Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides

Key Points

  • Cellulosomes are self-assembled multienzyme complexes that are highly efficient at degrading lignocellulose, mainly owing to common substrate targeting and consequent enzyme proximity that, together, generate substrate channelling and synergistic action.

  • Cellulosomes have been identified in several anaerobic bacteria, with each species presenting its own molecular arrangement with varying degrees of complexity.

  • The prevalence of cellulosomes as rare but central components in various ecosystems reflects the benefits of this enzymatic strategy.

  • The cohesin–dockerin interaction has been studied extensively and is one of the strongest non-covalent interactions known in nature.

  • The composition of cellulosomes is regulated and varied by the nature of the growth substrate (carbon source) of the parent bacterium.

  • The cellulosome, as one of the most efficient machineries for the degradation of plant cell walls, can potentially be used for the large-scale conversion of biomass.

  • Owing to the modular nature of cellulosomes, cellulosomal components have been proposed for use in additional biotechnological applications, notably, together with other affinity systems.

Abstract

Cellulosomes are multienzyme complexes that are produced by anaerobic cellulolytic bacteria for the degradation of lignocellulosic biomass. They comprise a complex of scaffoldin, which is the structural subunit, and various enzymatic subunits. The intersubunit interactions in these multienzyme complexes are mediated by cohesin and dockerin modules. Cellulosome-producing bacteria have been isolated from a large variety of environments, which reflects their prevalence and the importance of this microbial enzymatic strategy. In a given species, cellulosomes exhibit intrinsic heterogeneity, and between species there is a broad diversity in the composition and configuration of cellulosomes. With the development of modern technologies, such as genomics and proteomics, the full protein content of cellulosomes and their expression levels can now be assessed and the regulatory mechanisms identified. Owing to their highly efficient organization and hydrolytic activity, cellulosomes hold immense potential for application in the degradation of biomass and are the focus of much effort to engineer an ideal microorganism for the conversion of lignocellulose to valuable products, such as biofuels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Types of cellulosome system.
Figure 2: Alternative roles of adaptor scaffoldins.
Figure 3: Crystal structure of a Clostridium thermocellum cellulosome fragment.
Figure 4: State-of-the-art designer cellulosome technology.

Similar content being viewed by others

References

  1. Bayer, E. A., Shoham, Y. & Lamed, R. in The Prokaryotes. Prokaryotic Physiology and Biochemistry (eds Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E. & Thomson, F.) 215–265 (Springer, 2013). A comprehensive chapter that details cellulosomes and non-cellulosomal cellulase systems, and the bacteria that produce them.

    Google Scholar 

  2. Wei, H. et al. Natural paradigms of plant cell wall degradation. Curr. Opin. Biotechnol. 20, 330–338 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Albersheim, P., Darvill, A., Roberts, K., Sederoff, R. & Staehelin, A. Plant Cell Walls: From Chemistry to Biology (Garland Science, 2011).

    Google Scholar 

  4. Bayer, E. A., Belaich, J.-P., Shoham, Y. & Lamed, R. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu. Rev. Microbiol. 58, 521–554 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Lamed, R., Setter, E. & Bayer, E. A. Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J. Bacteriol. 156, 828–836 (1983). Together with reference 6, this article represents the first study in which the cellulosome was discovered.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bayer, E. A., Kenig, R. & Lamed, R. Adherence of Clostridium thermocellum to cellulose. J. Bacteriol. 156, 818–827 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Himmel, M. E. et al. Microbial enzyme systems for biomass conversion: emerging paradigms. Biofuels 1, 323–341 (2010).

    Article  CAS  Google Scholar 

  8. Doi, R. H. & Kosugi, A. Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat. Rev. Microbiol. 2, 541–551 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Ding, S.-Y. et al. How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338, 1055–1060 (2012). In this study, advanced real-time imaging techniques demonstrate that free fungal cellulases degrade cell walls by mechanisms that differ considerably from those of cellulosomes.

    Article  CAS  PubMed  Google Scholar 

  10. Resch, M. G. et al. Fungal cellulases and complexed cellulosomal enzymes exhibit synergistic mechanisms in cellulose deconstruction. Energy Environ. Sci. 6, 1858–1867 (2013). The combination of a free-enzyme system and purified cellulosomes was found to act with exceptionally high synergy on cellulosic substrates.

    Article  CAS  Google Scholar 

  11. Bayer, E. A., Morag, E. & Lamed, R. The cellulosome — a treasure-trove for biotechnology. Trends Biotechnol. 12, 379–386 (1994). This is the first paper to propose designer cellulosomes and to define the terms cohesin, dockerin and scaffoldin.

    Article  CAS  PubMed  Google Scholar 

  12. Hamberg, Y. et al. Elaborate cellulosome architecture of Acetivibrio cellulolyticus revealed by selective screening of cohesin–dockerin interactions. PeerJ 2, e636 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Xu, Q. et al. Dramatic performance of Clostridium thermocellum explained by its wide range of cellulase modalities. Sci. Adv. 2, e1501254 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dassa, B. et al. Genome-wide analysis of Acetivibrio cellulolyticus provides a blueprint of an elaborate cellulosome system. BMC Genomics 13, 210 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu, Q. et al. The cellulosome system of Acetivibrio cellulolyticus includes a novel type of adaptor protein and a cell surface anchoring protein. J. Bacteriol. 185, 4548–4557 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Artzi, L. et al. Cellulosomics of the cellulolytic thermophile Clostridium clariflavum. Biotechnol. Biofuels 7, 100 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rincon, M. T. et al. Abundance and diversity of dockerin-containing proteins in the fiber-degrading rumen bacterium, Ruminococcus flavefaciens FD-1. PLoS ONE 5, e12476 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chassard, C., Delmas, E., Robert, C. & Bernalier-Donadille, A. The cellulose-degrading microbial community of the human gut varies according to the presence or absence of methanogens. FEMS Microbiol. Ecol. 74, 205–213 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Ben David, Y. et al. Ruminococcal cellulosome systems from rumen to human. Environ. Microbiol. 17, 3407–3426 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Cann, I., Bernardi, R. C. & Mackie, R. I. Cellulose degradation in the human gut: Ruminococcus champanellensis expands the cellulosome paradigm. Environ. Microbiol. 18, 307–310 (2016).

    Article  PubMed  Google Scholar 

  21. Michel, G. Ruminococcal cellulosomes: molecular Lego to deconstruct microcrystalline cellulose in human gut. Environ. Microbiol. 17, 3113–3115 (2015).

    Article  PubMed  Google Scholar 

  22. Moraïs, S. et al. Enzymatic profiling of cellulosomal enzymes from the human gut bacterium, Ruminococcus champanellensis, reveals a fine-tuned system for cohesin–dockerin recognition. Environ. Microbiol. 18, 542–556 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Pagès, S. et al. Sequence analysis of scaffolding protein CipC and ORFXp, a new cohesin-containing protein in Clostridium cellulolyticum: comparison of various cohesin domains and subcellular localization of ORFXp. J. Bacteriol. 181, 1801–1810 (1999).

    PubMed  PubMed Central  Google Scholar 

  24. Shoseyov, O., Takagi, M., Goldstein, M. A. & Doi, R. H. Primary sequence analysis of Clostridium cellulovorans cellulose binding protein A. Proc. Natl Acad. Sci. USA 89, 3483–3487 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Pohlschröder, M., Leschine, S. B. & Canale-Parola, E. Multicomplex cellulase–xylanase system of Clostridium papyrosolvens C7. J. Bacteriol. 176, 70–76 (1994).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ze, X. et al. Unique organization of extracellular amylases into amylosomes in the resistant starch-utilizing human colonic Firmicutes bacterium Ruminococcus bromii. mBio 6, e01058-15 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ze, X., Duncan, S. H., Louis, P. & Flint, H. J. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 6, 1535–1543 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dassa, B. et al. Rumen cellulosomics: divergent fiber-degrading strategies revealed by comparative genome-wide analysis of six ruminococcal strains. PLoS ONE 9, e99221 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gilmore, S. P., Henske, J. K. & O'Malley, M. Driving biomass breakdown through engineered cellulosomes. Bioengineered 6, 204–208 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ding, S. Y., Bayer, E. A., Steiner, D., Shoham, Y. & Lamed, R. A novel cellulosomal scaffoldin from Acetivibrio cellulolyticus that contains a family 9 glycosyl hydrolase. J. Bacteriol. 181, 6720–6729 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gerngross, U. T., Romaniec, M. P. M., Kobayashi, T., Huskisson, N. S. & Demain, A. L. Sequencing of a Clostridium thermocellum gene (cipA) encoding the cellulosomal SL-protein reveals an unusual degree of internal homology. Mol. Microbiol. 8, 325–334 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Fujino, T., Béguin, P. & Aubert, J. P. Organization of a Clostridium thermocellum gene cluster encoding the cellulosomal scaffolding protein CipA and a protein possibly involved in attachment of the cellulosome to the cell surface. J. Bacteriol. 175, 1891–1899 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Izquierdo, J. A. et al. Complete genome sequence of Clostridium clariflavum DSM 19732. Stand. Genomic Sci. 6, 104–115 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bensoussan, L. et al. Broad phylogeny and functionality of cellulosomal components in the bovine rumen microbiome. Environ. Microbiol. http://dx.doi.org/10.1111/1462-2920.13561 (2016). This study details the ultra-deep sequencing of the fibre-adherent rumen microbiome, which reveals that the cellulosomal machinery is conserved and widely used.Dockerin-containing proteins are not restricted to fibre degradation per se and mediate other catabolic processes as well as microbial interactions.

  35. Bayer, E. A., Coutinho, P. M. & Henrissat, B. Cellulosome-like sequences in Archaeoglobus fulgidus: an enigmatic vestige of cohesin and dockerin domains. FEBS Lett. 463, 277–280 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Peer, A., Smith, S. P., Bayer, E. A., Lamed, R. & Borovok, I. Noncellulosomal cohesin- and dockerin-like modules in the three domains of life. FEMS Microbiol. Lett. 291, 1–16 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Haimovitz, R. et al. Cohesin–dockerin microarray: diverse specificities between two complementary families of interacting protein modules. Proteomics 8, 968–979 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Adams, J. J., Gregg, K., Bayer, E. A., Boraston, A. B. & Smith, S. P. Structural basis of Clostridium perfringens toxin complex formation. Proc. Natl Acad. Sci. USA 105, 12194–12199 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Zverlov, V. V., Klupp, M., Krauss, J. & Schwarz, W. H. Mutations in the scaffoldin gene, cipA, of Clostridium thermocellum with impaired cellulosome formation and cellulose hydrolysis: insertions of a new transposable element, IS1447, and implications for cellulase synergism on crystalline cellulose. J. Bacteriol. 190, 4321–4327 (2008). This study shows that mutants of Clostridium thermocellum that lack the major scaffoldin gene contain the enzymes in free form, and the mutated bacteria exhibit decreased hydrolytic levels on crystalline cellulose substrates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Desvaux, M. Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiol. Rev. 29, 741–764 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Kosugi, A., Murashima, K., Tamaru, Y. & Doi, R. H. Cell-surface-anchoring role of N-terminal surface layer homology domains of Clostridium cellulovorans EngE. J. Bacteriol. 184, 884–888 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rincon, M. T. et al. Unconventional mode of attachment of the Ruminococcus flavefaciens cellulosome to the cell surface. J. Bacteriol. 187, 7569–7578 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lemaire, M., Ohayon, H., Gounon, P., Fujino, T. & Béguin, P. OlpB, a new outer layer protein of Clostridium thermocellum, and binding of its S-layer-like domains to components of the cell envelope. J. Bacteriol. 177, 2451–2459 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rincón, M. T. et al. ScaC, an adaptor protein carrying a novel cohesin that expands the dockerin-binding repertoire of the Ruminococcus flavefaciens 17 cellulosome. J. Bacteriol. 186, 2576–2585 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jindou, S. et al. Conservation and divergence in cellulosome architecture between two strains of Ruminococcus flavefaciens. J. Bacteriol. 188, 7971–7976 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Artzi, L., Morag, E., Barak, Y., Lamed, R. & Bayer, E. A. Clostridium clariflavum: key cellulosome players are revealed by proteomic analysis. mBio 6, e00411-15 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bayer, E. A. & Lamed, R. Ultrastructure of the cell surface cellulosome of Clostridium thermocellum and its interaction with cellulose. J. Bacteriol. 167, 828–836 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lombard, V., Ramulu, H. G., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, 490–495 (2014).

    Article  CAS  Google Scholar 

  49. Eriksson, T., Karlsson, J. & Tjerneld, F. A model explaining declining rate in hydrolysis of lignocellulose substrates with cellobiohydrolase I (Cel7A) and endoglucanase I (Cel7B) of Trichoderma reesei. Appl. Biochem. Biotechnol. 101, 41–60 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Gefen, G., Anbar, M., Morag, E., Lamed, R. & Bayer, E. A. Enhanced cellulose degradation by targeted integration of a cohesin-fused β-glucosidase into the Clostridium thermocellum cellulosome. Proc. Natl Acad. Sci. USA 109, 10298–10303 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Béguin, P., Aubert, J.-P. & Beguin, P. The biological degradation of cellulose. FEMS Microbiol. Rev. 13, 25–58 (1994).

    Article  PubMed  Google Scholar 

  52. Xu, Q., Luo, Y., Ding, S. & Himmel, M. E. Multifunctional enzyme systems for plant cell wall degradation. Compr. Biotechnol. 3, 15–25 (2011).

    Google Scholar 

  53. Morag, E., Halevy, I., Bayer, E. A. & Lamed, R. Isolation and properties of a major cellobiohydrolase from the cellulosome of Clostridium thermocellum. J. Bacteriol. 173, 4155–4162 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ravachol, J. et al. Combining free and aggregated cellulolytic systems in the cellulosome-producing bacterium Ruminiclostridium cellulolyticum. Biotechnol. Biofuels 8, 114 (2015). The study details the transformation of a cellulase gene and its subsequent expression by a cellulosome-producing bacterium. Its integration into the cellulosome induced the release of regular cellulosomal components, notably the exoglucanase Cel48F, thereby impairing the activity of the complex on crystalline cellulose.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ravachol, J., Borne, R., Tardif, C., de Philip, P. & Fierobe, H.-P. Characterization of all family-9 glycoside hydrolases synthesized by the cellulosome-producing bacterium Clostridium cellulolyticum. J. Biol. Chem. 289, 7335–7348 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kang, S., Barak, Y., Lamed, R., Bayer, E. A. & Morrison, M. The functional repertoire of prokaryote cellulosomes includes the serpin superfamily of serine proteinase inhibitors. Mol. Microbiol. 60, 1344–1354 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Levy-Assaraf, M. et al. Crystal structure of an uncommon cellulosome-related protein module from Ruminococcus flavefaciens that resembles papain-like cysteine peptidases. PLoS ONE 8, e56138 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Artzi, L., Morag, E., Shamshoum, M. & Bayer, E. A. Cellulosomal expansin: functionality and incorporation into the complex. Biotechnol. Biofuels 9, 61 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen, C. et al. Integration of bacterial expansin-like proteins into cellulosome promotes the cellulose degradation. Appl. Microbiol. Biotechnol. 100, 2203–2212 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Stahl, S. W. et al. Single-molecule dissection of the high-affinity cohesin–dockerin complex. Proc. Natl Acad. Sci. USA 109, 20431–20436 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Gunnoo, M. et al. Nanoscale engineering of designer cellulosomes. Adv. Mater. 28, 5619–5647 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Valbuena, A. et al. On the remarkable mechanostability of scaffoldins and the mechanical clamp motif. Proc. Natl Acad. Sci. USA 106, 13791–13796 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Bhat, K. & Wood, T. M. The cellulase of the anaerobic bacterium Clostridium thermocellum: isolation, dissociation, and reassociation of the cellulosome. Carbohydr. Res. 227, 293–300 (1992).

    Article  CAS  Google Scholar 

  64. Schoeler, C. et al. Ultrastable cellulosome–adhesion complex tightens under load. Nat. Commun. 5, 5635 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schoeler, C. et al. Mapping mechanical force propagation through biomolecular complexes. Nano Lett. 15, 7370–7376 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xu, Q. et al. Architecture of the Bacteroides cellulosolvens cellulosome: description of a cell surface-anchoring scaffoldin and a family 48 cellulase. J. Bacteriol. 186, 968–977 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Carvalho, A. L. et al. Cellulosome assembly revealed by the crystal structure of the cohesin–dockerin complex. Proc. Natl Acad. Sci. USA 100, 13809–13814 (2003). This study presents, for the first time, the crystal structure of a cohesin–dockerin pair and suggests a dual mode of binding.

    Article  CAS  PubMed  Google Scholar 

  68. Smith, S. P. & Bayer, E. A. Insights into cellulosome assembly and dynamics: from dissection to reconstruction of the supramolecular enzyme complex. Curr. Opin. Struct. Biol. 23, 686–694 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Adams, J. J., Pal, G., Jia, Z. & Smith, S. P. Mechanism of bacterial cell-surface attachment revealed by the structure of cellulosomal type II cohesin–dockerin complex. Proc. Natl Acad. Sci. USA 103, 305–310 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Salama-Alber, O. et al. Atypical cohesin–dockerin complex responsible for cell surface attachment of cellulosomal components: binding fidelity, promiscuity, and structural buttresses. J. Biol. Chem. 288, 16827–16838 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pagès, S. et al. Species-specificity of the cohesin–dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: prediction of specificity determinants of the dockerin domain. Proteins 29, 517–527 (1997).

    Article  PubMed  Google Scholar 

  72. Chen, C. et al. Revisiting the NMR solution structure of the Cel48S type-I dockerin module from Clostridium thermocellum reveals a cohesin-primed conformation. J. Struct. Biol. 188, 188–193 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Nash, M. A., Smith, S. P., Fontes, C. & Bayer, E. A. Single versus dual-binding conformations in cellulosomal cohesin–dockerin complexes. Curr. Opin. Struct. Biol. 40, 89–96 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Currie, M. A. et al. Scaffoldin conformation and dynamics revealed by a ternary complex from the Clostridium thermocellum. J. Biol. Chem. 287, 26953–26961 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Morag, E. et al. Expression, purification and characterization of the cellulose-binding domain of the scaffoldin subunit from the cellulosome of Clostridium thermocellum. Appl. Environ. Microbiol. 61, 1980–1986 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Poole, D. M. et al. Identification of the cellulose binding domain of the cellulosome subunit S1 from Clostridium thermocellum. FEMS Microbiol. Lett. 99, 181–186 (1992).

    Article  CAS  Google Scholar 

  77. Simpson, P. J., Xie, H., Bolam, D. N., Gilbert, H. J. & Williamson, M. P. The structural basis for the ligand specificity of family 2 carbohydrate-binding modules. J. Biol. Chem. 275, 41137–41142 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Hammel, M. et al. Structural basis of cellulosome efficiency explored by small angle X-ray scattering. J. Biol. Chem. 280, 38562–38568 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Han, S. O., Yukawa, H., Inui, M. & Doi, R. H. Regulation of expression of cellulosomal cellulase and hemicellulase genes in Clostridium cellulovorans. J. Bacteriol. 185, 6067–6075 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dror, T. W., Rolider, A., Bayer, E. A., Lamed, R. & Shoham, Y. Regulation of expression of scaffoldin-related genes in Clostridium thermocellum. J. Bacteriol. 185, 5109–5116 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Raman, B. et al. Impact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS ONE 4, e5271 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dykstra, A. B. et al. Development of a multipoint quantitation method to simultaneously measure enzymatic and structural components of the Clostridium thermocellum cellulosome protein complex. J. Proteome Res. 13, 692–701 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Dror, T. W. et al. Regulation of the cellulosomal celS (Cel48A) gene of Clostridium thermocellum is growth-rate dependent. J. Bacteriol. 185, 3042–3048 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Muñoz-Gutiérrez, I. et al. Decoding biomass-sensing regulons of Clostridium thermocellum alternative sigma-I factors in a heterologous Bacillus subtilis host system. PLoS ONE 11, e0146316 (2015).

    Article  Google Scholar 

  85. Kahel-Raifer, H. et al. The unique set of putative membrane-associated anti-σ factors in Clostridium thermocellum suggests a novel extracellular carbohydrate-sensing mechanism involved in gene regulation. FEMS Microbiol. Lett. 308, 84–93 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Nataf, Y. et al. Clostridium thermocellum cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factors. Proc. Natl Acad. Sci. USA 107, 18646–18651 (2010). Together with reference 85, this article proposes an extensive regulatory system that enables cellulosome-producing bacteria to sense the status of impermeant polysaccharides in the external milieu.

    Article  CAS  PubMed  Google Scholar 

  87. Xu, J. et al. A genomic view of the human–Bacteroides thetaiotaomicron symbiosis. Science 299, 2074–2076 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Xu, C. et al. Structure and regulation of the cellulose degradome in Clostridium cellulolyticum. Biotechnol. Biofuels 6, 73 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Xu, C. et al. Cellulosome stoichiometry in Clostridium cellulolyticum is regulated by selective RNA processing and stabilization. Nat. Commun. 6, 6900 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Arfi, Y., Shamshoum, M., Rogachev, I., Peleg, Y. & Bayer, E. A. Integration of bacterial lytic polysaccharide monooxygenases into designer cellulosomes promotes enhanced cellulose degradation. Proc. Natl Acad. Sci. USA 111, 9109–9114 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Davidi, L. et al. Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome. Proc. Natl Acad. Sci. USA 113, 10854–10859 (2016). This study shows the integration of a lignin-active enzyme into a designer cellulosome, which leads to the enhanced degradation of plant-derived cellulose and xylan. Together with reference 90, this article shows that oxidative enzymes can be incorporated into cellulosomes.

    Article  CAS  PubMed  Google Scholar 

  92. Stern, J., Moraïs, S., Lamed, R. & Bayer, E. A. Adaptor scaffoldins: an original strategy for extended designer cellulosomes, inspired from nature. mBio 7, e00083-16 (2016). This study details a recent breakthrough in designer cellulosome technology, in which an adaptor scaffoldin was used to increase the number of enzymes that can be integrated into an artificial designer cellulosome.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Moraïs, S. et al. Enhanced cellulose degradation by nano-complexed enzymes: synergism between a scaffold-linked exoglucanase and a free endoglucanase. J. Biotechnol. 147, 205–211 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Mitsuzawa, S. et al. The rosettazyme: a synthetic cellulosome. J. Biotechnol. 143, 139–144 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Blanchette, C., Lacayo, C. I., Fischer, N. O., Hwang, M. & Thelen, M. P. Enhanced cellulose degradation using cellulase–nanosphere complexes. PLoS ONE 7, e42116 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kim, D.-M. et al. A nanocluster design for the construction of artificial cellulosomes. Catal. Sci. Technol. 2, 499 (2012).

    Article  CAS  Google Scholar 

  97. Mori, Y. et al. Aligning an endoglucanase Cel5A from Thermobifida fusca on a DNA scaffold: potent design of an artificial cellulosome. Chem. Commun. (Camb.). 49, 6971–6973 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Biswas, R., Zheng, T., Olson, D. G., Lynd, L. R. & Guss, A. M. Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum. Biotechnol. Biofuels 8, 20 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Anderson, T. D. et al. Assembly of minicellulosomes on the surface of Bacillus subtilis. Appl. Environ. Microbiol. 77, 4849–4858 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ou, J. & Cao, Y. Incorporation of Nasutitermes takasagoensis endoglucanase into cell surface-displayed minicellulosomes in Pichia pastoris X33. J. Microbiol. Biotechnol. 24, 1178–1188 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Moraïs, S., Shterzer, N., Lamed, R., Bayer, E. A. & Mizrahi, I. A combined cell-consortium approach for lignocellulose degradation by specialized Lactobacillus plantarum cells. Biotechnol. Biofuels 7, 112 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Garvey, M., Klose, H., Fischer, R., Lambertz, C. & Commandeur, U. Cellulases for biomass degradation: comparing recombinant cellulase expression platforms. Trends Biotechnol. 31 581–593 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Willson, B. J. et al. Biotechnology for biofuels production of a functional cell wall-anchored minicellulosome by recombinant clostridium acetobutylicum ATCC 824. Biotechnol. Biofuels 9, 109 (2016). This study details recent advances in the conversion of the solventogenic bacterium Clostridium acetobutylicum to a cellulose degrader.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Liang, Y., Si, T., Ang, E. L. & Zhao, H. Engineered pentafunctional minicellulosome for simultaneous saccharification and ethanol fermentation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 80, 6677–6684 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fan, L. H. et al. Biotechnology for biofuels engineering yeast with bifunctional minicellulosome and cellodextrin pathway for co-utilization of cellulose-mixed sugars. Biotechnol. Biofuels 9, 137 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hyeon, J. E., Jeon, W. J., Whang, S. Y. & Han, S. O. Production of minicellulosomes for the enhanced hydrolysis of cellulosic substrates by recombinant Corynebacterium glutamicum. Enzyme Microb. Technol. 48, 371–377 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Bayer, E. A., Lamed, R. & Himmel, M. E. The potential of cellulases and cellulosomes for cellulosic waste management. Curr. Opin. Biotechnol. 18, 237–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. You, C. & Zhang, Y. H. P. Self-assembly of synthetic metabolons through synthetic protein scaffolds: one-step purification, co-immobilization, and substrate channeling. ACS Synth. Biol. 2, 102–110 (2013). In this study, designer cellulosome-inspired complexes that contain a cascade of three enzymes were shown to exhibit strong substrate channelling and a consequent enhancement of reaction rates.

    Article  CAS  PubMed  Google Scholar 

  109. You, C. & Zhang, Y.-H. P. Annexation of a high-activity enzyme in a synthetic three-enzyme complex greatly decreases the degree of substrate channeling. ACS Synth. Biol. 3, 380–386 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Blumer-Schuette, S. E. et al. Thermophilic lignocellulose deconstruction. FEMS Microbiol. Rev. 38, 393–448 (2014). A detailed review of thermophilic enzymatic systems — both cellulosomal and non-cellulosomal.

    Article  CAS  PubMed  Google Scholar 

  111. Bhalla, A. et al. Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresour. Technol. 158, 581–593 (2013).

    Google Scholar 

  112. Thomas, L., Joseph, A. & Gottumukkala, L. D. Xylanase and cellulase systems of Clostridium sp.: an insight on molecular approaches for strain improvement. Bioresour. Technol. 158, 343–350 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Galanopoulou, A. P. et al. Insights into the functionality and stability of designer cellulosomes at elevated temperatures. Appl. Microbiol. Biotechnol. 100, 8731–8743 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Moraïs, S. et al. Enhancement of cellulosome-mediated deconstruction of cellulose by improving enzyme thermostability. Biotechnol. Biofuels. 9, 164 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Brown, S. D. et al. Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. Proc. Natl Acad. Sci. USA 108, 13752–13757 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Williams, T. I., Combs, J. C., Lynn, B. C. & Strobel, H. J. Proteomic profile changes in membranes of ethanol-tolerant Clostridium thermocellum. Appl. Microbiol. Biotechnol. 74, 422–432 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Lin, P. P. et al. Consolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellum. Metab. Eng. 31, 44–52 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Papanek, B., Biswas, R., Rydzak, T. & Guss, A. M. Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum. Metab. Eng. 32, 49–54 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Du, R., Li, S., Zhang, X., Fan, C. & Wang, L. Using a microorganism consortium for consolidated bioprocessing cellulosic ethanol production. Biofuels 2, 569–575 (2011).

    Article  CAS  Google Scholar 

  120. Wiegel, J., Mothershed, C. P. & Puls, J. Differences in xylan degradation by various noncellulolytic thermophilic anaerobes and Clostridium thermocellum. Appl. Environ. Microbiol. 49, 656–659 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Izquierdo, J. A., Pattathil, S., Guseva, A., Hahn, M. G. & Lynd, L. R. Comparative analysis of the ability of Clostridium clariflavum strains and Clostridium thermocellum to utilize hemicellulose and unpretreated plant material. Biotechnol. Biofuels 7, 136 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Podkaminer, K. K., Shao, X., Hogsett, D. A. & Lynd, L. R. Enzyme inactivation by ethanol and development of a kinetic model for thermophilic simultaneous saccharification and fermentation at 50 °C with Thermoanaerobacterium saccharolyticum ALK2. Biotechnol. Bioeng. 108, 1268–1278 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Lambertz, C. et al. Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. Biotechnol. Biofuels 7, 1–15 (2014).

    Article  CAS  Google Scholar 

  124. Hong, W. et al. The contribution of cellulosomal scaffoldins to cellulose hydrolysis by Clostridium thermocellum analyzed by using thermotargetrons. Biotechnol. Biofuels 7, 80 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Xu, T. et al. Efficient genome editing in Clostridium cellulolyticum via CRISPR–Cas9 nickase. Appl. Environ. Microbiol. 81, 4423–4431 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wilchek, M., Bayer, E. A. & Livnah, O. Essentials of biorecognition: the (strept)avidin-biotin system as a model for protein–protein and protein–ligand interaction. Immunol. Lett. 103, 27–32 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Hyeon, J. E., Kang, D. H. & Han, S. O. Signal amplification by a self-assembled biosensor system designed on the principle of dockerin–cohesin interactions in a cellulosome complex. Analyst 139, 4790–4793 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Mori, Y. Purification and characterization of an endoglucanase from the cellulosome (multicomponent cellulase complex) of Clostridium thermocellum. Biosci. Biotechnol. Biochem. 56, 1199–1203 (1992).

    Google Scholar 

  129. Sakka, K. et al. Analysis of cohesin–dockerin interactions using mutant dockerin proteins. FEMS Microbiol. Lett. 314, 75–80 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Demishtein, A., Karpol, A., Barak, Y., Lamed, R. & Bayer, E. A. Characterization of a dockerin-based affinity tag: application for purification of a broad variety of target proteins. J. Mol. Recognit. 23, 525–535 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Levy, I. & Shoseyov, O. Cellulose-binding domains: biotechnological applications. Biotechnol. Adv. 20, 191–213 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Shpigel, E. et al. Immobilization of recombinant heparinase I fused to cellulose-binding domain. Biotechnol. Bioeng. 5, 17–23 (1999).

    Article  Google Scholar 

  133. Hyeon, J. E. et al. Production of functional agarolytic nano-complex for the synergistic hydrolysis of marine biomass and its potential application in carbohydrate-binding module-utilizing one-step purification. Process Biochem. 47, 877–881 (2012).

    Article  CAS  Google Scholar 

  134. Hussack, G. et al. Multivalent anchoring and oriented display of single-domain antibodies on cellulose. Sensors (Basel). 9, 5351–5367 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gourlay, K., Arantes, V. & Saddler, J. N. Use of substructure-specific carbohydrate binding modules to track changes in cellulose accessibility and surface morphology during the amorphogenesis step of enzymatic hydrolysis. Biotechnol. Biofuels 5, 51 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Gao, S., You, C., Renneckar, S., Bao, J. & Zhang, Y.-H. P. New insights into enzymatic hydrolysis of heterogeneous cellulose by using carbohydrate-binding module 3 containing GFP and carbohydrate-binding module 17 containing CFP. Biotechnol. Biofuels 7, 24 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ding, S.-Y. et al. Ordered arrays of quantum dots using cellulosomal proteins. Indust. Biotechnol. 1, 198–206 (2005).

    Article  CAS  Google Scholar 

  138. Bayer, E. A. et al. in Biotechnology of Lignocellulose Degradation and Biomass Utilization (eds Sakka, K. et al.) 183–205 (Ito Print Publishing Division, 2009).

    Google Scholar 

  139. Currie, M. A. et al. Small angle X-ray scattering analysis of Clostridium thermocellum cellulosome N-terminal complexes reveals a highly dynamic structure. J. Biol. Chem. 288, 7978–7985 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hugenholtz, P. & Tyson, G. W. Microbiology: metagenomics. Nature 455, 481–483 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Warnecke, F. et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450, 560–565 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Brulc, J. M. et al. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc. Natl Acad. Sci. USA 106, 1948–1953 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Hess, M. et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331, 463–467 (2011).

    Article  CAS  PubMed  Google Scholar 

  144. Morrison, M., Pope, P. B., Denman, S. E. & McSweeney, C. S. Plant biomass degradation by gut microbiomes: more of the same or something new? Curr. Opin. Biotechnol. 20, 358–363 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Xia, Y., Ju, F., Fang, H. H. P. & Zhang, T. Mining of novel thermo-stable cellulolytic genes from a thermophilic cellulose-degrading consortium by metagenomics. PLoS ONE 8, e53779 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Simões, M. F. et al. Soil and rhizosphere associated fungi in gray mangroves (Avicennia marina) from the red sea — a metagenomic approach. Genomics Proteomics Bioinformatics 13, 310–320 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Morisaka, H. et al. Profile of native cellulosomal proteins of Clostridium cellulovorans adapted to various carbon sources. AMB Express 2, 37 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Esaka, K., Aburaya, S., Morisaka, H., Kuroda, K. & Ueda, M. Exoproteome analysis of Clostridium cellulovorans in natural soft-biomass degradation. AMB Express 5, 2 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Blouzard, J.-C. et al. Modulation of cellulosome composition in Clostridium cellulolyticum: adaptation to the polysaccharide environment revealed by proteomic and carbohydrate-active enzyme analyses. Proteomics 10, 541–554 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Vodovnik, M. et al. Expression of cellulosome components and type IV pili within the extracellular proteome of Ruminococcus flavefaciens 007. PLoS ONE 8, e65333 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Munir, R. I. et al. Quantitative proteomic analysis of the cellulolytic system of Clostridium termitidis CT1112 reveals distinct protein expression profiles upon growth on α-cellulose and cellobiose. J. Proteomics 125, 41–53 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Fendri, I. et al. The cellulosomes from Clostridium cellulolyticum: identification of new components and synergies between complexes. FEBS J. 276, 3076–3086 (2009).

    Article  CAS  PubMed  Google Scholar 

  153. Raman, B., McKeown, C. K., Rodriguez, M., Brown, S. D. & Mielenz, J. R. Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation. BMC Microbiol. 11, 134 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wilson, C. M. et al. Global transcriptome analysis of Clostridium thermocellum ATCC 27405 during growth on dilute acid pretreated Populus and switchgrass. Biotechnol. Biofuels 6, 179 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Borne, R., Bayer, E. A., Pagès, S., Perret, S. & Fierobe, H.-P. Unraveling enzyme discrimination during cellulosome assembly independent of cohesin–dockerin affinity. FEBS J. 280, 5764–5779 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Fierobe, H. P. et al. Action of designer cellulosomes on homogeneous versus complex substrates: controlled incorporation of three distinct enzymes into a defined trifunctional scaffoldin. J. Biol. Chem. 280, 16325–16334 (2005). One of the first studies to demonstrate the benefits of designer cellulosomes. In one example, a mixed designercellulosome that contained two cellulases and a xylanase was constructed.

    Article  CAS  PubMed  Google Scholar 

  157. Moraïs, S. et al. Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes. mBio 3, e00508-12 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Jeon, S. D., Yu, K. O., Kim, S. W. & Han, S. O. A celluloytic complex from Clostridium cellulovorans consisting of mannanase B and endoglucanase E has synergistic effects on galactomannan degradation. Appl. Microbiol. Biotechnol. 90, 565–572 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. Fierobe, H.-P. et al. Degradation of cellulose substrates by cellulosome chimeras: substrate targeting versus proximity of enzyme components. J. Biol. Chem. 277, 49621–49630 (2002).

    Article  CAS  PubMed  Google Scholar 

  160. Vazana, Y. et al. A synthetic biology approach for evaluating the functional contribution of designer cellulosome components to deconstruction of cellulosic substrates. Biotechnol. Biofuels 6, 182 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Molinier, A.-L. et al. Synergy, structure and conformational flexibility of hybrid cellulosomes displaying various inter-cohesins linkers. J. Mol. Biol. 405, 143–157 (2011).

    Article  CAS  PubMed  Google Scholar 

  162. Caspi, J. et al. Effect of linker length and dockerin position on conversion of a Thermobifida fusca endoglucanase to the cellulosomal mode. Appl. Environ. Microbiol. 75, 7335–7342 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Mingardon, F., Chantal, A., Tardif, C., Bayer, E. A. & Fierobe, H.-P. Exploration of new geometries in cellulosome-like chimeras. Appl. Environ. Microbiol. 73, 7138–7149 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Stern, J. et al. Significance of relative position of cellulases in designer cellulosomes for optimized cellulolysis. PLoS ONE 10, e0127326 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful for long-term collaborations with R. Lamed (co-discoverer of the cellulosome concept), M. Wilchek, E. Morag, Y.l Shoham, I. Borovok, I. Mizrahi, Y. Barak, the late F. Frolow, O. Livnah, S. P. Smith, D. Wilson, M. Himmel, S.-Y. Ding, Y. Bomble, H. Flint, B. White, J.-P. Belaich, A. Belaich, H.-P. Fierobe, B. Henrissat, M. Carrion-Vazquez, M. Czjzek, S. Jindou, M. Morrison, H. Gilbert, C. Fontes, H. Gaub, M. Nash, R. Bernardi, K. Schulten, and the many superb students, technicians and postdoctoral fellows who have contributed to the described research throughout the years. The authors specifically thank J. Weinstein for the design and preparation of figure 3 and B. Dassa for pre-publication of bioinformatic data. E.A.B. is currently supported by the following funding agencies: the Israel Science Foundation (ISF; grant 1349); the Israeli Center of Research Excellence (I-CORE Center; grant 152/11) managed by the ISF; by the United States–Israel Binational Science Foundation (BSF), Jerusalem, Israel; the European Union, Area NMP.2013.1.1-2: Self-assembly of naturally occurring nanosystems: CellulosomePlus Project number 604530; and European Union Horizon 2020 contract: Sustainable production of next generation biofuels from waste streams: WASTE2FUELS. The authors also acknowledge the Dana and Yossie Hollander Center for Structural Proteomics, the Leona M. and Harry B. Helmsley Charitable Trust, the Brazilian Friends of the Weizmann Institute of Science and the Jewish Community Endowment Fund. E.A.B. is the incumbent of The Maynard I. and Elaine Wishner Chair of Bio-organic Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Edward A. Bayer or Sarah Moraïs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Cellulose

A crystalline polysaccharide comprising very long, linear, unbranched chains of pure glucose (up to 15,000 units) that are connected by β-1,4-linkages and are resistant to simple enzymatic hydrolysis.

Hemicellulose

A mixture of branched polysaccharides that are relatively easily hydrolysable. Hemicelluloses include, among other polysaccharides, xylans, xyloglucans, glucuronoxylans, arabinoxylans, arabinans, mannans, glucomannans and β-glucans.

Lignin

A complex organic polymer that consists of various crosslinked aromatic alcohols. Lignin can be covalently linked to hemicellulose by ferulic acid side chains. Lignin confers structural support and turgidity to the plant cell wall.

Lignocellulose

A general term that refers to the composite of cellulose, hemicellulose, pectin and lignin, and indicates the plant cell wall and biomass.

Modules

Independently folding portions of proteins that have independent functions.

Thermophile

A bacterium or fungus that lives in an environment with relatively high temperatures. The optimum temperature for the growth of thermophiles is usually between 45 °C and 70 °C. Hyperthermophilic microorganisms thrive at temperatures that exceed 70 °C.

Mesophiles

Bacteria and fungi that live at moderate temperatures. The optimum temperature for the growth of mesophiles is usually between 20 °C and 45 °C.

Glycoside hydrolases

Enzymes that hydrolyse the glycosidic linkage between two carbohydrates or between a carbohydrate and a non-carbohydrate group.

Cellulases

A group of enzymes that catalyse cleavage of the cellulose chain.

Carbohydrate esterases

Enzymes that deacetylate substituted saccharides or alkyl (for example, ethyl) groups of hemicelluloses.

Polysaccharide lyases

Enzymes that cleave polysaccharide chains that contain uronic acid.

Exoglucanase

A cellulase that hydrolyses the cellulose chain only at one of its free termini (reducing or non-reducing) and then degrades the substrate in a processive manner.

Endoglucanase

A cellulase that can hydrolyse the glycosidic bond at any site along a cellulose chain.

β-Glucosidases

Cellulases that hydrolyse only terminal, non-reducing glucose units from short cellodextrins.

Carbon catabolite repression

A regulatory mechanism that, in the presence of a preferred substrate, prevents the expression of genes that are required for the utilization of secondary sources of carbon.

Two-component system

A signal transduction pathway that involves a sensor in the extracellular environment and an intracellular response regulator.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artzi, L., Bayer, E. & Moraïs, S. Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nat Rev Microbiol 15, 83–95 (2017). https://doi.org/10.1038/nrmicro.2016.164

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro.2016.164

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research