Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

ESX secretion systems: mycobacterial evolution to counter host immunity

Key Points

  • 6 kDa early secretory antigenic target (ESAT6) secretion systems (ESX; also known as type VII secretion systems) are sophisticated secretion systems that are present in a wide variety of mycobacterial and non-mycobacterial members of the phylum Actinobacteria.

  • The ESX-1 system of Mycobacterium tuberculosis is the most well-studied ESX system, owing to its important function in virulence, which is linked — at least in part — to the ability of one of its secreted effector proteins, EsxA, to induce phagosomal rupture in host phagocytes.

  • ESX-1 systems are also present in many non-pathogenic, rapid-growing mycobacteria, such as Mycobacterium smegmatis, in which they are involved in conjugal DNA transfer between donor and recipient strains. Interestingly, the ESX-1 effectors EspA, EspC and EspD, which are present in slow-growing, pathogenic mycobacteria, are absent from these non-pathogenic species.

  • Besides ESX-1, M. tuberculosis, which causes tuberculosis, has four additional ESX systems: ESX-3 is involved in iron acquisition; ESX-5 is involved in the secretion of members from two large mycobacterial protein families, named PE and PPE according to their Pro-Glu and Pro-Pro-Glu amino-terminal motifs; and ESX-2 and ESX-4 are systems for which the functions are currently unknown.

  • ESX systems are thought to have evolved from ESX-4 or ESX-4-like systems by gene duplication and diversification, as well as plasmid-mediated horizontal gene transfer.

  • ESX-like systems are secretion systems that are similar to mycobacterial ESX systems but that are found in Gram-positive bacteria in the phylum Firmicutes, rather than in Actinobacteria. Similarly to ESX systems, ESX-like systems contain Esx proteins that have a highly conserved WXG motif, contain an Ftsk–SpoIIIE-like ATPase, and, in some cases (for example, in Staphylococcus aureus), can be involved in pathogenicity.

Abstract

Mycobacterium tuberculosis uses sophisticated secretion systems, named 6 kDa early secretory antigenic target (ESAT6) protein family secretion (ESX) systems (also known as type VII secretion systems), to export a set of effector proteins that helps the pathogen to resist or evade the host immune response. Since the discovery of the esx loci during the M. tuberculosis H37Rv genome project, structural biology, cell biology and evolutionary analyses have advanced our knowledge of the function of these systems. In this Review, we highlight the intriguing roles that these studies have revealed for ESX systems in bacterial survival and pathogenicity during infection with M. tuberculosis. Furthermore, we discuss the diversity of ESX systems that has been described among mycobacteria and selected non-mycobacterial species. Finally, we consider how our knowledge of ESX systems might be applied to the development of novel strategies for the treatment and prevention of disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic and structural architectures of ESX systems.
Figure 2: Domains and structures of ESX-secreted proteins.
Figure 3: Downstream effects of phagosomal membrane rupture by ESX-1.

Similar content being viewed by others

References

  1. Sorensen, A. L., Nagai, S., Houen, G., Andersen, P. & Andersen, A. B. Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis. Infect. Immun. 63, 1710–1717 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Brodin, P., Rosenkrands, I., Andersen, P., Cole, S. T. & Brosch, R. ESAT-6 proteins: protective antigens and virulence factors? Trends Microbiol. 12, 500–508 (2004).

    CAS  PubMed  Google Scholar 

  3. Gey Van Pittius, N. C. et al. The ESAT-6 gene cluster of Mycobacterium tuberculosis and other high G+C Gram-positive bacteria. Genome Biol. 2, RESEARCH0044 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Dumas, E. et al. Mycobacterial pan-genome analysis suggests important role of plasmids in the radiation of type VII secretion systems. Genome Biol. Evol. 8, 387–402 (2016). This study provides the first evidence that plasmids seem to have had important roles in the evolution of mycobacterial ESX systems and, consequently, in the pathogenicity of extant mycobacterial pathogens.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Garufi, G., Butler, E. & Missiakas, D. ESAT-6-like protein secretion in Bacillus anthracis. J. Bacteriol. 190, 7004–7011 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Baptista, C., Barreto, H. C. & Sao-Jose, C. High levels of DegU-P activate an Esat-6-like secretion system in Bacillus subtilis. PLoS ONE. 8, e67840 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Huppert, L. A. et al. The ESX system in Bacillus subtilis mediates protein secretion. PLoS ONE. 9, e96267 (2014).

    PubMed  PubMed Central  Google Scholar 

  8. Burts, M. L., Williams, W. A., Debord, K. & Missiakas, D. M. EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc. Natl Acad. Sci. USA 102, 1169–1174 (2005).

    CAS  PubMed  Google Scholar 

  9. Burts, M. L., DeDent, A. C. & Missiakas, D. M. EsaC substrate for the ESAT-6 secretion pathway and its role in persistent infections of Staphylococcus aureus. Mol. Microbiol. 69, 736–746 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Way, S. S. & Wilson, C. B. The Mycobacterium tuberculosis ESAT-6 homologue in Listeria monocytogenes is dispensable for growth in vitro and in vivo. Infect. Immun. 73, 6151–6153 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Houben, E. N., Korotkov, K. V. & Bitter, W. Take five — type VII secretion systems of mycobacteria. Biochim. Biophys. Acta 1844, 1707–1716 (2014).

    Google Scholar 

  12. Daffe, M., Crick, D. C. & Jackson, M. Genetics of capsular polysaccharides and cell envelope (glyco)lipids. Microbiol. Spectr. 2, MGM2-0021-2013 (2014).

    PubMed  Google Scholar 

  13. Renshaw, P. S. et al. Structure and function of the complex formed by the tuberculosis virulence factors CFP-10 and ESAT-6. EMBO J. 24, 2491–2498 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Pallen, M. J. The ESAT-6/WXG100 superfamily — and a new Gram-positive secretion system? Trends Microbiol. 10, 209–212 (2002).

    CAS  PubMed  Google Scholar 

  15. Berthet, F. X., Rasmussen, P. B., Rosenkrands, I., Andersen, P. & Gicquel, B. A. Mycobacterium tuberculosis operon encoding ESAT-6 and a novel low-molecular-mass culture filtrate protein (CFP-10). Microbiology 144, 3195–3203 (1998).

    CAS  PubMed  Google Scholar 

  16. Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

    CAS  PubMed  Google Scholar 

  17. Tekaia, F. et al. Analysis of the proteome of Mycobacterium tuberculosis in silico. Tuber. Lung Dis. 79, 329–342 (1999).

    CAS  PubMed  Google Scholar 

  18. Newton-Foot, M., Warren, R. M., Sampson, S. L., van Helden, P. D. & Gey van Pittius, N. C. The plasmid-mediated evolution of the mycobacterial ESX (type VII) secretion systems. BMC Evol. Biol. 16, 62 (2016).

    PubMed  PubMed Central  Google Scholar 

  19. Pym, A. S., Brodin, P., Brosch, R., Huerre, M. & Cole, S. T. Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol. Microbiol. 46, 709–717 (2002).

    CAS  PubMed  Google Scholar 

  20. Pym, A. S. et al. Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat. Med. 9, 533–539 (2003).

    CAS  PubMed  Google Scholar 

  21. Hsu, T. et al. The primary mechanism of attenuation of bacillus Calmette–Guérin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc. Natl Acad. Sci. USA 100, 12420–12425 (2003).

    CAS  PubMed  Google Scholar 

  22. Lewis, K. N. et al. Deletion of RD1 from Mycobacterium tuberculosis mimics bacille Calmette–Guerin attenuation. J. Infect. Dis. 187, 117–123 (2003).

    PubMed  Google Scholar 

  23. Stanley, S. A., Raghavan, S., Hwang, W. W. & Cox, J. S. Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc. Natl Acad. Sci. USA 100, 13001–13006 (2003).

    CAS  PubMed  Google Scholar 

  24. Sassetti, C. M. & Rubin, E. J. Genetic requirements for mycobacterial survival during infection. Proc. Natl Acad. Sci. USA 100, 12989–12994 (2003).

    CAS  PubMed  Google Scholar 

  25. Mahairas, G. G., Sabo, P. J., Hickey, M. J., Singh, D. C. & Stover, C. K. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J. Bacteriol. 178, 1274–1282 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Brodin, P. et al. Bacterial artificial chromosome-based comparative genomic analysis identifies Mycobacterium microti as a natural ESAT-6 deletion mutant. Infect. Immun. 70, 5568–5578 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Serafini, A., Boldrin, F., Palu, G. & Manganelli, R. Characterization of a Mycobacterium tuberculosis ESX-3 conditional mutant: essentiality and rescue by iron and zinc. J. Bacteriol. 191, 6340–6344 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Siegrist, M. S. et al. Mycobacterial ESX-3 is required for mycobactin-mediated iron acquisition. Proc. Natl Acad. Sci. USA 106, 18792–18797 (2009).

    PubMed  Google Scholar 

  29. Tufariello, J. M. et al. Separable roles for Mycobacterium tuberculosis ESX-3 effectors in iron acquisition and virulence. Proc. Natl Acad. Sci. USA 113, E348–E357 (2016).

    CAS  PubMed  Google Scholar 

  30. Bottai, D. & Brosch, R. Mycobacterial PE, PPE and ESX clusters: novel insights into the secretion of these most unusual protein families. Mol. Microbiol. 73, 325–328 (2009).

    CAS  PubMed  Google Scholar 

  31. Abdallah, A. M. et al. Mycobacterial secretion systems ESX-1 and ESX-5 play distinct roles in host cell death and inflammasome activation. J. Immunol. 187, 4744–4753 (2011).

    CAS  PubMed  Google Scholar 

  32. Houben, E. N. et al. Composition of the type VII secretion system membrane complex. Mol. Microbiol. 86, 472–484 (2012). A paper that describes the first insights into the components that form the ESX secretion apparatus of ESX systems.

    CAS  PubMed  Google Scholar 

  33. Bottai, D. et al. Disruption of the ESX-5 system of Mycobacterium tuberculosis causes loss of PPE protein secretion, reduction of cell wall integrity and strong attenuation. Mol. Microbiol. 83, 1195–1209 (2012).

    CAS  PubMed  Google Scholar 

  34. Abdallah, A. M. et al. Type VII secretion system of mycobacteria show the way. Nat. Rev. Microbiol. 5, 883–891 (2007).

    CAS  PubMed  Google Scholar 

  35. Bitter, W. et al. Systematic genetic nomenclature for type VII secretion systems. PLoS Pathog. 5, e1000507 (2009).

    PubMed  PubMed Central  Google Scholar 

  36. Desvaux, M., Hebraud, M., Talon, R. & Henderson, I. R. Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol. 17, 139–145 (2009).

    CAS  PubMed  Google Scholar 

  37. Bitter, W., Houben, E. N., Luirink, J. & Appelmelk, B. J. Type VII secretion in mycobacteria: classification in line with cell envelope structure. Trends Microbiol. 17, 337–338 (2009).

    CAS  PubMed  Google Scholar 

  38. Costa, T. R. et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol. 13, 343–359 (2015).

    CAS  PubMed  Google Scholar 

  39. Gey van Pittius, N. C. et al. Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions. BMC Evol. Biol. 6, 95 (2006).

    PubMed  PubMed Central  Google Scholar 

  40. Brodin, P. et al. Functional analysis of early secreted antigenic target-6, the dominant T-cell antigen of Mycobacterium tuberculosis, reveals key residues involved in secretion, complex formation, virulence, and immunogenicity. J. Biol. Chem. 280, 33953–33959 (2005).

    CAS  PubMed  Google Scholar 

  41. Poulsen, C., Panjikar, S., Holton, S. J., Wilmanns, M. & Song, Y. H. WXG100 protein superfamily consists of three subfamilies and exhibits an α-helical C-terminal conserved residue pattern. PLoS ONE. 9, e89313 (2014).

    PubMed  PubMed Central  Google Scholar 

  42. Simeone, R. et al. Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death. PLoS Pathog. 8, e1002507 (2012). A paper that confirms and consolidates previous controversial findings on M. tuberculosis -induced phagosomal rupture, using human macrophage-like THP-1 cells and BCG strains that express the M. tuberculosis ESX-1 system.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Houben, D. et al. ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria. Cell. Microbiol. 14, 1287–1298 (2012).

    CAS  PubMed  Google Scholar 

  44. Kupz, A. et al. ESAT-6-dependent cytosolic pattern recognition drives noncognate tuberculosis control in vivo. J. Clin. Invest. 126, 2109–2122 (2016). A study that reveals the requirement for phagosomal contact and inflammasome activation for the induction of IL-18-mediated IFNγ production in CD8+ T cells and NK cells.

    PubMed  PubMed Central  Google Scholar 

  45. Champion, P. A., Stanley, S. A., Champion, M. M., Brown, E. J. & Cox, J. S. C-Terminal signal sequence promotes virulence factor secretion in Mycobacterium tuberculosis. Science 313, 1632–1636 (2006).

    PubMed  Google Scholar 

  46. Daleke, M. H. et al. General secretion signal for the mycobacterial type VII secretion pathway. Proc. Natl Acad. Sci. USA 109, 11342–11347 (2012).

    CAS  PubMed  Google Scholar 

  47. Ates, L. S., Houben, E. N. & Bitter, W. Type VII secretion: a highly versatile secretion system. Microbiol. Spectr. 4, VMBF-0011-2015 (2016).

    Google Scholar 

  48. Strong, M. et al. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 103, 8060–8065 (2006).

    CAS  PubMed  Google Scholar 

  49. Brodin, P. et al. Dissection of ESAT-6 system 1 of Mycobacterium tuberculosis and impact on immunogenicity and virulence. Infect. Immun. 74, 88–98 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen, J. M. et al. Mycobacterium tuberculosis EspB binds phospholipids and mediates EsxA-independent virulence. Mol. Microbiol. 89, 1154–1166 (2013).

    CAS  PubMed  Google Scholar 

  51. Rosenberg, O. S. et al. Substrates control multimerization and activation of the multi-domain ATPase motor of type VII secretion. Cell 161, 501–512 (2015). A report that provides the first structural insights into the translocation mechanisms in ESX systems, with a focus on the FtsK–SpoIIIE-like ATPase EccC.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. de Jonge, M. I. et al. ESAT-6 from Mycobacterium tuberculosis dissociates from its putative chaperone CFP-10 under acidic conditions and exhibits membrane-lysing activity. J. Bacteriol. 189, 6028–6034 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Peng, X. & Sun, J. Mechanism of ESAT-6 membrane interaction and its roles in pathogenesis of Mycobacterium tuberculosis. Toxicon 116, 29–34 (2016).

    CAS  PubMed  Google Scholar 

  54. Guglielmini, J., de la Cruz, F. & Rocha, E. P. Evolution of conjugation and type IV secretion systems. Mol. Biol. Evol. 30, 315–331 (2013).

    CAS  PubMed  Google Scholar 

  55. Solomonson, M. et al. Structure of the mycosin-1 protease from the mycobacterial ESX-1 protein type VII secretion system. J. Biol. Chem. 288, 17782–17790 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ohol, Y. M. et al. Mycobacterium tuberculosis MycP1 protease plays a dual role in regulation of ESX-1 secretion and virulence. Cell Host Microbe 7, 210–220 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Solomonson, M. et al. Structure of EspB from the ESX-1 type VII secretion system and insights into its export mechanism. Structure 23, 571–583 (2015).

    CAS  PubMed  Google Scholar 

  58. Korotkova, N. et al. Structure of EspB, a secreted substrate of the ESX-1 secretion system of Mycobacterium tuberculosis. J. Struct. Biol. 191, 236–244 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. MacGurn, J. A., Raghavan, S., Stanley, S. A. & Cox, J. S. A non-RD1 gene cluster is required for Snm secretion in Mycobacterium tuberculosis. Mol. Microbiol. 57, 1653–1663 (2005).

    CAS  PubMed  Google Scholar 

  60. Fortune, S. M. et al. Mutually dependent secretion of proteins required for mycobacterial virulence. Proc. Natl Acad. Sci. USA 102, 10676–10681 (2005).

    CAS  PubMed  Google Scholar 

  61. Champion, P. A., Champion, M. M., Manzanillo, P. & Cox, J. S. ESX-1 secreted virulence factors are recognized by multiple cytosolic AAA ATPases in pathogenic mycobacteria. Mol. Microbiol. 73, 950–962 (2009).

    PubMed  PubMed Central  Google Scholar 

  62. McLaughlin, B. et al. A mycobacterium ESX-1-secreted virulence factor with unique requirements for export. PLoS Pathog. 3, e105 (2007).

    PubMed  PubMed Central  Google Scholar 

  63. Bottai, D. et al. ESAT-6 secretion-independent impact of ESX-1 genes espF and espG1 on virulence of Mycobacterium tuberculosis. J. Infect. Dis. 203, 1155–1164 (2011).

    CAS  PubMed  Google Scholar 

  64. Zhang, M. et al. EspI regulates the ESX-1 secretion system in response to ATP levels in Mycobacterium tuberculosis. Mol. Microbiol. 93, 1057–1065 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Majlessi, L., Prados-Rosales, R., Casadevall, A. & Brosch, R. Release of mycobacterial antigens. Immunol. Rev. 264, 25–45 (2015).

    CAS  PubMed  Google Scholar 

  66. Chen, J. M. et al. EspD is critical for the virulence-mediating ESX-1 secretion system in Mycobacterium tuberculosis. J. Bacteriol. 194, 884–893 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ekiert, D. C. & Cox, J. S. Structure of a PE–PPE–EspG complex from Mycobacterium tuberculosis reveals molecular specificity of ESX protein secretion. Proc. Natl Acad. Sci. USA 111, 14758–14763 (2014).

    CAS  PubMed  Google Scholar 

  68. Daleke, M. H. et al. Specific chaperones for the type VII protein secretion pathway. J. Biol. Chem. 287, 31939–31947 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Korotkova, N. et al. Structure of the Mycobacterium tuberculosis type VII secretion system chaperone EspG5 in complex with PE25–PPE41 dimer. Mol. Microbiol. 94, 367–382 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Solans, L. et al. A specific polymorphism in Mycobacterium tuberculosis H37Rv causes differential ESAT-6 expression and identifies WhiB6 as a novel ESX-1 component. Infect. Immun. 82, 3446–3456 (2014).

    PubMed  PubMed Central  Google Scholar 

  71. Solans, L. et al. The PhoP-dependent ncRNA Mcr7 modulates the TAT secretion system in Mycobacterium tuberculosis. PLoS Pathog. 10, e1004183 (2014).

    PubMed  PubMed Central  Google Scholar 

  72. Perez, E. et al. An essential role for phoP in Mycobacterium tuberculosis virulence. Mol. Microbiol. 41, 179–187 (2001).

    CAS  PubMed  Google Scholar 

  73. Walters, S. B. et al. The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol. Microbiol. 60, 312–330 (2006).

    CAS  PubMed  Google Scholar 

  74. Frigui, W. et al. Control of M. tuberculosis ESAT-6 secretion and specific T cell recognition by PhoP. PLoS Pathog. 4, e33 (2008).

    PubMed  PubMed Central  Google Scholar 

  75. Raghavan, S., Manzanillo, P., Chan, K., Dovey, C. & Cox, J. Secreted transcription factor controls Mycobacterium tuberculosis virulence. Nature 454, 717–721 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Blasco, B. et al. Virulence regulator EspR of Mycobacterium tuberculosis is a nucleoid-associated protein. PLoS Pathog. 8, e1002621 (2012). A paper that reports the function of EspR to be a nucleoid-associated protein that regulates a large network of genes.

    PubMed  PubMed Central  Google Scholar 

  77. Pang, X. et al. MprAB regulates the espA operon in Mycobacterium tuberculosis and modulates ESX-1 function and host cytokine response. J. Bacteriol. 195, 66–75 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hunt, D. M. et al. Long-range transcriptional control of an operon necessary for virulence-critical ESX-1 secretion in Mycobacterium tuberculosis. J. Bacteriol. 194, 2307–2320 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Gonzalo-Asensio, J. et al. Evolutionary history of tuberculosis shaped by conserved mutations in the PhoPR virulence regulator. Proc. Natl Acad. Sci. USA 111, 11491–11496 (2014). A study that reveals the role of compensatory mutations in preserving ESX-1 functions in PhoP–PhoR-mutated lineages of the M. tuberculosis complex.

    CAS  PubMed  Google Scholar 

  80. Gordon, S. V. et al. Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol. Microbiol. 32, 643–656 (1999).

    CAS  PubMed  Google Scholar 

  81. Brosch, R. et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc. Natl Acad. Sci. USA 99, 3684–3689 (2002).

    CAS  PubMed  Google Scholar 

  82. Mostowy, S., Cousins, D., Brinkman, J., Aranaz, A. & Behr, M. A. Genomic deletions suggest a phylogeny for the Mycobacterium tuberculosis complex. J. Infect. Dis. 186, 74–80 (2002).

    CAS  PubMed  Google Scholar 

  83. Gagneux, S. & Small, P. M. Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect. Dis. 7, 328–337 (2007).

    PubMed  Google Scholar 

  84. Boritsch, E. C. et al. A glimpse into the past and predictions for the future: the molecular evolution of the tuberculosis agent. Mol. Microbiol. 93, 835–852 (2014).

    CAS  PubMed  Google Scholar 

  85. Di Luca, M. et al. The ESX-5 associated eccB–eccC locus is essential for Mycobacterium tuberculosis viability. PLoS ONE 7, e52059 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ates, L. S. et al. Essential role of the ESX-5 secretion system in outer membrane permeability of pathogenic mycobacteria. PLoS Genet. 11, e1005190 (2015).

    PubMed  PubMed Central  Google Scholar 

  87. Elliott, S. R. & Tischler, A. D. Phosphate starvation: a novel signal that triggers ESX-5 secretion in Mycobacterium tuberculosis. Mol. Microbiol. 100, 510–526 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Abdallah, A. M. et al. A specific secretion system mediates PPE41 transport in pathogenic mycobacteria. Mol. Microbiol. 62, 667–679 (2006).

    CAS  PubMed  Google Scholar 

  89. Abdallah, A. M. et al. PPE and PE_PGRS proteins of Mycobacterium marinum are transported via the type VII secretion system ESX-5. Mol. Microbiol. 73, 329–340 (2009).

    CAS  PubMed  Google Scholar 

  90. Abdallah, A. M. et al. The ESX-5 secretion system of Mycobacterium marinum modulates the macrophage response. J. Immunol. 181, 7166–7175 (2008).

    CAS  PubMed  Google Scholar 

  91. Daleke, M. H. et al. Conserved Pro-Glu (PE) and Pro-Pro-Glu (PPE) protein domains target LipY lipases of pathogenic mycobacteria to the cell surface via the ESX-5 pathway. J. Biol. Chem. 286, 19024–19034 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Sassetti, C. M., Boyd, D. H. & Rubin, E. J. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol. 48, 77–84 (2003).

    CAS  PubMed  Google Scholar 

  93. Rodriguez, G. M., Voskuil, M. I., Gold, B., Schoolnik, G. K. & Smith, I. ideR, an essential gene in Mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect. Immun. 70, 3371–3381 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Dubnau, E., Chan, J., Mohan, V. P. & Smith, I. Responses of Mycobacterium tuberculosis to growth in the mouse lung. Infect. Immun. 73, 3754–3757 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Ilghari, D. et al. Solution structure of the Mycobacterium tuberculosis EsxG–EsxH complex: functional implications and comparisons with other M. tuberculosis Esx family complexes. J. Biol. Chem. 286, 29993–30002 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Skjot, R. L. et al. Epitope mapping of the immunodominant antigen TB10.4 and the two homologous proteins TB10.3 and TB12.9, which constitute a subfamily of the esat-6 gene family. Infect. Immun. 70, 5446–5453 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Majlessi, L., Rojas, M. J., Brodin, P. & Leclerc, C. CD8+-T-cell responses of Mycobacterium-infected mice to a newly identified major histocompatibility complex class I-restricted epitope shared by proteins of the ESAT-6 family. Infect. Immun. 71, 7173–7177 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Hervas-Stubbs, S. et al. High frequency of CD4+ T cells specific for the TB10.4 protein correlates with protection against Mycobacterium tuberculosis infection. Infect. Immun. 74, 3396–3407 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Mehra, A. et al. Mycobacterium tuberculosis type VII secreted effector EsxH targets host ESCRT to impair trafficking. PLoS Pathog. 9, e1003734 (2013).

    PubMed  PubMed Central  Google Scholar 

  100. Aagaard, C. et al. A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat. Med. 17, 189–194 (2011).

    CAS  PubMed  Google Scholar 

  101. Feltcher, M. E., Sullivan, J. T. & Braunstein, M. Protein export systems of Mycobacterium tuberculosis: novel targets for drug development? Future Microbiol. 5, 1581–1597 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Cole, S. T. et al. Massive gene decay in the leprosy bacillus. Nature 409, 1007–1011 (2001).

    CAS  PubMed  Google Scholar 

  103. Singh, P. et al. Insight into the evolution and origin of leprosy bacilli from the genome sequence of Mycobacterium lepromatosis. Proc. Natl Acad. Sci. USA 112, 4459–4464 (2015).

    CAS  PubMed  Google Scholar 

  104. Guinn, K. M. et al. Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Mol. Microbiol. 51, 359–370 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Sayes, F. et al. Strong immunogenicity and cross-reactivity of Mycobacterium tuberculosis ESX-5 type VII secretion- encoded PE–PPE proteins predicts vaccine potential. Cell Host Microbe 11, 352–363 (2012).

    CAS  PubMed  Google Scholar 

  106. Wards, B. J., de Lisle, G. W. & Collins, D. M. An esat6 knockout mutant of Mycobacterium bovis produced by homologous recombination will contribute to the development of a live tuberculosis vaccine. Tuber. Lung Dis. 80, 185–189 (2000).

    CAS  PubMed  Google Scholar 

  107. Lugo-Villarino, G. & Neyrolles, O. Manipulation of the mononuclear phagocyte system by Mycobacterium tuberculosis. Cold Spring Harb. Perspect. Med. 4, a018549 (2014).

    PubMed  PubMed Central  Google Scholar 

  108. Deretic, V. et al. Mycobacterium tuberculosis inhibition of phagolysosome biogenesis and autophagy as a host defence mechanism. Cell. Microbiol. 8, 719–727 (2006).

    CAS  PubMed  Google Scholar 

  109. Sturgill-Koszycki, S. et al. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263, 678–681 (1994).

    CAS  PubMed  Google Scholar 

  110. Stamm, L. M. et al. Mycobacterium marinum escapes from phagosomes and is propelled by actin-based motility. J. Exp. Med. 198, 1361–1368 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. van der Wel, N. et al. M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129, 1287–1298 (2007). A paper that questions the long-standing view that M. tuberculosis is an entirely intraphagosomal pathogen.

    CAS  PubMed  Google Scholar 

  112. Hart, P. D., Young, M. R., Gordon, A. H. & Sullivan, K. H. Inhibition of phagosome–lysosome fusion in macrophages by certain mycobacteria can be explained by inhibition of lysosomal movements observed after phagocytosis. J. Exp. Med. 166, 933–946 (1987).

    CAS  PubMed  Google Scholar 

  113. Russell, D. G. The ins and outs of the Mycobacterium tuberculosis-containing vacuole. Cell. Microbiol. 18, 1065–1069 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Simeone, R., Majlessi, L., Enninga, J. & Brosch, R. Perspectives on mycobacterial vacuole-to-cytosol translocation: the importance of cytosolic access. Cell. Microbiol. 18, 1070–1077 (2016).

    CAS  PubMed  Google Scholar 

  115. Simeone, R. et al. Cytosolic access of Mycobacterium tuberculosis: critical impact of phagosomal acidification control and demonstration of occurrence in vivo. PLoS Pathog. 11, e1004650 (2015).

    PubMed  PubMed Central  Google Scholar 

  116. Smith, J. et al. Evidence for pore formation in host cell membranes by ESX-1-secreted ESAT-6 and its role in Mycobacterium marinum escape from the vacuole. Infect. Immun. 76, 5478–5487 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Ma, Y., Keil, V. & Sun, J. Characterization of Mycobacterium tuberculosis EsxA membrane insertion: roles of N- and C-terminal flexible arms and central helix–turn–helix motif. J. Biol. Chem. 290, 7314–7322 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Wassermann, R. et al. Mycobacterium tuberculosis differentially activates cGAS- and inflammasome-dependent intracellular immune responses through ESX-1. Cell Host Microbe. 17, 799–810 (2015).

    CAS  PubMed  Google Scholar 

  119. Watson, R. O. et al. The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host Microbe. 17, 811–819 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Collins, A. C. et al. Cyclic GMP–AMP synthase is an innate immune DNA sensor for Mycobacterium tuberculosis. Cell Host Microbe 17, 820–828 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Brown, L., Wolf, J. M., Prados-Rosales, R. & Casadevall, A. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat. Rev. Microbiol. 13, 620–630 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Manca, C. et al. Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce TH1 type immunity and is associated with induction of IFN-α/β. Proc. Natl Acad. Sci. USA 98, 5752–5757 (2001).

    CAS  PubMed  Google Scholar 

  123. Stanley, S. A., Johndrow, J. E., Manzanillo, P. & Cox, J. S. The type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J. Immunol. 178, 3143–3152 (2007).

    CAS  PubMed  Google Scholar 

  124. McNab, F., Mayer-Barber, K., Sher, A., Wack, A. & O'Garra, A. Type I interferons in infectious disease. Nat. Rev. Immunol. 15, 87–103 (2015).

    CAS  PubMed  Google Scholar 

  125. Mishra, B. B. et al. Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome. Cell. Microbiol. 12, 1046–1063 (2010).

    CAS  PubMed  Google Scholar 

  126. Wong, K. W. & Jacobs, W. R. Jr. Critical role for NLRP3 in necrotic death triggered by Mycobacterium tuberculosis. Cell. Microbiol. 13, 1371–1384 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Dorhoi, A. et al. Activation of the NLRP3 inflammasome by Mycobacterium tuberculosis is uncoupled from susceptibility to active tuberculosis. Eur. J. Immunol. 42, 374–384 (2012).

    CAS  PubMed  Google Scholar 

  128. Master, S. S. et al. Mycobacterium tuberculosis prevents inflammasome activation. Cell Host Microbe. 3, 224–232 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Romagnoli, A. et al. ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells. Autophagy 8, 1357–1370 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Davis, J. M. & Ramakrishnan, L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136, 37–49 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Stoop, E. J. et al. Zebrafish embryo screen for mycobacterial genes involved in the initiation of granuloma formation reveals a newly identified ESX-1 component. Dis. Model. Mech. 4, 526–536 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Volkman, H. E. et al. Tuberculous granuloma induction via interaction of a bacterial secreted protein with host epithelium. Science. 327, 466–469 (2010).

    CAS  PubMed  Google Scholar 

  133. Aguilo, J. et al. ESX-1-induced apoptosis is involved in cell-to-cell spread of Mycobacterium tuberculosis. Cell. Microbiol. 15, 1994–2005 (2013).

    CAS  PubMed  Google Scholar 

  134. Weerdenburg, E. M. et al. ESX-5-deficient Mycobacterium marinum is hypervirulent in adult zebrafish. Cell. Microbiol. 14, 728–739 (2012).

    CAS  PubMed  Google Scholar 

  135. Koo, I. C. et al. ESX-1-dependent cytolysis in lysosome secretion and inflammasome activation during mycobacterial infection. Cell. Microbiol. 10, 1866–1878 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Ates, L. S. et al. The ESX-5 system of pathogenic mycobacteria is involved in capsule integrity and virulence through its substrate PPE10. PLoS Pathog. 12, e1005696 (2016). A recent paper that reveals the role of the ESX-5 system in mycobacterial capsule production.

    PubMed  PubMed Central  Google Scholar 

  137. Anderson, M., Aly, K. A., Chen, Y. H. & Missiakas, D. Secretion of atypical protein substrates by the ESAT-6 secretion system of Staphylococcus aureus. Mol. Microbiol. 90, 734–743 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Sundaramoorthy, R., Fyfe, P. K. & Hunter, W. N. Structure of Staphylococcus aureus EsxA suggests a contribution to virulence by action as a transport chaperone and/or adaptor protein. J. Mol. Biol. 383, 603–614 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Kneuper, H. et al. Heterogeneity in ess transcriptional organization and variable contribution of the Ess/type VII protein secretion system to virulence across closely related Staphylococcus aureus strains. Mol. Microbiol. 93, 928–943 (2014). A paper that provides novel insights into the ESX-like secretion system that is found in strains of Staphylococcus aureus.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Warne, B. et al. The Ess/type VII secretion system of Staphylococcus aureus shows unexpected genetic diversity. BMC Genomics. 17, 222 (2016).

    PubMed  PubMed Central  Google Scholar 

  141. Anderson, M., Chen, Y. H., Butler, E. K. & Missiakas, D. M. EsaD, a secretion factor for the Ess pathway in Staphylococcus aureus. J. Bacteriol. 193, 1583–1589 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Jager, F., Zoltner, M., Kneuper, H., Hunter, W. N. & Palmer, T. Membrane interactions and self-association of components of the Ess/type VII secretion system of Staphylococcus aureus. FEBS Lett. 590, 349–357 (2016).

    PubMed  PubMed Central  Google Scholar 

  143. Korea, C. G. et al. Staphylococcal Esx proteins modulate apoptosis and release of intracellular Staphylococcus aureus during infection in epithelial cells. Infect. Immun. 82, 4144–4153 (2014).

    PubMed  PubMed Central  Google Scholar 

  144. Ummels, R. et al. Identification of a novel conjugative plasmid in mycobacteria that requires both type IV and type VII secretion. mBio. 5, e01744-14 (2014).

    PubMed  PubMed Central  Google Scholar 

  145. Wang, J. et al. Insights on the emergence of Mycobacterium tuberculosis from the analysis of Mycobacterium kansasii. Genome Biol. Evol. 7, 856–870 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Kim, B. J. et al. Whole-genome sequence of a novel species, Mycobacterium yongonense DSM 45126T. Genome Announc. 1, e00604-13 (2013).

    PubMed  PubMed Central  Google Scholar 

  147. Gray, T. A., Krywy, J. A., Harold, J., Palumbo, M. J. & Derbyshire, K. M. Distributive conjugal transfer in mycobacteria generates progeny with meiotic-like genome-wide mosaicism, allowing mapping of a mating identity locus. PLoS Biol. 11, e1001602 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Supply, P. et al. Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis. Nat. Genet. 45, 172–179 (2013).

    CAS  PubMed  Google Scholar 

  149. Mortimer, T. D. & Pepperell, C. S. Genomic signatures of distributive conjugal transfer among mycobacteria. Genome Biol. Evol. 6, 2489–2500 (2014).

    PubMed  PubMed Central  Google Scholar 

  150. Boritsch, E. C. et al. pks5-recombination-mediated surface remodelling in Mycobacterium tuberculosis emergence. Nat. Microbiol. 1, 15019 (2016).

    CAS  PubMed  Google Scholar 

  151. Boritsch, E. C. et al. Key experimental evidence of chromosomal DNA transfer among selected tuberculosis-causing mycobacteria. Proc. Natl Acad. Sci. USA 113, 9876–9881 (2016).

    CAS  PubMed  Google Scholar 

  152. Watson, R. O., Manzanillo, P. S. & Cox, J. S. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150, 803–815 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Nakagawa, I. et al. Autophagy defends cells against invading group A Streptococcus. Science. 306, 1037–1040 (2004).

    CAS  PubMed  Google Scholar 

  154. Gutierrez, M. G. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753–766 (2004).

    CAS  Google Scholar 

  155. Thurston, T. L., Wandel, M. P., von Muhlinen, N., Foeglein, A. & Randow, F. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature. 482, 414–418 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhao, Z. et al. Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens. Cell Host Microbe 4, 458–469 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Kimmey, J. M. et al. Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection. Nature 528, 565–569 (2015). A paper that questions the efficacy of autophagy as a major innate defence mechanism against mycobacteria.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Brosch, R. et al. Genome plasticity of BCG and impact on vaccine efficacy. Proc. Natl Acad. Sci. USA 104, 5596–5601 (2007).

    CAS  PubMed  Google Scholar 

  159. Zhang, L. et al. Variable virulence and efficacy of BCG vaccine strains in mice and correlation with genome polymorphisms. Mol. Ther. 24, 398–405 (2016).

    PubMed  PubMed Central  Google Scholar 

  160. Bottai, D. et al. Increased protective efficacy of recombinant BCG strains expressing virulence-neutral proteins of the ESX-1 secretion system. Vaccine. 33, 2710–2718 (2015).

    CAS  PubMed  Google Scholar 

  161. Whole Mycobacteria Cell Vaccines for Tuberculosis Summary Group. Developing whole mycobacteria cell vaccines for tuberculosis: workshop proceedings, Max Planck Institute for Infection Biology, Berlin, Germany, July 9, 2014. Vaccine. 33, 3047–3055 (2015).

  162. Sweeney, K. A. et al. A recombinant Mycobacterium smegmatis induces potent bactericidal immunity against Mycobacterium tuberculosis. Nat. Med. 17, 1261–1268 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Sayes, F. et al. CD4+ T cells recognizing PE/PPE antigens directly or via cross reactivity are protective against pulmonary Mycobacterium tuberculosis infection. PLoS Pathog. 12, e1005770 (2016).

    PubMed  PubMed Central  Google Scholar 

  164. Bloemberg, G. V. et al. Acquired resistance to Bedaquiline and Delamanid in therapy for tuberculosis. N. Engl. J. Med. 373, 1986–1988 (2015).

    PubMed  PubMed Central  Google Scholar 

  165. Christophe, T. et al. High content screening identifies decaprenyl-phosphoribose 2′ epimerase as a target for intracellular antimycobacterial inhibitors. PLoS Pathog. 5, e1000645 (2009).

    PubMed  PubMed Central  Google Scholar 

  166. Rybniker, J. et al. Anticytolytic screen identifies inhibitors of mycobacterial virulence protein secretion. Cell Host Microbe 16, 538–548 (2014).

    CAS  PubMed  Google Scholar 

  167. VanderVen, B. C. et al. Novel inhibitors of cholesterol degradation in Mycobacterium tuberculosis reveal how the bacterium's metabolism is constrained by the intracellular environment. PLoS Pathog. 11, e1004679 (2015).

    PubMed  PubMed Central  Google Scholar 

  168. Zuber, B. et al. Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J. Bacteriol. 190, 5672–5680 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Hoffmann, C., Leis, A., Niederweis, M., Plitzko, J. M. & Engelhardt, H. Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc. Natl Acad. Sci. USA 105, 3963–3967 (2008).

    CAS  PubMed  Google Scholar 

  170. Poulet, S. & Cole, S. T. Characterisation of the polymorphic GC-rich repetitive sequence (PGRS) present in Mycobacterium tuberculosis. Arch. Microbiol. 163, 87–95 (1995).

    CAS  PubMed  Google Scholar 

  171. Majlessi, L. & Brosch, R. Mycobacterium tuberculosis meets the cytosol: the role of cGAS in anti-mycobacterial immunity. Cell Host Microbe. 17, 733–735 (2015).

    CAS  PubMed  Google Scholar 

  172. Tschopp, J. & Schroder, K. NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat. Rev. Immunol. 10, 210–215 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of grants from the European Community (grant H2020-PHC- 643381), the Agence Nationale de Recherche (grant ANR-14-JAMR-001-02), Institut Pasteur (grant PTR 441) and the Fondation pour la Recherche Médicale (grant DEQ20130326471). R.B. is a member of the LabEx Integrative Biology of Emerging Infectious Diseases (IBEID) consortium at Institut Pasteur. M.I.G. is supported by an M.D.–Ph.D. grant from the University of Groningen, The Netherlands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Brosch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Actinobacteria

A phylum of Gram-positive bacteria that is characterized by high GC content.

Mycolic acids

Long-chain (C60–C90) fatty acids that are specifically found in the mycobacterial cell envelope; together with extractable lipids, mycolic acids form the mycobacterial outer membrane (also known as the mycomembrane).

Arabinogalactan–peptidoglycan matrix

An essential constituent of the mycobacterial cell wall, consisting of peptidoglycan that is covalently attached to the heteropolysaccharide arabinogalactan, which is linked to the mycolic acid layer.

Mycobactin

An iron-binding compound that is synthesized by most mycobacteria and is necessary for the recovery of iron, which is an essential element for growth.

Diderm

Refers to the presence of two membranes (an inner membrane and an outer membrane) in the cell envelope. Diderm phyla encompass both Gram-negative bacteria and mycobacteria.

Bootstrap replicates

Statistical confidence values in phylogenetic trees that are inferred from phylogenetic bootstrapping, which is an informatics-based method that is based on reconstructing many trees or replicates from minor variations of the input data.

AAA+ ATPase

A member of a large, functionally diverse protein family of ATPases that are associated with various cellular activities that involve energy-dependent remodelling or the translocation of macromolecules.

Tubercle bacilli

Mycobacteria that can cause tuberculosis; that is, the M. tuberculosis complex (MTBC; for example, M. africanum, M. bovis, M. microti and M. tuberculosis) and strains of the M. canettii clade, which represents the putative progenitor pool from which the MTBC evolved.

Type IV secretion coupling proteins

Proteins that recruit nucleotide substrates to the mating pore formation system for subsequent DNA transfer.

Mycosin 1

(MycP1). One of a family of subtilisin-like serine proteases that is found in mycobacteria.

Pathogenicity-associated genomic island

A mobile segment of the genome, transferred by horizontal transfer, that contributes to rapid changes in virulence potential.

Response regulator

A transcriptional regulator that activates transcription of a specific set of genes in response to certain stimuli.

Two-component system

A regulator system that consists of a membrane-embedded sensor protein and a cytoplasmic response regulator. Two-component systems govern numerous cellular activities in diverse species of bacteria and archaea.

Haemin

An iron-containing porphyrin, corresponding to a crystalline chloride of haem, which is obtained when haemoglobin reacts with acetic acid and sodium chloride.

Pan-genome

The full set of genes of a defined species of bacteria or archaea, which comprises all of the genes that are collectively found in individual genomes of the species.

Pathogen-associated molecular patterns

(PAMPs). Conserved molecular structures that are produced by microorganisms and that are recognized as foreign by the receptors of cells of the innate immune system.

Inflammasome

A multiprotein signalling platform that controls the inflammatory response and coordinates antimicrobial host defences through the activation of caspase 1, which induces the processing of pro-interleukin-1β and pro-interleukin-18 into mature cytokines to be released from the cell.

Granuloma

Organized immune cell aggregates that form in response to selected stimuli of an infectious or non-infectious nature.

Caspase-independent cell death

Programmed host cell death that is independent of caspase activation. In the context of mycobacterial infection, caspase-independent cell death suggests the involvement of non-endogenous factors, such as bacterial effectors, in mediating host cell death.

Severe combined immunodeficiency

(SCID). A severe genetic disorder that is characterized by the absence of functioning T lymphocytes and B lymphocytes.

PE_PGRS proteins

Products of a mycobacterial multigene family that is characterized by polymorphic GC-rich repetitive sequence (PGRS) motifs. PE_PGRS proteins have a highly conserved amino-terminal domain of 110 amino acids, which contains the Pro-Glu (PE) motif, and variable carboxy-terminal domains that contain numerous repetitive sequence motifs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gröschel, M., Sayes, F., Simeone, R. et al. ESX secretion systems: mycobacterial evolution to counter host immunity. Nat Rev Microbiol 14, 677–691 (2016). https://doi.org/10.1038/nrmicro.2016.131

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro.2016.131

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing