Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Within-host evolution of bacterial pathogens

Key Points

  • Whole-genome sequencing of several isolates from single hosts has revealed previously unsuspected within-host diversity of many bacterial pathogens.

  • Within-host bacterial populations are subject to multifarious evolutionary forces including mutation, genetic drift, natural selection and fluctuating population size.

  • Within-host evolution limits the utility of sampling a single genome per host for reconstructing transmission relationships, conferring a benefit to sequencing several genomes per host.

  • Resistance to some antimicrobials frequently evolves independently in individual hosts, revealing the substantial potential of bacteria to adapt in the human body.

  • Within-host adaptation has a major role in the evolution of opportunistic infections in immunocompromised patients by otherwise free-living bacteria.

  • The study of within-host genomic evolution promises to shed light on whether pathogens tend to become more or less virulent within the host, and the selective pressures underlying this evolution.

Abstract

Whole-genome sequencing has opened the way for investigating the dynamics and genomic evolution of bacterial pathogens during the colonization and infection of humans. The application of this technology to the longitudinal study of adaptation in an infected host — in particular, the evolution of drug resistance and host adaptation in patients who are chronically infected with opportunistic pathogens — has revealed remarkable patterns of convergent evolution, suggestive of an inherent repeatability of evolution. In this Review, we describe how these studies have advanced our understanding of the mechanisms and principles of within-host genome evolution, and we consider the consequences of findings such as a potent adaptive potential for pathogenicity. Finally, we discuss the possibility that genomics may be used in the future to predict the clinical progression of bacterial infections and to suggest the best option for treatment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Within-host evolution of Staphylococcus aureus.
Figure 2: Effect of within-host evolution on the reconstruction of transmission events.
Figure 3: Within-host adaptive potential during exposure to antibiotics.
Figure 4: Within-host evolution of pathogens in the lungs of a patient with cystic fibrosis.

Similar content being viewed by others

References

  1. Fraser, C. et al. Virulence and pathogenesis of HIV-1 infection: an evolutionary perspective. Science 343, 1243727 (2014).

    PubMed  PubMed Central  Google Scholar 

  2. Pybus, O. G. & Rambaut, A. Evolutionary analysis of the dynamics of viral infectious disease. Nat. Rev. Genet. 10, 540–550 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wilson, A., Ochman, H. & Prager, E. M. Molecular time scale for evolution. Trends Genet. 3, 241–247 (1987).

    CAS  Google Scholar 

  4. Ochman, H., Elwyn, S. & Moran, N. A. Calibrating bacterial evolution. Proc. Natl Acad. Sci. USA 96, 12638–12643 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ochman, H. & Wilson, A. C. Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J. Mol. Evol. 26, 74–86 (1987).

    CAS  PubMed  Google Scholar 

  6. Didelot, X. et al. Microevolutionary analysis of Clostridium difficile genomes to investigate transmission. Genome Biol. 13, R118 (2012).

    PubMed  PubMed Central  Google Scholar 

  7. Wilson, D. J. et al. Rapid evolution and the importance of recombination to the gastroenteric pathogen Campylobacter jejuni. Mol. Biol. Evol. 26, 385–397 (2009).

    CAS  PubMed  Google Scholar 

  8. Morelli, G. et al. Microevolution of Helicobacter pylori during prolonged infection of single hosts and within families. PLoS Genet. 6, e1001036 (2010).

    PubMed  PubMed Central  Google Scholar 

  9. Biek, R., Pybus, O. G., Lloyd-Smith, J. O. & Didelot, X. Measurably evolving pathogens in the genomic era. Trends Ecol. Evol. 30, 306–313 (2015).

    PubMed  PubMed Central  Google Scholar 

  10. Ho, S. Y. W. et al. Time-dependent rates of molecular evolution. Mol. Ecol. 20, 3087–3101 (2011).

    PubMed  Google Scholar 

  11. Ho, S. Y. W. The changing face of the molecular evolutionary clock. Trends Ecol. Evol. 29, 496–503 (2014).

    PubMed  Google Scholar 

  12. Linz, B. et al. A mutation burst during the acute phase of Helicobacter pylori infection in humans and rhesus macaques. Nat. Commun. 5, 4165 (2014).

    CAS  PubMed  Google Scholar 

  13. Drake, J. W., Charlesworth, B., Charlesworth, D. & Crow, J. F. Rates of spontaneous mutation. Genetics 148, 1667–1686 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Maiden, M. C. et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl Acad. Sci. USA 95, 3140–3145 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Loman, N. J. et al. High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nat. Rev. Microbiol. 10, 599–606 (2012).

    CAS  PubMed  Google Scholar 

  16. Loman, N. J. et al. Performance comparison of benchtop high-throughput sequencing platforms. Nat. Biotechnol. 30, 434–439 (2012).

    CAS  PubMed  Google Scholar 

  17. Didelot, X., Bowden, R., Wilson, D. J., Peto, T. E. A. & Crook, D. W. Transforming clinical microbiology with bacterial genome sequencing. Nat. Rev. Genet. 13, 601–612 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Köser, C. U. et al. Routine use of microbial whole genome sequencing in diagnostic and public health microbiology. PLoS Pathog. 8, e1002824 (2012).

    PubMed  PubMed Central  Google Scholar 

  19. Wilson, D. J. Insights from genomics into bacterial pathogen populations. PLoS Pathog. 8, e1002874 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cespedes, C. et al. The clonality of Staphylococcus aureus nasal carriage. J. Infect. Dis. 191, 444–452 (2005).

    PubMed  Google Scholar 

  21. Mongkolrattanothai, K. et al. Simultaneous carriage of multiple genotypes of Staphylococcus aureus in children. J. Med. Microbiol. 60, 317–322 (2011).

    CAS  PubMed  Google Scholar 

  22. Votintseva, A. A. et al. Multiple-strain colonization in nasal carriers of Staphylococcus aureus. J. Clin. Microbiol. 52, 1192–1200 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Worby, C. J., Lipsitch, M. & Hanage, W. P. Within-host bacterial diversity hinders accurate reconstruction of transmission networks from genomic distance data. PLoS Comput. Biol. 10, e1003549 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. Falush, D. et al. Recombination and mutation during long-term gastric colonization by Helicobacter pylori: estimates of clock rates, recombination size, and minimal age. Proc. Natl Acad. Sci. USA 98, 15056–15061 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kennemann, L. et al. Helicobacter pylori genome evolution during human infection. Proc. Natl Acad. Sci. USA 108, 5033–5038 (2011). This report details extensive mutation and recombination within individual hosts in five longitudinally sampled patients infected with H. pylori.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Didelot, X. et al. Genomic evolution and transmission of Helicobacter pylori in two South African families. Proc. Natl Acad. Sci. USA 110, 13880–13885 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Mathers, A. J. et al. Klebsiella pneumoniae carbapenemase (KPC) producing K. pneumoniae at a single institution: insights into endemicity from whole genome sequencing. Antimicrob. Agents Chemother. 59, 656–1663 (2015).

    Google Scholar 

  28. Young, B. C. et al. Evolutionary dynamics of Staphylococcus aureus during progression from carriage to disease. Proc. Natl Acad. Sci. USA 109, 4550–4555 (2012). This study charts the genetic changes associated with the transition from long-term asymptomatic carriage of S. aureus to invasive bloodstream infection in one patient, identifying an excess of loss-of-function mutations that separate carried from invasive isolates, including mutations in the transcriptional regulator rsp.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Eyre, D. W. et al. Diverse sources of C. difficile infection identified on whole-genome sequencing. N. Engl. J. Med. 369, 1195–1205 (2013).

    CAS  PubMed  Google Scholar 

  30. He, M. et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat. Genet. 45, 109–113 (2013).

    CAS  PubMed  Google Scholar 

  31. Reeves, P. R. et al. Rates of mutation and host transmission for an Escherichia coli Clone over 3 years. PLoS ONE 6, e26907 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ford, C. B. et al. Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat. Genet. 43, 482–486 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Walker, T. M. et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect. Dis. 13, 137–146 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bryant, J. M. et al. Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet 381, 1551–1560 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Tomb, J. F. et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539–547 (1997).

    CAS  PubMed  Google Scholar 

  36. LeClerc, J., Li, B., Payne, W. & Cebula, T. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274, 1208–1211 (1996).

    CAS  PubMed  Google Scholar 

  37. Taddei, F. et al. Role of mutator alleles in adaptive evolution. Nature 387, 700–702 (1997).

    CAS  PubMed  Google Scholar 

  38. Lieberman, T. D. et al. Genetic variation of a bacterial pathogen within individuals with cystic fibrosis provides a record of selective pressures. Nat. Genet. 46, 82–87 (2014).

    CAS  PubMed  Google Scholar 

  39. Moxon, E. R., Rainey, P. B., Nowak, M. A. & Lenski, R. E. Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr. Biol. 4, 24–33 (1994).

    CAS  PubMed  Google Scholar 

  40. Moxon, R., Bayliss, C. & Hood, D. Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. Annu. Rev. Genet. 40, 307–333 (2006).

    CAS  PubMed  Google Scholar 

  41. Alamro, M. et al. Phase variation mediates reductions in expression of surface proteins during persistent meningococcal carriage. Infect. Immun. 82, 2472–2484 (2014).

    PubMed  PubMed Central  Google Scholar 

  42. Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000).

    CAS  PubMed  Google Scholar 

  43. Didelot, X., Méric, G., Falush, D. & Darling, A. E. Impact of homologous and non-homologous recombination in the genomic evolution of Escherichia coli. BMC Genomics 13, 256 (2012).

    PubMed  PubMed Central  Google Scholar 

  44. Croucher, N. J. et al. Rapid pneumococcal evolution in response to clinical interventions. Science 331, 430–434 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Didelot, X., Achtman, M., Parkhill, J., Thomson, N. R. & Falush, D. A bimodal pattern of relatedness between the Salmonella Paratyphi A and Typhi genomes: convergence or divergence by homologous recombination? Genome Res. 17, 61–68 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sheppard, S. K. et al. Progressive genome-wide introgression in agricultural Campylobacter coli. Mol. Ecol. 22, 1051–1064 (2013).

    CAS  PubMed  Google Scholar 

  47. Cao, Q. et al. Progressive genomic convergence of two Helicobacter pylori strains during mixed infection of a patient with chronic gastritis. Gut 64, 554–561 (2015).

    CAS  PubMed  Google Scholar 

  48. Andersson, J. O. & Andersson, S. G. Insights into the evolutionary process of genome degradation. Curr. Opin. Genet. Dev. 9, 664–671 (1999).

    CAS  PubMed  Google Scholar 

  49. Rau, M. H., Marvig, R. L., Ehrlich, G. D., Molin, S. & Jelsbak, L. Deletion and acquisition of genomic content during early stage adaptation of Pseudomonas aeruginosa to a human host environment. Environ. Microbiol. 14, 2200–2211 (2012).

    CAS  PubMed  Google Scholar 

  50. Rankin, D. J., Rocha, E. P. C. & Brown, S. P. What traits are carried on mobile genetic elements, and why? Hered. (Edinb.). 106, 1–10 (2011).

    CAS  Google Scholar 

  51. Dingle, K. E. et al. Evolutionary history of the Clostridium difficile pathogenicity locus. Genome Biol. Evol. 6, 36–52 (2014).

    PubMed  Google Scholar 

  52. Stanczak-Mrozek, K. I. et al. Within-host diversity of MRSA antimicrobial resistances. J. Antimicrob. Chemother. 70, 2191–2198 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Charlesworth, B. Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10, 195–205 (2009).

    CAS  PubMed  Google Scholar 

  54. Kuo, C., Moran, N. & Ochman, H. The consequences of genetic drift for bacterial genome complexity. Genome Res. 19, 1450–1454 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Golubchik, T. et al. Within-host evolution of Staphylococcus aureus during asymptomatic carriage. PLoS ONE 8, e61319 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Rocha, E. P. C. et al. Comparisons of dN/dS are time dependent for closely related bacterial genomes. J. Theor. Biol. 239, 226–235 (2006).

    CAS  PubMed  Google Scholar 

  57. Price, E. P. et al. Within-host evolution of Burkholderia pseudomallei over a twelve-year chronic carriage infection. mBio 4, e00388-13 (2013).

    PubMed  PubMed Central  Google Scholar 

  58. Marvig, R. L., Sommer, L. M., Molin, S. & Johansen, H. K. Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis. Nat. Genet. 47, 57–65 (2015).

    CAS  PubMed  Google Scholar 

  59. Lieberman, T. D. et al. Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes. Nat. Genet. 43, 1275–1280 (2011). A study of an outbreak of B. dolosa in patients with cystic fibrosis, which revealed evidence for adaptation to the host in the form of convergent evolution across several patients of genes with functions in antibiotic resistance and bacterial membrane composition.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Krebes, J., Didelot, X., Kennemann, L. & Suerbaum, S. Bidirectional genomic exchange between Helicobacter pylori strains from a family in Coventry, United Kingdom. Int. J. Med. Microbiol. 304, 1135–1146 (2014).

    CAS  PubMed  Google Scholar 

  61. Palmer, A. C. & Kishony, R. Understanding, predicting and manipulating the genotypic evolution of antibiotic resistance. Nat. Rev. Genet. 14, 243–248 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gardy, J. L. et al. Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N. Engl. J. Med. 364, 730–739 (2011).

    CAS  PubMed  Google Scholar 

  63. Snitkin, E. S. et al. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci. Transl. Med. 4, 148ra116 (2012).

    PubMed  PubMed Central  Google Scholar 

  64. Croucher, N. J. & Didelot, X. The application of genomics to tracing bacterial pathogen transmission. Curr. Opin. Microbiol. 23, 62–67 (2015).

    PubMed  Google Scholar 

  65. Maddison, W. P. & Knowles, L. L. Inferring phylogeny despite incomplete lineage sorting. Syst. Biol. 55, 21–30 (2006).

    PubMed  Google Scholar 

  66. Ypma, R., van Ballegooijen, W. M. & Wallinga, J. Relating phylogenetic trees to transmission trees of infectious disease outbreaks. Genetics 195, 1055–1062 (2013).

    PubMed  PubMed Central  Google Scholar 

  67. Didelot, X., Gardy, J. & Colijn, C. Bayesian inference of infectious disease transmission from whole genome sequence data. Mol. Biol. Evol. 31, 1869–1879 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ou, C. Y. et al. Molecular epidemiology of HIV transmission in a dental practice. Science 256, 1165–1171 (1992).

    CAS  PubMed  Google Scholar 

  69. Metzker, M. L. et al. Molecular evidence of HIV-1 transmission in a criminal case. Proc. Natl Acad. Sci. USA 99, 14292–14297 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Harris, S. R. et al. Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study. Lancet Infect. Dis. 13, 130–136 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Tong, S. Y. C. et al. Genome sequencing defines phylogeny and spread of methicillin-resistant Staphylococcus aureus in a high transmission setting. Genome Res. 25, 111–118 (2015). In this study, all patients from two intensive care units in a hospital in Thailand were repeatedly screened for carriage of MRSA over a period of three months. Whole-genome sequencing of patients and staff enabled the reconstruction of transmission events within and between wards.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Paterson, G. K. et al. Capturing the cloud of diversity reveals complexity and heterogeneity of MRSA carriage, infection and transmission. Nat. Commun. 6, 6560 (2015).

    CAS  PubMed  Google Scholar 

  73. Okoro, C. K. et al. High-resolution single nucleotide polymorphism analysis distinguishes recrudescence and reinfection in recurrent invasive nontyphoidal Salmonella Typhimurium disease. Clin. Infect. Dis. 54, 955–963 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Eyre, D. W. et al. Whole-genome sequencing demonstrates that fidaxomicin is superior to vancomycin for preventing reinfection and relapse of infection with Clostridium difficile. J. Infect. Dis. 209, 1446–1451 (2014).

    CAS  PubMed  Google Scholar 

  75. Mac Aogáin, M. et al. Whole-genome sequencing improves discrimination of relapse from reinfection and identifies transmission events among patients with recurrent Clostridium difficile infections. J. Hosp. Infect. 90, 108–116 (2015).

    PubMed  Google Scholar 

  76. Bryant, J. M. et al. Whole-genome sequencing to establish relapse or re-infection with Mycobacterium tuberculosis: a retrospective observational study. Lancet Respir. Med. 1, 786–792 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Guerra-Assunção, J. A. et al. Relapse or reinfection with tuberculosis: a whole genome sequencing approach in a large population-based cohort with high HIV prevalence and active follow-up. J. Infect. Dis. 211, 1154–1163 (2015).

    PubMed  Google Scholar 

  78. Guerra-Assunção, J. et al. Large scale population-based whole genome sequencing of Mycobacterium tuberculosis provides insights into transmission in a high prevalence area. eLife 4, e05166 (2015).

    PubMed Central  Google Scholar 

  79. World Health Organization. Antimicrobial resistance global report on surveillance 2014. (WHO, 2014).

  80. Elena, S. F. & Lenski, R. E. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat. Rev. Genet. 4, 457–469 (2003).

    CAS  PubMed  Google Scholar 

  81. Mwangi, M. M. et al. Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc. Natl Acad. Sci. USA 104, 9451–9456 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Eldholm, V. et al. Evolution of extensively drug-resistant Mycobacterium tuberculosis from a susceptible ancestor in a single patient. Genome Biol. 15, 490 (2014). The first documented case in which an XDR strain of M. tuberculosis evolved from a drug susceptible ancestor within a single patient. Resistance for most drugs evolved several times, with a single lineage ultimately prevailing.

    PubMed  PubMed Central  Google Scholar 

  83. Koch, A. & Wilkinson, R. J. The road to drug resistance in Mycobacterium tuberculosis. Genome Biol. 15, 520 (2014).

    PubMed  PubMed Central  Google Scholar 

  84. Howden, B. P. et al. Evolution of multidrug resistance during Staphylococcus aureus infection involves mutation of the essential two component regulator WalKR. PLoS Pathog. 7, e1002359 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Gao, W. et al. Two novel point mutations in clinical Staphylococcus aureus reduce linezolid susceptibility and switch on the stringent response to promote persistent infection. PLoS Pathog. 6, e1000944 (2010).

    PubMed  PubMed Central  Google Scholar 

  86. Delauné, A. et al. The WalKR system controls major staphylococcal virulence genes and is involved in triggering the host inflammatory response. Infect. Immun. 80, 3438–3453 (2012).

    PubMed  PubMed Central  Google Scholar 

  87. Farhat, M. R. et al. Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. Nat. Genet. 45, 1183–1189 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Comas, I. et al. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat. Genet. 44, 106–110 (2011). Using several approaches, this study identified high-confidence compensatory mutations associated with rifampicin resistance-conferring mutations in M. tuberculosis . The authors noted an enrichment of these mutations in rpoA and rpoC , which encode subunits of RNA polymerase.

    PubMed  PubMed Central  Google Scholar 

  89. Peleg, A. Y. et al. Whole genome characterization of the mechanisms of daptomycin resistance in clinical and laboratory derived isolates of Staphylococcus aureus. PLoS ONE 7, e28316 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Arias, C. a et al. Genetic basis for in vivo daptomycin resistance in enterococci. N. Engl. J. Med. 365, 892–900 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Sydenham, T. V., Sóki, J., Hasman, H., Wang, M. & Justesen, U. S. Identification of antimicrobial resistance genes in multidrug-resistant clinical Bacteroides fragilis isolates by whole genome shotgun sequencing. Anaerobe 31, 59–64 (2014).

    PubMed  Google Scholar 

  92. Cannatelli, A. et al. In vivo evolution to colistin resistance by PmrB sensor kinase mutation in KPC-producing Klebsiella pneumoniae is associated with low-dosage colistin treatment. Antimicrob. Agents Chemother. 58, 4399–4403 (2014).

    PubMed  PubMed Central  Google Scholar 

  93. Ba, X. et al. Novel mutations in penicillin-binding protein genes in clinical Staphylococcus aureus isolates that are methicillin resistant on susceptibility testing, but lack the mec gene. J. Antimicrob. Chemother. 69, 594–597 (2014).

    CAS  PubMed  Google Scholar 

  94. Saunders, N. J. et al. Deep resequencing of serial sputum isolates of Mycobacterium tuberculosis during therapeutic failure due to poor compliance reveals stepwise mutation of key resistance genes on an otherwise stable genetic background. J. Infect. 62, 212–217 (2011).

    PubMed  Google Scholar 

  95. Dordel, J. et al. Novel determinants of antibiotic resistance: identification of mutated loci in highly methicillin-resistant subpopulations of methicillin-resistant Staphylococcus aureus. mBio 5, e01000 (2014). This study reported that most MRSA populations exhibit heteroresistance; the majority of isolates are methicillin sensitive, but low-frequency mutants possess several-hundred-fold higher resistance. This heteroresistance enables rapid population adaptation upon antibiotic exposure, while avoiding constitutive expression of resistance genes.

    PubMed  PubMed Central  Google Scholar 

  96. Marvig, R. L., Johansen, H. K., Molin, S. & Jelsbak, L. Genome analysis of a transmissible lineage of Pseudomonas aeruginosa reveals pathoadaptive mutations and distinct evolutionary paths of hypermutators. PLoS Genet. 9, e1003741 (2013). An evolutionary analysis of the P. aeruginosa DK2 lineage over 38 years identified pathoadaptive mutations — in genes relating to antibiotic resistance, the cell envelope and regulatory functions — occurring independently in several patients.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Markussen, T. et al. Environmental heterogeneity drives within-host diversification and evolution of Pseudomonas aeruginosa. mBio 5, e01592-14 (2014). This study details the investigation of a P. aeruginosa DK1 infection that had persisted for 32 years, which showed diversification and co-existence of sublineages with distinct functional and genomic signatures, and different rates of evolution. These sublineages may occupy different niches within the airways of patients with cystic fibrosis.

    PubMed  PubMed Central  Google Scholar 

  98. Wong, A. & Kassen, R. Parallel evolution and local differentiation in quinolone resistance in Pseudomonas aeruginosa. Microbiology 157, 937–944 (2011).

    CAS  PubMed  Google Scholar 

  99. Yang, L. et al. Evolutionary dynamics of bacteria in a human host environment. Proc. Natl Acad. Sci. USA 108, 7481–7486 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kim, S., Lieberman, T. D. & Kishony, R. Alternating antibiotic treatments constrain evolutionary paths to multidrug resistance. Proc. Natl Acad. Sci. USA 111, 14494–14499 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. van Hal, S. J. et al. In vivo evolution of antimicrobial resistance in a series of Staphylococcus aureus patient isolates: the entire picture or a cautionary tale? J. Antimicrob. Chemother. 69, 363–367 (2014).

    CAS  PubMed  Google Scholar 

  102. Sun, G. et al. Dynamic population changes in Mycobacterium tuberculosis during acquisition and fixation of drug resistance in patients. J. Infect. Dis. 206, 1724–1733 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Morand, B. & Mühlemann, K. Heteroresistance to penicillin in Streptococcus pneumoniae. Proc. Natl Acad. Sci. USA 104, 14098–14103 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Ford, C. B. et al. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat. Genet. 45, 784–790 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Barrick, J. E. et al. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461, 1243–1247 (2009).

    CAS  PubMed  Google Scholar 

  106. Feliziani, S. et al. Coexistence and within-host evolution of diversified lineages of hypermutable Pseudomonas aeruginosa in long-term cystic fibrosis infections. PLoS Genet. 10, e1004651 (2014).

    PubMed  PubMed Central  Google Scholar 

  107. Montanari, S. et al. Biological cost of hypermutation in Pseudomonas aeruginosa strains from patients with cystic fibrosis. Microbiology 153, 1445–1454 (2007).

    CAS  PubMed  Google Scholar 

  108. Marvig, R. L. et al. Within-host evolution of Pseudomonas aeruginosa reveals adaptation toward iron acquisition from hemoglobin. mBio 5, e00966-14 (2014).

    PubMed  PubMed Central  Google Scholar 

  109. Allen, R. C., Popat, R., Diggle, S. P. & Brown, S. P. Targeting virulence: can we make evolution-proof drugs? Nat. Rev. Microbiol. 12, 300–308 (2014).

    CAS  PubMed  Google Scholar 

  110. Weinert, L. A. et al. Genomic signatures of human and animal disease in the zoonotic pathogen Streptococcus suis. Nat. Commun. 6, 6740 (2015).

    CAS  PubMed  Google Scholar 

  111. Andersen, S. B., Marvig, R. L., Molin, S., Krogh Johansen, H. & Griffin, A. S. Long-term social dynamics drive loss of function in pathogenic bacteria. Proc. Natl Acad. Sci. USA 112, 10756–10761 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Croucher, N. J. et al. Population genomics of post-vaccine changes in pneumococcal epidemiology. Nat. Genet. 45, 656–663 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Damkiær, S., Yang, L., Molin, S. & Jelsbak, L. Evolutionary remodeling of global regulatory networks during long-term bacterial adaptation to human hosts. Proc. Natl Acad. Sci. USA 110, 7766–7771 (2013).

    PubMed  PubMed Central  Google Scholar 

  114. von Eiff, C., Becker, K., Machka, K., Stammer, H. & Peters, G. Nasal carriage as a source of Staphylococcus aureus bacteremia. Study group. N. Engl. J. Med. 344, 11–16 (2001).

    CAS  PubMed  Google Scholar 

  115. Yang, J., Tauschek, M. & Robins-Browne, R. M. Control of bacterial virulence by AraC-like regulators that respond to chemical signals. Trends Microbiol. 19, 128–135 (2011).

    CAS  PubMed  Google Scholar 

  116. Fantappiè, L., Scarlato, V. & Delany, I. Identification of the in vitro target of an iron-responsive AraC-like protein from Neisseria meningitidis that is in a regulatory cascade with Fur. Microbiology 157, 2235–2247 (2011).

    PubMed  Google Scholar 

  117. Young, B. C. & Wilson, D. J. On the evolution of virulence during Staphylococcus aureus nasal carriage. Virulence 3, 454–456 (2012).

    PubMed  PubMed Central  Google Scholar 

  118. Smith, E. E. et al. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc. Natl Acad. Sci. USA 103, 8487–8492 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Kodaman, N. et al. Human and Helicobacter pylori coevolution shapes the risk of gastric disease. Proc. Natl Acad. Sci. USA 111, 1455–1460 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Campbell, D. I. et al. The African enigma: low prevalence of gastric atrophy, high prevalence of chronic inflammation in West African adults and children. Helicobacter 6, 263–267 (2001).

    CAS  PubMed  Google Scholar 

  121. Anderson, R. M. & May, R. M. Coevolution of hosts and parasites. Parasitology 85, 411–426 (1982).

    PubMed  Google Scholar 

  122. Ewald, P. W. Host-parasite relations, vectors, and the evolution of disease severity. Annu. Rev. Ecol. Syst. 14, 465–485 (1983).

    Google Scholar 

  123. Alizon, S., Hurford, A., Mideo, N. & Van Baalen, M. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J. Evol. Biol. 22, 245–259 (2009).

    CAS  PubMed  Google Scholar 

  124. Suerbaum, S. & Josenhans, C. Helicobacter pylori evolution and phenotypic diversification in a changing host. Nat. Rev. Microbiol. 5, 441–452 (2007).

    CAS  PubMed  Google Scholar 

  125. Schwarz, S. et al. Horizontal versus familial transmission of Helicobacter pylori. PLoS Pathog. 4, e1000180 (2008).

    PubMed  PubMed Central  Google Scholar 

  126. Agnew, P. & Koella, J. C. Virulence, parasite mode of transmission, and host fluctuating asymmetry. Proc. Biol. Sci. 264, 9–15 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Zdziarski, J. et al. Host imprints on bacterial genomes-rapid, divergent evolution in individual patients. PLoS Pathog. 6, 95–96 (2010).

    Google Scholar 

  128. Klemm, P., Roos, V., Ulett, G. C., Schembri, M. A. & Svanborg, C. Molecular characterization of the Escherichia coli asymptomatic bacteriuria strain 83972: the taming of a pathogen. Infect. Immun. 74, 781–785 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Toprak, E. et al. Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nat. Genet. 44, 101–105 (2011).

    PubMed  PubMed Central  Google Scholar 

  130. Espedido, B. A. et al. Whole genome sequence analysis of the first Australian OXA-48-producing outbreak-associated Klebsiella pneumoniae isolates: the resistome and in vivo evolution. PLoS ONE 8, e59920 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Whitlock, M. C. Fixation probability and time in subdivided populations. Genetics 164, 767–779 (2003).

    PubMed  PubMed Central  Google Scholar 

  132. Gill, W. P. et al. A replication clock for Mycobacterium tuberculosis. Nat. Med. 15, 211–214 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Gordon, N. C. et al. Prediction of Staphylococcus aureus antimicrobial resistance by whole-genome sequencing. J. Clin. Microbiol. 52, 1182–1191 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Stoesser, N. et al. Predicting antimicrobial susceptibilities for Escherichia coli and Klebsiella pneumoniae isolates using whole genomic sequence data. J. Antimicrob. Chemother. 68, 2234–2244 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Eyre, D. W. et al. Detection of mixed infection from bacterial whole genome sequence data allows assessment of its role in Clostridium difficile transmission. PLoS Comput. Biol. 9, e1003059 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Bentley, D. R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Eyre, D. W. et al. A pilot study of rapid benchtop sequencing of Staphylococcus aureus and Clostridium difficile for outbreak detection and surveillance. BMJ Open 2, e001124 (2012).

    PubMed  PubMed Central  Google Scholar 

  138. Reuter, S. et al. Rapid bacterial whole-genome sequencing to enhance diagnostic and public health microbiology. JAMA Intern. Med. 173, 1397–1404 (2013).

    PubMed  PubMed Central  Google Scholar 

  139. Li, H., Ruan, J. & Durbin, R. Mapping short DNA sequencing reads and variants calling using mapping quality scores. Genome Res. 18, 1851–1858 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Stoesser, N. et al. Genome sequencing of an extended series of NDM-producing Klebsiella pneumoniae neonatal infections in a Nepali hospital characterizes the extent of community versus hospital-associated transmission in an endemic setting. Antimicrob. Agents Chemother. 58, 7347–7357 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Nagarajan, N. & Pop, M. Sequence assembly demystified. Nat. Rev. Genet. 14, 157–167 (2013).

    CAS  PubMed  Google Scholar 

  142. Treangen, T. J. & Salzberg, S. L. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat. Rev. Genet. 13, 36–46 (2011).

    PubMed  PubMed Central  Google Scholar 

  143. Foster, T. J., Geoghegan, J. A., Ganesh, V. K. & Höök, M. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat. Rev. Microbiol. 12, 49–62 (2013).

    Google Scholar 

  144. Walker, T. M. et al. Assessment of Mycobacterium tuberculosis transmission in Oxfordshire, UK, 2007–2012, with whole pathogen genome sequences: an observational study. Lancet Respir. Med. 2, 285–292 (2014).

    PubMed  PubMed Central  Google Scholar 

  145. Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).

    PubMed  PubMed Central  Google Scholar 

  146. Didelot, X. & Wilson, D. J. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput. Biol. 11, e1004041 (2015).

    PubMed  PubMed Central  Google Scholar 

  147. Croucher, N. J. et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 43, e15 (2015).

    PubMed  Google Scholar 

Download references

Acknowledgements

X.D. is funded by the UK Biotechnology and Biological Sciences Research Council (BBSRC; grant BB/L023458/1) and the UK National Institute for Health Research (NIHR) Health Protection Research Unit on Modelling Methodology (grant HPRU-2012-10080). T.E.P. and D.W.C. are NIHR senior investigators. D.J.W. is a Sir Henry Dale Fellow, jointly funded by the Wellcome Trust and the Royal Society (grant 101237/Z/13/Z). This study was supported by the Health Innovation Challenge Fund, a parallel funding partnership between the Wellcome Trust (grant WT098615) and the UK Department of Health (grant HICF-T5-358), the NIHR Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance (grant HPRU-2012-10041) and the NIHR Oxford Biomedical Research Centre. The views expressed in this publication are those of the authors and not necessarily those of the funders.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xavier Didelot or Daniel J. Wilson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Evolutionary rates

The rates at which substitutions arise in a lineage (also known as molecular clock rates). Population genetics theory predicts a constant rate in a neutrally evolving population with a constant mutation rate, irrespective of changes in population size.

Multi-locus sequence typing

(MLST). A molecular epidemiology approach in which strains are typed by their nucleotide sequences at several loci, typically 400–500 bp fragments of seven housekeeping genes.

Genome assembly

A bioinformatics process in which overlapping sequencing reads are combined into longer, contiguous sequences known as 'contigs', ideally a single contig per chromosome but usually several.

Variant calling

A bioinformatics process that determines the nucleotide at a given genomic site based on sequencing reads.

Virulence

The quantifiable frequency or severity of disease.

Pulsed-field gel electrophoresis

(PFGE). A molecular epidemiology marker that enables strains to be typed by the lengths of the DNA molecules obtained after cutting the genome using a restriction enzyme.

Variable-number tandem repeats

(VNTR). A molecular epidemiology marker that enables strains to be typed by counting the number of copies of a specific repeat sequence, which may consist of one or more nucleotides and is known to occur at a given location in the genome.

Multi-locus enzyme electrophoresis

(MLEE). A molecular epidemiology approach in which strains are typed by the electrophoretic properties of several proteins.

Point mutations

Mutations that change a single nucleotide.

Mismatch repair systems

A mechanism found in all bacteria that repairs the mistakes introduced into the genome during DNA replication to enable clonal reproduction.

Phase variation

A mechanism that bacteria use to enable the rapid evolution of a specific trait in which frequently occurring, reversible mutations control gene expression.

Horizontal gene transfer

The uptake of genetic material by a recipient cell using various mechanisms, such as transformation of naked DNA, bacteriophage-mediated transduction or plasmid-mediated conjugation.

Homologous recombination

An evolutionary event in which a segment of the genome of a recipient cell is replaced with a homologous segment of the genome from a donor cell.

Random genetic drift

Variations in allele frequency in a population caused by the random genetic sampling that occurs during the birth and death of individuals.

Purifying selection

The tendency for an allele that incurs a survival or reproductive disadvantage to decrease in frequency and become lost. Deleterious alleles may nevertheless become fixed owing to random genetic drift.

Diversifying selection

A form of recurrent positive selection that favours the emergence of new alleles in a population; for example, the selective pressure of the host immune system on antigen evolution in pathogens.

dN/dS ratio

The ratio of the number of non-synonymous substitutions, which alter the protein sequence, to the number of synonymous substitutions, which do not alter the protein sequence, normalized by the ratio expected under neutrality. A dN/dS ratio below one indicates purifying selection and above one indicates positive selection.

Fixation

The point at which an allele replaces all alternative alleles of the same locus in a population. This coincides with loss of the other alleles.

Incomplete lineage sorting

A phenomenon whereby a gene tree is discordant with the population or species tree. This occurs when lineages that are ancestral to several different populations split before, and in a different order to, the splitting of the respective populations. For within-host populations, this causes discordance between phylogenies and transmission trees.

Selective sweep

The rapid increase in frequency and fixation of an advantageous allele. Selective sweeps are caused by positive selection.

Clonal interference

An evolutionary dynamic in which selectively advantageous alleles at a given locus in one lineage outcompete advantageous alleles at other loci in other lineages, causing them to become extinct. In organisms with the capacity for genome recombination, this can be avoided by combining all advantageous mutations in the same genome.

Hitchhiking

The effect whereby an allele can increase in frequency even though it is not favoured by selection, only because it is found in the same genomes as other alleles of other loci that have a selective advantage.

Pleiotropic

The unexpected influence of one locus on multiple, apparently unrelated, phenotypes.

Pre-adaptation

A phenomenon whereby a previously existing trait confers an advantage in an environment to which it was not previously exposed (also known as exaptation).

Fitness trade-offs

The existence of some constraint, possibly mechanistic or genetic, that causes adaptations to one selection pressure to be disadvantageous with respect to another.

Convergent evolution

The occurrence of mutations resulting in the same phenotype in two or more independently evolving lineages; these often arise in the same gene and may even occur at the same site.

Compensatory mutations

Mutations that redress, possibly only partially, the fitness cost of mutations conferring adaptation to specific selection pressures, such as antibiotic resistance. Without compensatory mutations, adaptations that incur a fitness cost may be lost when the selection pressure is removed.

Adaptability

The ability to rapidly adapt to a change in selective pressure, such as antibiotic use.

Heteroresistance

Varying levels of antibiotic resistance within an extremely closely related population, such as an individual colony.

Stringent response

A stress response that diverts cellular resources towards survival during nutrient limitation by instigating widespread regulatory changes, including the upregulation of amino acid synthesis and protease production.

Pathoadaptive

An adaptation that confers pathogenicity.

Hypermutators

An individual or lineage with increased mutation rate, usually as a result of a loss of functionality in DNA repair systems.

Positive selection

The tendency for an allele that confers a survival or reproductive advantage to increase in frequency and become fixed at a higher rate. Advantageous alleles may nevertheless become lost, owing to random genetic drift despite positive selection.

Mucoidy

A bacterial phenotype describing the production of glycoproteins resembling mucus.

Quorum sensing

Mechanism by which a cell responds to changes in population size or density, classically by the secretion and detection of small peptides (also known as pheromones).

Melioidosis

An infectious disease caused by Burkholderia pseudomallei, endemic in South East Asia and Australia, which can lead to sepsis and pneumonia.

Adaptive trade-off hypothesis

The hypothesis that the long-term evolutionary success of a pathogen requires a balance between the duration of infection and virulence, based on the assumption that an increase in virulence decreases the average duration of infection.

Effective population size

The size of an idealized (neutrally evolving, homogeneous) population that is otherwise equivalent to an observed population. The effective population size is typically smaller than the number of individuals in the population, owing to population structure and variation in survival or reproductive viability. Effective population size is also known as Ne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Didelot, X., Walker, A., Peto, T. et al. Within-host evolution of bacterial pathogens. Nat Rev Microbiol 14, 150–162 (2016). https://doi.org/10.1038/nrmicro.2015.13

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro.2015.13

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing