & Grogan, D. W. Chromosomal marker exchange in the thermophilic archaeon Sulfolobus acidocaldarius: physiological and cellular aspects. Microbiology 144, 1649–1657 (1998).

    CAS  PubMed  Google Scholar 

  41. Fröls, S. et al. UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation. Mol. Microbiol. 70, 938–952 (2008).

    PubMed  Google Scholar 

  42. Ajon, M. et al. UV-inducible DNA exchange in hyperthermophilic archaea mediated by type IV pili. Mol. Microbiol. 82, 807–817 (2011).

    CAS  PubMed  Google Scholar 

  43. Chen, I. & Dubnau, D. DNA uptake during bacterial transformation. Nat. Rev. Microbiol. 2, 241–249 (2004).

    CAS  PubMed  Google Scholar 

  44. Salmond, G. P. C. & Fineran, P. C. A century of the phage: past, present and future. Nat. Rev. Microbiol. 13, 777–786 (2015).

    CAS  PubMed  Google Scholar 

  45. Guglielmini, J. et al. Key components of the eight classes of type IV secretion systems involved in bacterial conjugation or protein secretion. Nucleic Acids Res. 42, 5715–5727 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gaudin, M. et al. Hyperthermophilic archaea produce membrane vesicles that can transfer DNA. Env. Microbiol. Rep. 5, 109–116 (2013). This paper describes, for the first time, the transfer of archaeal plasmids through vesicles.

    CAS  Google Scholar 

  47. Bertani, G. & Baresi, L. Genetic transformation in the methanogen Methanococcus voltae PS. J. Bacteriol. 169, 2730–2738 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sato, T., Fukui, T., Atomi, H. & Imanaka, T. Targeted gene disruption by homologous recombination in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J. Bacteriol. 185, 210–220 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Waege, I., Schmid, G., Thumann, S., Thomm, M. & Hausner, W. Shuttle vector-based transformation system for Pyrococcus furiosus. Appl. Env. Microbiol. 76, 3308–3313 (2010).

    CAS  Google Scholar 

  50. Grogan, D. W. & Stengel, K. R. Recombination of synthetic oligonucleotides with prokaryotic chromosomes: substrate requirements of the Escherichia coli /λRed and Sulfolobus acidocaldarius recombination systems. Mol. Microbiol. 69, 1255–1265 (2008).

    CAS  PubMed  Google Scholar 

  51. Patel, G. B., Nash, J. H., Agnew, B. J. & Sprott, G. D. Natural and electroporation-mediated transformation of Methanococcus voltae protoplasts. Appl. Environ. Microbiol. 60, 903–907 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sato, T., Fukui, T., Atomi, H. & Imanaka, T. Improved and versatile transformation system allowing multiple genetic manipulations of the hyperthermophilic archaeon Thermococcus kodakaraensis. Appl. Env. Microbiol. 71, 3889–3899 (2005).

    CAS  Google Scholar 

  53. Lipscomb, G. L. et al. Natural competence in the hyperthermophilic archaeon Pyrococcus furiosus facilitates genetic manipulation: construction of markerless deletions of genes encoding the two cytoplasmic hydrogenases. Appl. Env. Microbiol. 77, 2232–2238 (2011).

    CAS  Google Scholar 

  54. Averhoff, B. Shuffling genes around in hot environments: the unique DNA transporter of Thermus thermophilus. FEMS Microbiol. Rev. 33, 611–626 (2009).

    CAS  PubMed  Google Scholar 

  55. Claverys, J.-P., Martin, B. & Polard, P. The genetic transformation machinery: composition, localization, and mechanism. FEMS Microbiol. Rev. 33, 643–656 (2009).

    CAS  PubMed  Google Scholar 

  56. Gould, S. B. et al. Bacterial vesicle secretion and the evolutionary origin of the eukaryotic endomembrane system. Trends Microbiol. 24, 525–534 (2016).

    CAS  PubMed  Google Scholar 

  57. Soler, N., Marguet, E., Verbavatz, J.-M. & Forterre, P. Virus-like vesicles and extracellular DNA produced by hyperthermophilic archaea of the order Thermococcales. Res. Microbiol. 159, 390–399 (2008).

    CAS  PubMed  Google Scholar 

  58. Choi, D. H. et al. Extracellular vesicles of the hyperthermophilic archaeon Thermococcus onnurineus NA1 T. Appl. Environ. Microbiol. 81, 4591–4599 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Soler, N., Gaudin, M., Marguet, E. & Forterre, P. Plasmids, viruses and virus-like membrane vesicles from Thermococcales. Biochem. Soc. Trans. 39, 36–44 (2011).

    CAS  PubMed  Google Scholar 

  60. Gaudin, M. et al. Extracellular membrane vesicles harbouring viral genomes. Environ. Microbiol. 16, 1167–1175 (2014).

    CAS  PubMed  Google Scholar 

  61. Santangelo, T. J., Cubonová, L. & Reeve, J. N. Shuttle vector expression in Thermococcus kodakaraensis: contributions of cis elements to protein synthesis in a hyperthermophilic archaeon. Appl. Env. Microbiol. 74, 3099–3104 (2008).

    CAS  Google Scholar 

  62. Shetty, A., Chen, S., Tocheva, E. I., Jensen, G. J. & Hickey, W. J. Nanopods: a new bacterial structure and mechanism for deployment of outer membrane vesicles. PLoS ONE 6, e20725 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Marguet, E. et al. Membrane vesicles, nanopods and/or nanotubes produced by hyperthermophilic archaea of the genus Thermococcus. Biochem. Soc. Trans. 41, 436–442 (2013).

    CAS  PubMed  Google Scholar 

  64. Ellen, A. F. et al. Proteomic analysis of secreted membrane vesicles of archaeal Sulfolobus species reveals the presence of endosome sorting complex components. Extremophiles 13, 67–79 (2009).

    CAS  PubMed  Google Scholar 

  65. Prangishvili, D. et al. Sulfolobicins, specific proteinaceous toxins produced by strains of the extremely thermophilic archaeal genus Sulfolobus. J. Bacteriol. 182, 2985–2988 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Mashburn-Warren, L. M. & Whiteley, M. Special delivery: vesicle trafficking in prokaryotes. Mol. Microbiol. 61, 839–846 (2006).

    CAS  PubMed  Google Scholar 

  67. Kulp, A. & Kuehn, M. J. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64, 163–184 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Deatherage, B. L. & Cookson, B. T. Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect. Immun. 80, 1948–1957 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Nieuwland, R. & Sturk, A. Why do cells release vesicles? Thromb. Res. 125 (Suppl.), S49–S51 (2010).

    CAS  PubMed  Google Scholar 

  70. Rice, G. et al. Viruses from extreme thermal environments. Proc. Natl Acad. Sci. USA 98, 13341–13345 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Witte, A. et al. Characterization of Natronobacterium magadii phage ΦCh1, a unique archaeal phage containing DNA and RNA. Mol. Microbiol. 23, 603–616 (1997).

    CAS  PubMed  Google Scholar 

  72. Liu, Y. et al. Identification and characterization of SNJ2, the first temperate pleolipovirus integrating into the genome of the SNJ1-lysogenic archaeal strain. Mol. Microbiol. 98, 1002–1020 (2015).

    CAS  PubMed  Google Scholar 

  73. Krupovic, M., Spang, A., Gribaldo, S., Forterre, P. & Schleper, C. A thaumarchaeal provirus testifies for an ancient association of tailed viruses with archaea. Biochem. Soc. Trans. 39, 82–88 (2011).

    CAS  PubMed  Google Scholar 

  74. Schleper, C., Kubo, K. & Zillig, W. The particle SSV1 from the extremely thermophilic archaeon Sulfolobus is a virus: demonstration of infectivity and of transfection with viral DNA. Proc. Natl Acad. Sci. USA 89, 7645–7649 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Quemin, E. R. J. et al. Eukaryotic-like virus budding in Archaea. mBio 7, e01439-16 (2016).

    PubMed  PubMed Central  Google Scholar 

  76. Arnold, H. P. et al. The genetic element pSSVx of the extremely thermophilic crenarchaeon Sulfolobus is a hybrid between a plasmid and a virus. Mol. Microbiol. 34, 217–226 (1999).

    CAS  PubMed  Google Scholar 

  77. Wang, Y. et al. A novel Sulfolobus non-conjugative extrachromosomal genetic element capable of integration into the host genome and spreading in the presence of a fusellovirus. Virology 363, 124–133 (2007).

    CAS  PubMed  Google Scholar 

  78. Iro, M. et al. The lysogenic region of virus φCh1: identification of a repressor-operator system and determination of its activity in halophilic Archaea. Extremophiles 11, 383–396 (2007).

    CAS  PubMed  Google Scholar 

  79. Mei, Y. et al. Induction and preliminary characterization of a novel halophage SNJ1 from lysogenic Natrinema sp. F5. Can. J. Microbiol. 53, 1106–1110 (2007).

    CAS  PubMed  Google Scholar 

  80. Schnabel, H. et al. Halobacterium halobium phage øH. EMBO J. 1, 87–92 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang, Z. et al. Temperate membrane-containing halophilic archaeal virus SNJ1 has a circular dsDNA genome identical to that of plasmid pHH205. Virology 434, 233–241 (2012).

    CAS  PubMed  Google Scholar 

  82. Prangishvili, D., Garrett, R. A. & Koonin, E. V. Evolutionary genomics of archaeal viruses: unique viral genomes in the third domain of life. Virus Res. 117, 52–67 (2006).

    CAS  PubMed  Google Scholar 

  83. Pina, M., Bize, A., Forterre, P. & Prangishvili, D. The archeoviruses. FEMS Microbiol. Rev. 35, 1035–1054 (2011).

    CAS  PubMed  Google Scholar 

  84. Iranzo, J., Koonin, E. V., Prangishvili, D. & Krupovic, M. Bipartite network analysis of the archaeal virosphere: evolutionary connections between viruses and capsidless mobile elements. J. Virol. 90, 11043–11055 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bertani, G. Transduction-like gene transfer in the methanogen Methanococcus voltae. J. Bacteriol. 181, 2992–3002 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Eiserling, F., Bertani, G., Pushkin, A. & Gingery, M. Bacteriophage-like particles associated with the gene transfer agent of Methanococcus voltae PS. J. Gen. Virol. 80, 3305–3308 (1999).

    CAS  PubMed  Google Scholar 

  87. Lang, A. S., Zhaxybayeva, O. & Beatty, J. T. Gene transfer agents: phage-like elements of genetic exchange. Nat. Rev. Microbiol. 10, 472–482 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Spang, A. et al. The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environ. Microbiol. 14, 3122–3145 (2012).

    CAS  PubMed  Google Scholar 

  89. Redder, P. & Garrett, R. A. Mutations and rearrangements in the genome of Sulfolobus solfataricus P2. J. Bacteriol. 188, 4198–4206 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. She, Q., Peng, X., Zillig, W. & Garrett, R. A. Gene capture in archaeal chromosomes. Nature 409, 478 (2001).

    CAS  PubMed  Google Scholar 

  91. Gudbergsdottir, S. et al. Dynamic properties of the Sulfolobus CRISPR/Cas and CRISPR/Cmr systems when challenged with vector-borne viral and plasmid genes and protospacers. Mol. Microbiol. 79, 35–49 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Aagaard, C., Dalgaard, J. Z. & Garrett, R. A. Intercellular mobility and homing of an archaeal rDNA intron confers a selective advantage over intron- cells of Sulfolobus acidocaldarius. Proc. Natl Acad. Sci. USA 92, 12285–12289 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Cavalli, L. L., Lederberg, J. & Lederberg, E. M. An infective factor controlling sex compatibility in Bacterium coli. J. Gen. Microbiol. 8, 89–103 (1953).

    CAS  PubMed  Google Scholar 

  94. Alvarez-Martinez, C. E. & Christie, P. J. Biological diversity of prokaryotic type IV secretion systems. Microbiol. Mol. Biol. Rev. 73, 775–808 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Cruz, F. De et al. Towards an integrated model of bacterial conjugation. FEMS Microbiol. Rev. 39, 81–95 (2014).

    PubMed  Google Scholar 

  96. Christie, P. J., Whitaker, N. & González-Rivera, C. Mechanism and structure of the bacterial type IV secretion systems. Biochim. Biophys. Acta 1843, 1578–1591 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Chandran Darbari, V. & Waksman, G. Structural biology of bacterial type IV secretion systems. Annu. Rev. Biochem. 84, 603–629 (2015).

    CAS  PubMed  Google Scholar 

  98. Ilangovan, A., Connery, S. & Waksman, G. Structural biology of the Gram-negative bacterial conjugation systems. Trends Microbiol. 23, 301–310 (2015).

    CAS  PubMed  Google Scholar 

  99. Lacroix, B. & Citovsky, V. Transfer of DNA from bacteria to eukaryotes. mBio 7, e00863-16 (2016).

    PubMed  PubMed Central  Google Scholar 

  100. Prangishvili, D. et al. Conjugation in archaea: frequent occurrence of conjugative plasmids in Sulfolobus. Plasmid 40, 190–202 (1998).

    CAS  PubMed  Google Scholar 

  101. Stedman, K. M. et al. pING family of conjugative plasmids from the extremely thermophilic archaeon Sulfolobus islandicus: insights into recombination and conjugation in Crenarchaeota. J. Bacteriol. 182, 7014–7020 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Greve, B., Jensen, S., Brugger, K., Zillig, W. & Garrett, R. A. Genomic comparison archaeal conjugative plasmids from Sulfolobus. Archaea 1, 231–239 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Erauso, G., Stedman, K. M., van den Werken, H. J. G., Zillig, W. & van der Oost, J. Two novel conjugative plasmids from a single strain of Sulfolobus. Microbiology 152, 1951–1968 (2006).

    CAS  PubMed  Google Scholar 

  104. Basta, T., Smyth, J., Forterre, P., Prangishvili, D. & Peng, X. Novel archaeal plasmid pAH1 and its interactions with the lipothrixvirus AFV1. Mol. Microbiol. 71, 23–34 (2009).

    CAS  PubMed  Google Scholar 

  105. She, Q., Shen, B. & Chen, L. Archaeal integrases and mechanisms of gene capture. Biochem. Soc. Trans. 32, 222–226 (2004).

    CAS  PubMed  Google Scholar 

  106. She, Q. et al. Genetic profile of pNOB8 from Sulfolobus: the first conjugative plasmid from an archaeon. Extremophiles 2, 417–425 (1998).

    CAS  PubMed  Google Scholar 

  107. Wang, H., Peng, N., Shah, S. A., Huang, L. & She, Q. Archaeal extrachromosomal genetic elements. Microbiol. Mol. Biol. Rev. 79, 117–152 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Erdmann, S. & Garrett, R. A. Selective and hyperactive uptake of foreign DNA by adaptive immune systems of an archaeon via two distinct mechanisms. Mol. Microbiol. 85, 1044–1056 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Garrett, R. et al. CRISPR–Cas adaptive immune systems of the sulfolobales: unravelling their complexity and diversity. Life 5, 783–817 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Liu, G., She, Q. & Garrett, R. A. Diverse CRISPR–Cas responses and dramatic cellular DNA changes and cell death in pKEF9-conjugated Sulfolobus species. Nucleic Acids Res. 44, 4233–4242 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Schumacher, M. A. et al. Structures of archaeal DNA segregation machinery reveal bacterial and eukaryotic linkages. Science 349, 1120–1124 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Mevarech, M. & Werczberger, R. Genetic transfer in Halobacterium volcanii. J. Bacteriol. 162, 461–462 (1985). This study is the first to show gene transfer in archaea using auxotrophic mutants of H. volcanii.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Fröls, S., Dyall-Smith, M. & Pfeifer, F. Biofilm formation by haloarchaea. Environ. Microbiol. 14, 3159–3174 (2012).

    PubMed  Google Scholar 

  114. Chimileski, S., Franklin, M. J. & Papke, R. T. Biofilms formed by the archaeon Haloferax volcanii exhibit cellular differentiation and social motility, and facilitate horizontal gene transfer. BMC Biol. 12, 65 (2014).

    PubMed  PubMed Central  Google Scholar 

  115. Rosenshine, I., Tchelet, R. & Mevarech, M. The mechanism of DNA transfer in the mating system of an archaebacterium. Science 245, 1387–1389 (1989).

    CAS  PubMed  Google Scholar 

  116. Fröls, S. et al. Response of the hyperthermophilic archaeon Sulfolobus solfataricus to UV damage. J. Bacteriol. 189, 8708–8718 (2007).

    PubMed  PubMed Central  Google Scholar 

  117. Götz, D. et al. Responses of hyperthermophilic crenarchaea to UV irradiation. Genome Biol. 8, R220 (2007).

    PubMed  PubMed Central  Google Scholar 

  118. Fröls, S., White, M. F. & Schleper, C. Reactions to UV damage in the model archaeon Sulfolobus solfataricus. Biochem. Soc. Trans. 37, 36–41 (2009).

    PubMed  Google Scholar 

  119. Koerdt, A., Gödeke, J., Berger, J., Thormann, K. M. & Albers, S.-V. Crenarchaeal biofilm formation under extreme conditions. PLoS ONE 5, e14104 (2010).

    PubMed  PubMed Central  Google Scholar 

  120. Beijersbergen, A., Smith, S. J. & Hooykaas, P. J. Localization and topology of VirB proteins of Agrobacterium tumefaciens. Plasmid 32, 212–218 (1994).

    CAS  PubMed  Google Scholar 

  121. Whitaker, R. J., Grogan, D. W. & Taylor, J. W. Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301, 976–978 (2003). This paper describes the role and importance of geographical barriers in the evolution of hyperthermophilic archaea.

    CAS  PubMed  Google Scholar 

  122. Bauer, T., Hammes, W. P., Haase, N. U. & Hertel, C. Effect of food components and processing parameters on DNA degradation in food. Environ. Biosafety Res. 3, 215–223 (2004).

    CAS  PubMed  Google Scholar 

  123. Tan, Z.-J. & Chen, S.-J. Nucleic acid helix stability: effects of salt concentration, cation valence and size, and chain length. Biophys. J. 90, 1175–1190 (2006).

    CAS  PubMed  Google Scholar 

  124. Achtman, M., Kennedy, N. & Skurray, R. Cell–cell interactions in conjugating Escherichia coli: role of traT protein in surface exclusion. Proc. Natl Acad. Sci. USA 74, 5104–5108 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Marraffini, L. A. & Sontheimer, E. J. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat. Rev. Genet. 11, 181–190 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Rath, D., Amlinger, L., Rath, A. & Lundgren, M. The CRISPR–Cas immune system: biology, mechanisms and applications. Biochimie 117, 119–128 (2015).

    CAS  PubMed  Google Scholar 

  127. Mruk, I. & Kobayashi, I. To be or not to be: regulation of restriction–modification systems and other toxin–antitoxin systems. Nucleic Acids Res. 42, 70–86 (2014).

    CAS  PubMed  Google Scholar 

  128. Loenen, W. A. M., Dryden, D. T. F., Raleigh, E. A., Wilson, G. G. & Murray, N. E. Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res. 42, 3–19 (2014).

    CAS  PubMed  Google Scholar 

  129. Oliveira, P. H., Touchon, M. & Rocha, E. P. C. The interplay of restriction–modification systems with mobile genetic elements and their prokaryotic hosts. Nucleic Acids Res. 42, 10618–10631 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Yamaguchi, Y., Park, J.-H. & Inouye, M. Toxin–antitoxin systems in bacteria and archaea. Annu. Rev. Genet. 45, 61–79 (2011).

    CAS  PubMed  Google Scholar 

  131. Hazan, R. & Engelberg-Kulka, H. Escherichia coli mazEF-mediated cell death as a defense mechanism that inhibits the spread of phage P1. Mol. Genet. Genomics 272, 227–234 (2004).

    CAS  PubMed  Google Scholar 

  132. Engelberg-Kulka, H., Amitai, S., Kolodkin-Gal, I. & Hazan, R. Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet. 2, e135 (2006).

    PubMed  PubMed Central  Google Scholar 

  133. León-Sobrino, C., Kot, W. P. & Garrett, R. A. Transcriptome changes in STSV2-infected Sulfolobus islandicus REY15A undergoing continuous CRISPR spacer acquisition. Mol. Microbiol. 99, 719–728 (2016).

    PubMed  Google Scholar 

  134. Shah, S. A. & Garrett, R. A. in Prokaryotic Toxin–Antitoxins (ed. Gerders, K.) 225–238 (Springer Berlin Heidelberg, 2013).

    Google Scholar 

  135. Zawadzki, P., Roberts, M. S. & Cohan, F. M. The log-linear relationship between sexual isolation and sequence divergence in Bacillus transformation is robust. Genetics 140, 917–932 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Majewski, J. & Cohan, F. M. Adapt globally, act locally: the effect of selective sweeps on bacterial sequence diversity. Genetics 152, 1459–1474 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Wolf, Y. I., Rogozin, I. B., Kondrashov, A. S. & Koonin, E. V. Genome alignment, evolution of prokaryotic genome organization, and prediction of gene function using genomic context. Genome Res. 11, 356–372 (2001).

    CAS  PubMed  Google Scholar 

  138. Majewski, J., Zawadzki, P., Pickerill, P., Cohan, F. M. & Dowson, C. G. Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. J. Bacteriol. 182, 1016–1023 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Datta, A., Adjiri, A., New, L., Crouse, G. F. & Jinks Robertson, S. Mitotic crossovers between diverged sequences are regulated by mismatch repair proteins in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 1085–1093 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Eppley, J. M., Tyson, G. W., Getz, W. M. & Banfield, J. F. Genetic exchange across a species boundary in the archaeal genus Ferroplasma. Genetics 177, 407–416 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Krause, D. J., Didelot, X., Cadillo-Quiroz, H. & Whitaker, R. J. Recombination shapes genome architecture in an organism from the archaeal domain. Genome Biol. Evol. 6, 170–178 (2014).

    PubMed  PubMed Central  Google Scholar 

  142. Ambur, O.-H., Engelstadter, J., Johnsen, P., Miller, E. & Rozen, D. Steady at the wheel: conservative sex and the benefits of bacterial transformation. Phil. Trans. R. Soc. B. Biol. Sci. 371, 20150528 (2016).

    Google Scholar 

  143. Rocha, E. P. C. Using sex to cure the genome. PLoS Biol. 14, 1–7 (2016).

    Google Scholar 

  144. Mell, J. C. & Redfield, R. J. Natural competence and the evolution of DNA uptake specificity. J. Bacteriol. 196, 1471–1483 (2014).

    PubMed  PubMed Central  Google Scholar 

  145. Johnston, C., Martin, B., Fichant, G., Polard, P. & Claverys, J.-P. Bacterial transformation: distribution, shared mechanisms and divergent control. Nat. Rev. Microbiol. 12, 181–196 (2014).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R.J.W. and D.J.K. acknowledge funding support from the US National Science Foundaion (NSF; grant DEB #1355171) and NASA Exobiology and Evolutionary Biology (grant NNX09AM92G). A.W., M.v.W. and J.H. were supported by a European Research Council (ERC) starting grant (grant ARCHAELLUM, 311523). J.H. received further support from the CRC746 (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja-Verena Albers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

TACK superphylum

A recently proposed superphylum that comprises the Thaumarchaeota, Aigarchaeota, Crenarchaeota and Korarchaeota phyla.

Asgard superphylum

A recently described superphylum that includes the proposed Lokiarchaeota, Odinarchaeota, Thorarchaeota and Heimdallarchaeota phyla. Asgardarchaeota encode many proteins that were previously suspected to be specific for eukaryotes.

DPANN superphylum

A proposed monophyletic and deep-branching group of mainly hyperthermophilic archaea that includes the Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota and Nanohaloarchaeota phyla.

Heterotrophs

Organisms that produce complex organic compounds from organic carbon.

Autotrophs

Organisms that produce complex organic compounds from inorganic material using light energy (photosynthesis) or chemical energy (chemosynthesis).

Mesophilic archaea

Archaea that grow at temperatures ranging from 20–45 °C.

Type IV secretion system

(T4SS). A secretion system found in many bacteria and some archaea that is involved in the secretion of proteins, DNA and protein–DNA complexes into target cells.

Hyperthermophile

An organism that can thrive at temperatures around 80 °C or higher.

Nanopods

Surface structures that project membrane vesicles from the cell. Nanopods have been found in bacteria and members of the Euryarchaeota.

Proviruses

Viral DNAs that are integrated into the genome of its host.

Episomes

Fragments of DNA that exist independently of the chromosome. Examples of episomes include insertion elements, transposons, plasmids and viruses.

Temperate viruses

Viruses that can integrate into the chromosome or lyse the cell following infection or induction.

Gene transfer agents

A bacteriophage-like element in bacteria that mediates horizontal gene transfer by transducing random host DNA into a recipient cell.

CRISPR–Cas

An adaptive immune system in bacteria and archaea that enables the acquisition of resistance to foreign genetic elements, such as plasmids and viruses.

Partitioning system

A system that ensures the correct segregation of chromosomal DNA or plasmids into the daughter cells of a dividing bacterial cell.

Hetero-diploid

Cells that have two different homologous chromosomes.

Type IV pilus

A surface appendage found in many bacteria and archaea. Type IV pili are involved in motility and attachment to surfaces and other cells.

Polytopic membrane protein

A protein that has multiple transmembrane domains.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagner, A., Whitaker, R., Krause, D. et al. Mechanisms of gene flow in archaea. Nat Rev Microbiol 15, 492–501 (2017). https://doi.org/10.1038/nrmicro.2017.41

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro.2017.41

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing