Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Closing in on the biological functions of fps/fes and fer

Key Points

  • The fps/fes (Fujinami poultry sarcoma/feline sarcoma) and fer (Fes-related protein) proto-oncogenes encode distinct members of the non-receptor/cytoplasmic protein-tyrosine kinase family. Retroviral fps/fes alleles encode Gag–Fps/Fes fusion proteins, which are constitutively active kinases that can cause cellular transformation in vitro and tumours in vivo. The role of cellular Fps/Fes and Fer kinases is still unclear.

  • Cellular Fps/Fes and Fer kinases consist of an amino-terminal Fps/Fes/Fer/CIP4 homology (FCH) domain — which might have a role in microfilament association — followed by three regions of predicted coiled-coils (which seem to regulate oligomerization), a central Src-homology-2 (SH2) domain (which mediates association with phosphotyrosine-containing peptide motifs) and a carboxy-terminal catalytic domain.

  • Transgenic overexpression of retroviral or activated mutant fps/fes alleles resulted in several malignancies and hyperplasias in some tissues. These observations underscored the potential involvement of Fps/Fes in human cancer and indicate roles for regulation of cellular proliferation.

  • Fps/Fes and Fer kinases are implicated in signalling downstream of the receptors for several cytokines, growth factors and immunoglobin (Ig)-receptors; however, the precise molecular roles are not well understood. Some recent observations of Fps/Fes and Fer activation downstream from IgE receptors on mast cells and the glycoprotein VI collagen receptor on platelets indicates that they might serve redundant biochemical roles.

  • Studies using targeted germ-line null or loss-of-function mouse models of Fps/Fes have shown that this kinase is not required for haematopoiesis. However, many subtle phenotypes show an involvement that might be redundant with another kinase. This is further supported by more pronounced defects in mice that lack both Fps/Fes and Fer kinase activities.

  • Other studies with targeted mouse models show that both Fps/Fes and Fer are involved in the regulation of inflammatory responses and innate immunity. Mice that lack either Fps/Fes or Fer kinase activity show enhanced sensitivity to endotoxin challenge and defects in the regulation of inflammatory cell functions, including mast-cell migration and leukocyte extravasation.

  • Although the molecular functions of Fps/Fes and Fer kinases are still unknown, there is mounting evidence for a role in regulation of cell–cell and cell–matrix interactions, possibly through regulating rearrangement of the cytoskeleton and cross-talk between integrins and other receptor systems, such as adherens junctions or receptors for growth factors and cytokines.

Abstract

Fps/Fes and Fer are the only known members of a distinct subfamily of the non-receptor protein-tyrosine kinase family. Recent studies indicate that these kinases have roles in regulating cytoskeletal rearrangements and inside–out signalling that accompany receptor–ligand, cell–matrix and cell–cell interactions. Genetic analysis using transgenic mouse models also implicates these kinases in the regulation of inflammation and innate immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural organization of cellular and viral Fps/Fes and cellular Fer proteins.
Figure 2: FCH domain-containing proteins.
Figure 3: Putative models of Fps/Fes and Fer regulation.
Figure 4: A model of the Fer SH2 and catalytic domains based on the solved structures of related PTKs.
Figure 5: Hypothetical involvement of Fer in crosstalk between different receptor systems.
Figure 6: Possible involvement of Fer and Fps/Fes in crosstalk between different receptors systems.

Similar content being viewed by others

References

  1. Roebroek, A. J. M. et al. The structure of the human c-fps/fes proto-oncogene. EMBO J. 4, 2897–2903 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wilks, A. F. & Kurban, R. R. Isolation and structural analysis of murine c-fes cDNA clones. Oncogene 3, 289–294 (1988).

    CAS  PubMed  Google Scholar 

  3. Alcalay, M. et al. Characterization of human and mouse c-fes cDNA clones and identification of the 5′ end of the gene. Oncogene 5, 267–275 (1990).

    CAS  PubMed  Google Scholar 

  4. Letwin, K., Yee, S.-P. & Pawson, T. Novel protein-tyrosine kinase cDNAs related to fps/fes and eph cloned using anti-phosphotyrosine antibody. Oncogene 3, 621–627 (1988).

    CAS  PubMed  Google Scholar 

  5. Hao, Q.-L., Heisterkamp, N. & Groffen, J. Isolation and sequence analysis of a novel human tyrosine kinase. Mol. Cell. Biol. 9, 1587–1593 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Groffen, J., Heisterkamp, N., Shibuya, M., Hanafusa, H. & Stephenson, J. R. Transforming genes of avian (v-fps) and mammalian (v-fes) retroviruses correspond to a common cellular locus. Virology 125, 480–486 (1983).

    Article  CAS  PubMed  Google Scholar 

  7. Paulson, R., Jackson, J., Immergluck, K. & Bishop, J. M. The DFer gene of Drosophila melanogaster encodes two membrane-associated proteins that can both transform vertebrate cells. Oncogene 14, 641–652 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Snyder, S. P. & Theilen, G. H. Transmissible feline fibrosarcoma. Nature 221, 1074–1075 (1969).

    Article  CAS  PubMed  Google Scholar 

  9. Shibuya, M., Hanafusa, T., Hanafusa, H. & Stephenson, J. R. Homology exists among the transforming sequences of avian and feline sarcoma viruses. Proc. Natl Acad. Sci. USA 77, 6536–6540 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang, C. C., Hammond, C. & Bishop, J. M. Nucleotide sequence and topography of chicken c-fps. Genesis of a retroviral oncogene encoding a tyrosine-specific protein kinase. J. Mol. Biol. 181, 175–186 (1985).

    Article  CAS  PubMed  Google Scholar 

  11. Carmier, J. F. & Samarut, J. Chicken myeloid stem cells infected by retroviruses carrying the v-fps oncogene do not require exogenous growth factors to differentiate in vitro. Cell 44, 159–165 (1986).

    Article  CAS  PubMed  Google Scholar 

  12. Meckling-Gill, K. A., Yee, S. P., Schrader, J. W. & Pawson, T. A retrovirus encoding the v-fps protein-tyrosine kinase induces factor-independent growth and tumorigenicity in FDC-P1 cells. Biochim. Biophys. Acta 1137, 65–72 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Sadowski, I., Pawson, T. & Lagarde, A. v-fps protein-tyrosine kinase coordinately enhances the malignancy and growth factor responsiveness of pre-neoplastic lung fibroblasts. Oncogene 2, 241–247 (1988).

    CAS  PubMed  Google Scholar 

  14. Anderson, D. H. & Ismail, P. M. v-Fps causes transformation of inducing tyrosine phosphorylation and activation of the PDGFα receptor. Oncogene 16, 2321–2331 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Koch, C. A., Moran, M., Sadowski, I. & Pawson, T. The common src homology region 2 domain of cytoplasmic signaling proteins is a positive effector of v-fps tyrosine kinase function. Mol. Cell. Biol. 9, 4131–4140 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Moran, M. F., Polakis, P., McCormick, F., Pawson, T. & Ellis, C. Protein-tyrosine kinases regulate the phosphorylation, protein interactions, and subcellular distribution of p21ras GTPase activating protein. Mol. Cell. Biol. 11, 1804–1812 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ellis, C., Moran, M., McCormick, F. & Pawson, T. Phosphorylation of GAP and GAP-associated proteins by transforming and mitogenic tyrosine kinases. Nature 343, 377–381 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Fukui, Y., Saltiel, A. R. & Hanafusa, H. Phosphatidylinositol-3 kinase is activated in v-src, v-yes, and v-fps transformed chicken embryo fibroblasts. Oncogene 6, 407–411 (1991).

    CAS  PubMed  Google Scholar 

  19. Maru, Y. et al. Tyrosine phosphorylation of BCR by FPS/FES protein-tyrosine kinases induces association of BCR with GRB-2/SOS. Mol. Cell. Biol. 15, 835–842 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McGlade, J., Cheng, A., Pelicci, G., Pelicci, P. G. & Pawson, T. Shc proteins are phosphorylated and regulated by the v-Src and v-Fps protein-tyrosine kinases. Proc. Natl Acad. Sci. USA 89, 8869–8873 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Garcia, R. et al. Constitutive activation of Stat3 in fibroblasts transformed by diverse oncoproteins and in breast carcinoma cells. Cell Growth Differ. 8, 1267–1276 (1997).

    CAS  PubMed  Google Scholar 

  22. Kurata, W. E. & Lau, A. F. p130gag–fps disrupts gap junctional communication and induces phosphorylation of connexin43 in a manner similar to that of pp60v-src. Oncogene 9, 329–335 (1994).

    CAS  PubMed  Google Scholar 

  23. Yee, S. P. et al. Lymphoid and mesenchymal tumors in transgenic mice expressing the v-fps protein-tyrosine kinase. Mol. Cell. Biol. 9, 5491–5499 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yee, S. P. et al. Cardiac and neurological abnormalities in v-fps transgenic mice. Proc. Natl Acad. Sci. USA 86, 5873–5877 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roebroek, A. J. M., Schalken, J. A., Onnekink, C., Bloemers, H. P. J. & Van de Ven, W. J. M. Structure of the feline c-fps/fes proto-oncogene: Genesis of a retroviral oncogene. J. Virol 61, 2009–2016 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. MacDonald, I., Levy, J. & Pawson, T. Expression of the mammalian c-fes protein in hematopoietic cells and identification of a distinct fes-related protein. Mol. Cell. Biol. 5, 2543–2551 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Feldman, R. A., Gabrilove, J. L., Tam, J. P., Moore, M. A. & Hanafusa, H. Specific expression of the human cellular fps/fes-encoded protein NCP92 in normal and leukemic myeloid cells. Proc. Natl Acad. Sci. USA 82, 2379–2383 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ferrari, S. et al. Anti-apoptotic effect of c-fes protooncogene during granulocytic differentiation. Leukemia 8, S91–S94 (1994).

    PubMed  Google Scholar 

  29. Yu, G., Smithgall, T. E. & Glazer, R. I. K562 leukemia cells transfected with the human c-fes gene acquire the ability to undergo myeloid differentiation. J. Biol. Chem. 264, 10276–10281 (1989).

    Article  CAS  PubMed  Google Scholar 

  30. Senis, Y. et al. Targeted disruption of the murine fps/fes proto-oncogene reveals that Fps/Fes kinase activity is dispensable for hematopoiesis. Mol. Cell. Biol. 19, 7436–7446 (1999).This first report of targeted disruption of the fps/fes gene in mice contested the previously held idea that Fps/Fes kinase activity was essential for myelopoiesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hackenmiller, R., Kim, J., Feldman, R. A. & Simon, M. C. Abnormal Stat activation, hematopoietic homeostasis, and innate immunity in c-fes−/− mice. Immunity 13, 397–407 (2000).Fps/Fes-null-mutant mice were reported to have enhanced myeloid cytokine-induced activation of STAT3 and STAT5, and defects in haematopoiesis.

    Article  CAS  PubMed  Google Scholar 

  32. Zirngibl, R. A., Senis, Y. & Greer, P. A. Enhanced endotoxin-sensitivity in Fps/Fes-null mice with minimal defects in hematopoietic hemeostasis. Mol. Cell. Biol. 22, 2472–2486 (2002).Defective innate immunity is first shown in Fps/Fes-null-mutant mice, and this evidence is strengthened by rescue with a human FPS/FES transgene.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Haigh, J., McVeigh, J. & Greer, P. The fps/fes tyrosine kinase is expressed in myeloid, vascular endothelial, epithelial, and neuronal cells and is localized in the trans-golgi network. Cell Growth Differ. 7, 931–944 (1996).

    CAS  PubMed  Google Scholar 

  34. Care, A. et al. c-fes expression in ontogenetic development and hematopoietic differentiation. Oncogene 9, 739–747 (1994).

    CAS  PubMed  Google Scholar 

  35. Greer, P. et al. The Fps/Fes protein-tyrosine kinase promotes angiogenesis in transgenic mice. Mol. Cell. Biol. 14, 6755–6763 (1994).Hypervascularity in transgenic mice that express an activated fps/fes allele provides the first evidence for a role of the Fps/Fes kinase in angiogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Keshet, E., Itin, A., Fischman, K. & Nir, U. The testis-specific transcript (ferT) of the tyrosine kinase FER is expressed during spermatogenesis in a stage-specific manner. Mol. Cell. Biol. 10, 5021–5025 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Craig, A. W. B., Zirngibl, R., Williams, K., Cole, L. A. & Greer, P. A. Mice devoid of Fer protein-tyrosine kinase activity are viable and fertile, but display reduced cortactin phosphorylation. Mol. Cell. Biol. 21, 603–613 (2001).Targeted disruption of the mouse fer gene shows that the Fer kinase is not essential, which is a surprising result given its ubiquitous expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aspenström, P. A. Cdc42 target protein with homology to the non-kinase domain of FER has a potential role in regulating the actin cytoskeleton. Curr. Biol. 7, 479–487 (1997).The homology between Fps/Fes, Fer and a new Cdc42-interacting protein (CIP4) first indicated a conserved function for the Fps/Fes/Fer/CIP4 homology domain (FCH).

    Article  PubMed  Google Scholar 

  39. Tian, L., Nelson, D. L. & Stewart, D. M. Cdc42-interacting protein 4 mediates binding of the Wiskott-Aldrich syndrome protein to microtubules. J. Biol. Chem. 275, 7854–7861 (2000).The Fps/Fes/Fer/CIP4 homology domain (FCH) in CIP4 is shown to mediate binding to microfilaments, which is the first evidence for a function of the conserved FCH domain.

    Article  CAS  PubMed  Google Scholar 

  40. Modregger, J., Ritter, B., Witter, B., Paulsson, M. & Plomann, M. All three PACSIN isoforms bind to endocytic proteins and inhibit endocytosis. J. Cell Sci. 113, 4511–4521 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Qualmann, B. & Kelly, R. B. Syndapin isoforms participate in receptor-mediated endocytosis and actin organization. J. Cell Biol. 148, 1047–1062 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yeung, Y. G., Soldera, S. & Stanley, E. R. A novel macrophage actin-associated protein (MAYP) is tyrosine-phosphorylated following colony stimulating factor-1 stimulation. J. Biol. Chem. 273, 30638–30642 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Linder, S., Hufner, K., Wintergerst, U. & Aepfelbacher, M. Microtubule-dependent formation of podosomal adhesion structures in primary human macrophages. J. Cell Sci. 113, 4165–4176 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Fuchs, U. et al. The human formin-binding protein 17 (FBP17) interacts with sorting nexin, SNX2, and is an MLL-fusion partner in acute myelogeneous leukemia. Proc. Natl Acad. Sci. USA 98, 8756–8761 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tribioli, C. et al. An X chromosome-linked gene encoding a protein with characteristics of a rhoGAP predominantly expressed in hematopoietic cells. Proc. Natl Acad. Sci. USA 93, 695–699 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yates, K. E., Lynch, M. R., Wong, S. G., Slamon, D. J. & Gasson, J. C. Human c-FES is a nuclear tyrosine kinase. Oncogene 10, 1239–1242 (1995).

    CAS  PubMed  Google Scholar 

  47. Hao, Q. L., Ferris, D. K., White, G., Heisterkamp, N. & Groffen, J. Nuclear and cytoplasmic location of the FER tyrosine kinase. Mol. Cell. Biol. 11, 1180–1183 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ben-Dor, I., Bern, O., Tennenbaum, T. & Nir, U. Cell cycle-dependent nuclear accumulation of the p94fer tyrosine kinase is regulated by its NH2 terminus and is affected by kinase domain integrity and ATP binding. Cell Growth Differ. 10, 113–129 (1999).

    CAS  PubMed  Google Scholar 

  49. Zirngibl, R., Schulze, D., Mirski, S. E. L., Cole, S. P. C. & Greer, P. A. Subcellular localization analysis of the closely related Fps/Fes and Fer protein-tyrosine kinases suggests a distinct role for Fps/Fes in vesicular trafficking. Exp. Cell Res. 266, 87–94 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Craig, A. W., Zirngibl, R. & Greer, P. Disruption of coiled-coil domains in Fer protein-tyrosine kinase abolishes trimerization but not kinase activation. J. Biol. Chem. 274, 19934–19942 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Kim, L. & Wong, T. W. The cytoplasmic tyrosine kinase FER is associated with the catenin-like substrate pp120 and is activated by growth factors. Mol. Cell. Biol. 15, 4553–4561 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cheng, H. Y., Schiavone, A. P. & Smithgall, T. E. A point mutation in the N-terminal coiled-coil domain releases c-Fes tyrosine kinase activity and survival signaling in myeloid leukemia cells. Mol. Cell. Biol. 21, 6170–6180 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Read, R. D., Lionberger, J. M. & Smithgall, T. E. Oligomerization of the Fes tyrosine kinase. J. Biol. Chem. 272, 18498–18503 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Smithgall, T. E. et al. The c-Fes family of protein-tyrosine kinases. Crit. Rev. Oncog. 9, 43–62 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Reynolds, A. B., Herbert, L., Cleveland, J. L., Berg, S. T. & Gaut, J. R. p120, a novel substrate of protein tyrosine kinase receptors and of p60v-src, is related to cadherin-binding factors β-catenin, plakoglobin and armadillo. Oncogene 7, 2439–2445 (1992).

    CAS  PubMed  Google Scholar 

  56. Rosato, R., Veltmaat, J. M., Groffen, J. & Heisterkamp, N. Involvement of the tyrosine kinase fer in cell adhesion. Mol. Cell. Biol. 18, 5762–5770 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Anastasiadis, P. Z. & Reynolds, A. B. Regulation of Rho GTPases by p120-catenin. Curr. Opin. Cell Biol. 13, 604–610 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Stone, J. C., Atkinson, T., Smith, M. & Pawson, T. Identification of functional regions in the transforming protein of Fujinami sarcoma virus by in-phase insertion mutagenesis. Cell 37, 549–558 (1984).

    Article  CAS  PubMed  Google Scholar 

  59. Sadowski, I., Stone, J. C. & Pawson, T. A noncatalytic domain conserved among cytoplasmic protein-tyrosine kinases modifies the kinase function and transforming activity of Fujinami sarcoma virus P130gag–fps. Mol. Cell. Biol. 6, 4396–4408 (1986).Structure/function and genetic analysis provides the first evidence that the conserved Src-homology-2 domain might mediate protein–protein interactions.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. DeClue, J. E., Sadowski, I., Martin, G. S. & Pawson, T. A conserved domain regulates interactions of the v-fps protein-tyrosine kinase with the host cell. Proc. Natl Acad. Sci. USA 84, 9064–9068 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hjermstad, S. J., Peters, K. L., Briggs, S. D., Glazer, R. I. & Smithgall, T. E. Regulation of the human c-fes protein tyrosine kinase (p93c-fes) by its src homology 2 domain and major autophosphorylation site (Tyr-713). Oncogene 8, 2283–2292 (1993).

    CAS  PubMed  Google Scholar 

  62. Jucker, M., McKenna, K., da Silva, A. J., Rudd, C. E. & Feldman, R. A. The Fes protein-tyrosine kinase phosphorylates a subset of macrophage proteins that are involved in cell adhesion and cell–cell signaling. J. Biol. Chem. 272, 2104–2109 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Kim, L. & Wong, T. W. Growth factor-dependent phosphorylation of the actin-binding protein cortactin is mediated by the cytoplasmic tyrosine kinase FER. J. Biol. Chem. 273, 23542–23548 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Iwanishi, M., Czech, M. P. & Cherniack, A. D. The protein tyrosine kinase Fer associates with signaling complexes containing Insulin receptor substrate-1 and phosphatidylinositol 3-kinase. J. Biol. Chem. 275, 38995–39000 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Songyang, Z. et al. Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Mol. Cell. Biol. 14, 2777–2785 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Songyang, Z. et al. Catalytic specificity of protein-tyrosine kinases is critical for selective signalling. Nature 373, 536–539 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Li, J. & Smithgall, T. E. Co-expression with BCR induces activation of the FES tyrosine kinase and phosphorylation of specific N-terminal BCR tyrosine residues. J. Biol. Chem. 271, 32930–32936 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Li, J. & Smithgall, T. E. Fibroblast transformation by Fps/Fes tyrosine kinases requires Ras, Rac, and Cdc42 and induces extracellular signal-regulated and c-Jun N-terminal kinase activation. J. Biol. Chem. 273, 13828–13834 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Lionberger, J. M. & Smithgall, T. E. The c-Fes protein-tyrosine kinase suppresses cytokine-independent outgrowth of myeloid leukemia cells induced by Bcr–Abl. Cancer Res. 60, 1097–1103 (2000).

    CAS  PubMed  Google Scholar 

  70. Hjermstad, S. J., Briggs, S. D. & Smithgall, T. E. Phosphorylation of the ras GTPase-activating protein (GAP) by the p93 c-fes protein-tyrosine kinase in vitro and formation of GAP–fes complexes via an SH2 domain-dependent mechanism. Biochemistry 32, 10519–10525 (1993).

    Article  CAS  PubMed  Google Scholar 

  71. Nelson, K. L., Rogers, J. A., Bowman, T. L., Jove, R. & Smithgall, T. E. Activation of STAT3 by the c-Fes protein-tyrosine kinase. J. Biol. Chem. 273, 7072–7077 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Kapus, A. et al. Cell volume-dependent phosphorylation of proteins of the cortical cytoskeleton and cell–cell contact sites: the role of Fyn and FER kinases. J. Biol. Chem. 275, 32289–32298 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Priel-Halachmi, S. et al. FER kinase activation of Stat3 is determined by the N-terminal sequence. J. Biol. Chem. 275, 32289–32298 (2000).

    Article  Google Scholar 

  74. Cole, L. A., Zirngibl, R., Craig, A. W., Jia, Z. & Greer, P. Mutation of a highly conserved aspartate residue in subdomain IX abolishes Fer protein-tyrosine kinase activity. Protein Eng. 12, 155–162 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Xu, W., Harrison, S. C. & Eck, M. J. Three-dimensional structure of the tyrosine kinase c-Src. Nature 385, 595–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Weinmaster, G., Hinze, E. & Pawson, T. Mapping of multiple phosphorylation sites within the structural and catalytic domains of the Fujinami avian sarcoma virus transforming protein. J. Virol. 46, 29–41 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rogers, J. A., Read, R. D., Li, J., Peters, K. L. & Smithgall, T. E. Autophosphorylation of the Fes tyrosine kinase. Evidence for an intermolecular mechanism involving two kinase domain tyrosine residues. J. Biol. Chem. 271, 17519–17525 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Kanda, S. et al. The nonreceptor protein-tyrosine kinase c-Fes is involved in fibroblast growth factor-2-induced chemotaxis of murine brain capillary endothelial cells. J. Biol. Chem. 275, 10105–10111 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Jiang, H. et al. Fes mediates the IL-4 activation of insulin receptor substrate-2 and cellular proliferation. J. Immunol. 166, 2627–2634 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Ihle, J. N., Nosaka, T., Thierfelder, W., Quelle, F. W. & Shimoda, K. Jaks and Stats in cytokine signaling. Stem Cells 15, 105–111 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Reddy, E. P., Korapati, A., Chaturvedi, P. & Rane, S. IL-3 signaling and the role of Src kinases, JAKs and STATs: a covert liaison unveiled. Oncogene 19, 2532–2547 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Hanazono, Y. et al. c-fps/fes protein-tyrosine kinase is implicated in a signaling pathway triggered by granulocyte-macrophage colony stimulating factor and interleukin-3. EMBO J. 12, 1641–1646 (1993).Provides the first evidence that Fps/Fes is activated by engagement of myeloid cytokine receptors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Linnekin, D., Mou, S. M., Greer, P., Longo, D. L. & Ferris, D. K. Phosphorylation of a Fes-related protein in response to granulocyte-macrophage colony stimulating factor. J. Biol. Chem. 270, 4950–4954 (1995).

    Article  CAS  PubMed  Google Scholar 

  84. Izuhara, K., Feldman, R. A., Greer, P. & Harada, N. Interaction of the c-fes proto-oncogene product with the interleukin-4 receptor. J. Biol. Chem. 269, 18623–18629 (1994).

    Article  CAS  PubMed  Google Scholar 

  85. Matsuda, T. et al. Activation of Fes tyrosine kinase by gp130, an interleukin-6 family cytokine signal transducer, and their association. J. Biol. Chem. 270, 11037–11039 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Hanazono, Y. et al. Erythropoietin induces tyrosine phosphorylation and kinase activity of the c-fps/fes proto-oncogene product in human erythropoietin-responsive cells. Blood 81, 3193–3196 (1993).

    Article  CAS  PubMed  Google Scholar 

  87. Izuhara, K., Feldman, R. A., Greer, P. & Harada, N. Interleukin-4 induces association of the c-fes proto-oncogene product with phosphatidylinositol-3 kinase. Blood 88, 3910–3918 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Brizzi, M. F. et al. Granulocyte-macrophage colony-stimulating factor stimulates JAK2 signaling pathway and rapidly activates p93 fes, STAT1 p91, and STAT3 p92 in polymorphonuclear leukocytes. J. Biol. Chem. 271, 3562–3567 (1996).Fps/Fes is found to be activated downstream of the GM-CSF receptor, and also associated with the other prominent signalling molecules Jak2, Stat1 and Stat3.

    Article  CAS  PubMed  Google Scholar 

  89. Yates, K. E., Crooks, G. M. & Gasson, J. C. Analysis of Fes kinase activity in myeloid cell growth and differentiation. Stem Cells 14, 714–724 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Greer, P., Maltby, V., Rossant, J., Bernstein, A. & Pawson, T. Myeloid expression of the human c-fps/fes proto-oncogene in transgenic mice. Mol. Cell. Biol. 10, 2521–2527 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang, S.-J., Greer, P. & Auerbach, R. Isolation and propagation of yolk sac-derived endothelial cells from a hypervascular transgenic mouse expressing a gain-of-function fps/fes proto-oncogene. In Vitro Cell Dev. Biol. Anim. 32, 292–299 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Roebroek, A. J. et al. Failure of ventral closure and axial rotation in embryos lacking the proprotein convertase Furin. Development 125, 4863–4876 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. McCafferty, D.-M., Craig, A. W. B, Senis, Y. & Greer, P. A. Absence of Fer protein-tyrosine kinase exacerbates leukocyte recruitment in response to endotoxin. J. Immunol. (in the press).

  94. Kaksonen, M., Peng, H. B. & Rauvala, H. Association of cortactin with dynamic actin in lamellipodia and on endosomal vesicles. J. Cell Sci. 113, 4421–4426 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Patel, A. S., Schechter, G. L., Wasilenko, W. J. & Somers, K. D. Overexpression of EMS1/cortactin in NIH3T3 fibroblasts causes increased cell motility and invasion in vitro. Oncogene 16, 3227–3232 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Huang, C., Liu, J., Haudenschild, C. C. & Zhan, X. The role of tyrosine phosphorylation of cortactin in the locomotion of endothelial cells. J. Biol. Chem. 273, 25770–25776 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Thomas, S. M., Soriano, P. & Imamoto, A. Specific and redundant roles of Src and Fyn in organizing the cytoskeleton. Nature 376, 267–271 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Huang, C. et al. Proteolysis of platelet cortactin by calpain. J. Biol. Chem. 272, 19248–19252 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Dourdin, N. et al. Reduced cell migration and disruption of the actin cytoskeleton in calpain-deficient embryonic fibroblasts. J. Biol. Chem. 276, 48382–48388 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Li, H., Leung, T. C., Hoffman, S., Balsamo, J. & Lilien, J. Coordinate regulation of cadherin and integrin function by the chondroitin sulfate proteoglycan neurocan. J. Cell Biol. 149, 1275–1288 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Arregui, C., Pathre, P., Lilien, J. & Balsamo, J. The nonreceptor tyrosine kinase fer mediates cross-talk between N-cadherin and β1-integrins. J. Cell Biol. 149, 1263–1274 (2000).A role for the Fer kinase is first proposed in regulation of crosstalk between adherens junctions and focal adhesions during neurite outgrowth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Aplin, A. E., Howe, A., Alahari, S. K. & Juliano, R. L. Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol. Rev. 50, 197–263 (1998).

    CAS  PubMed  Google Scholar 

  103. Liu, F., Sells, M. A. & Chernoff, J. Protein tyrosine phosphatase 1B negatively regulates integrin signaling. Curr. Biol. 8, 173–176 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Rhee, J., Lilien, J. & Balsamo, J. Essential tyrosine residues for interaction of the non-receptor protein-tyrosine phosphatase PTP1B with N-cadherin. J. Biol. Chem. 276, 6640–6644. (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Cheng, A., Bal, G. S., Kennedy, B. P. & Tremblay, M. L. Attenuation of adhesion-dependent signaling and cell spreading in transformed fibroblasts lacking protein tyrosine phosphatase-1B. J. Biol. Chem. 276, 25848–25855 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Garton, A. J. & Tonks, N. K. Regulation of fibroblast motility by the protein tyrosine phosphatase PTP-PEST. J. Biol. Chem. 274, 3811–3818 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Ouwens, D. M. et al. Insulin-induced tyrosine dephosphorylation of paxillin and focal adhesion kinase requires active phosphotyrosine phosphatase 1D. Biochem. J. 318, 609–614 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Serra-Pages, C. et al. The LAR transmembrane protein tyrosine phosphatase and a coiled-coil LAR-interacting protein co-localize at focal adhesions. EMBO J. 14, 2827–2838 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Harder, K. W., Moller, N. P., Peacock, J. W. & Jirik, F. R. Protein-tyrosine phosphatase α regulates Src family kinases and alters cell–substratum adhesion. J. Biol. Chem. 273, 31890–31900 (1998).

    Article  CAS  PubMed  Google Scholar 

  110. Penhallow, R. C., Class, K., Sonoda, H., Bolen, J. B. & Rowley, R. B. Temporal activation of nontransmembrane protein-tyrosine kinases following mast cell FcɛRI engagement. J. Biol. Chem. 270, 23362–23365 (1995).

    Article  CAS  PubMed  Google Scholar 

  111. Watson, S. P. et al. The role of ITAM- and ITIM-coupled receptors in platelet activation by collagen. Thromb. Haemost. 86, 276–288 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K. & Muller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263–274 (1993).

    Article  CAS  PubMed  Google Scholar 

  113. O'Farrell, A. M. et al. Stat3-dependent induction of p19INK4D by IL-10 contributes to inhibition of macrophage proliferation. J. Immunol. 164, 4607–4615 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Takeda, K. et al. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10, 39–49 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Plowman, G. D., Sudarsanam, S., Bingham, J., Whyte, D. & Hunter, T. The protein kinases of Caenorhabditis elegans: a model for signal transduction in multicellular organisms. Proc. Natl Acad. Sci. USA 96, 13603–13610 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cetkovic, H., Muller, I. M., Muller, W. E. & Gamulin, V. Characterization and phylogenetic analysis of a cDNA encoding the Fes/FER related, non-receptor protein-tyrosine kinase in the marine sponge sycon raphanus. Gene 216, 77–84 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Heydemann, A., Juang, G., Hennessy, K., Parmacek, M. S. & Simon, M. C. The myeloid-cell-specific c-fes promoter is regulated by Sp1, PU.1, and a novel transcription factor. Mol. Cell. Biol. 16, 1676–1686 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ray-Gallet, D., Mao, C., Tavitian, A. & Moreau-Gachelin, F. DNA binding specificities of Spi-1/PU.1 and Spi-B transcription factors and identification of a Spi-1/Spi-B binding site in the c-fes/c-fps promoter. Oncogene 11, 303–313 (1995).

    CAS  PubMed  Google Scholar 

  119. Heydemann, A., Boehmler, J. H. & Simon, M. C. Expression of two myeloid cell-specific genes requires the novel transcription factor, c-fes expression factor. J. Biol. Chem. 272, 29527–29537 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. He, Y., Borellini, F., Koch, W. H., Huang, K. X. & Glazer, R. I. Transcriptional regulation of c-Fes in myeloid leukemia cells. Biochim. Biophys. Acta 1306, 179–186 (1996).

    Article  PubMed  Google Scholar 

  121. Heydemann, A. et al. A minimal c-fes cassette directs myeloid-specific expression in transgenic mice. Blood 96, 3040–3048 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Keller, P. et al. FES-Cre targets phosphatidylinositol glycan class A (PIGA) inactivation to hematopoietic stem cells in the bone marrow. J. Exp. Med. 194, 581–589 (2001).Provides compelling genetic evidence for fps/fes expression in haematopoietic stem cells by using fps/fes to achieve deletion of the PIGA gene in transgenic mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fischman, K. et al. A murine fer testis-specific transcript (ferT) encodes a truncated Fer protein. Mol. Cell. Biol. 10, 146–153 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank E. Leinala and Z. Jia for assistance with the modelled Fer structure, and A. Craig, W. Sangrar, Y. Senis, R. Zirngibl, N. Peterson, D. Lee, P. Truesdell and S. Parsons for critical comments about this article and for personal communication of unpublished results. Our research programme is supported by grants from the Canadian Institutes of Health Research and the National Cancer Institute of Canada with funds from the Canadian Cancer Society.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Interpro

FCH

SH2

SH3

LocusLink

PDGF receptor

Swiss-Prot

Abl

BCR

β-catenin

CD3ɛ

CD72

CIP4

connexin 43

cortactin

EGF receptor

ezrin

Fer

ferT

FGF2

fps/fes

fur

Fyb/SLAP130

G-CSF

GM-CSF

GPVI

Grb2

Hck

IL-1α

IL-3

IL-4

IL-5

IL-6

IL-10

IL-11

IRS-1

IRS-2

LAR-PTP

leukaemia inhibitory factor

Lyn

N-cadherin

Nck

oncostatin M

p120catenin

p130Cas

p62Dok

p120RasGAP

p190RhoGAP

PTP-α

PTP1B

PTP-PEST

PU.1

Rac1

SOS

STAT3

STAT5A

TNF-α

WASP

FURTHER READING

Pawson web site protein module resource

Protein kinase web site

Simple Modular Architecture Research Tool web site

Glossary

GAG

The protein of the nucleocapsid shell around the RNA of a retrovirus.

ADHERENS JUNCTION

A cell–cell adhesive junction that is linked to cytoskeletal filaments of the microfilament type.

FOCAL ADHESIONS

Focal adhesions are cellular structures that link the extracellular matrix on the outside of the cell, through integrin receptors, to the actin cytoskeleton inside the cell.

SH2 DOMAIN

(Src-homology-2 domain). A protein motif that recognizes and binds tyrosine-phosphorylated sequences, and thereby has a key role in relaying cascades of signal transduction.

HAEMATOPOIETIC PROGENITOR CELL

A stem cell that gives rise to blood cells.

LYMPHOID TISSUE

The vertebrate tissue in which white blood cells develop.

MESENCHYMAL TISSUE

Tissue that is comprised of loosely organized, undifferentiated connective tissue, and is typically present in the early embryo.

TRIGEMINAL NERVE

The fifth vertebrate peripheral nerve that emerges from within the skull. It is sensory from the head, but motor to the jaw muscles.

MYELOID LINEAGE

Cells that are derived from the bone marrow.

TERMINAL DIFFERENTIATION

Changes that lead to the acquisition of a mature functional phenotype.

MYELOPOIESIS

The formation of granulocytes and monocytes from myeloid progenitor cells.

PACHYTENE

The third stage of the prophase of meiosis, during which the homologous chromosomes become short and thick, and divide into four distinct chromatids.

CRE

Cre is a site-specific recombinase that recognizes and binds to specific sites called loxP. Two loxP sites recombine at nearly 100% efficiency in the presence of Cre, which allows DNA that is cloned between two such sites to be removed by Cre-mediated recombination.

SH3 DOMAIN

(Src-homology-3 domain.) A protein sequence of about 50 amino acids that recognizes and binds sequences that are rich in proline.

ADAPTOR PROTEIN

A protein that augments cellular responses by recruiting other proteins to a complex. It usually contains several protein–protein-interaction domains.

AUTOPHOSPHORYLATION

The phosphorylation by a protein of one of its own residues.

RHO FAMILY GTPase

A Ras-related GTPase that is involved in controlling the polymerization of actin.

CRK

An adaptor protein, which was first described as the product of an avian oncogene, v-Crk. It contains an amino-terminal SH2 domain and two SH3 domains that function as binding sites for a diverse set of signalling proteins.

ACTIVATION LOOP

A conserved structural motif in kinase domains, which needs to be phosphorylated for full activation of the kinase.

MACROPHAGE

Any cell of the mononuclear phagocyte system that is characterized by its ability to phagocytose foreign particulate and colloidal material.

B-LYMPHOMA

A cancer that originates from uncontrolled proliferation of B-lymphocytes.

MYRISTOYLATION

The covalent attachment of a hydrophobic myristoyl group to the amino-terminal glycine residue of a nascent polypeptide.

HEMANGIOMA

A benign skin lesion, which consists of dense, usually elevated, masses of dilated blood vessels.

CARDIOMEGALY

Enlargement of the heart.

SPLENOMEGALY

Enlargement of the spleen.

NEUTROPHIL

A phagocytic cell of the myeloid lineage, which has an important role in the inflammatory response, and undergoes chemotaxis towards sites of infection or wounding.

LIPOPOLYSACCHARIDE

A component of the outer membrane of Gram-negative bacteria that is made of a lipid, a core oligosaccharide and an O-linked sugar side chain.

ENDOTOXAEMIC SHOCK

Shock induced by the response to endotoxaemia, a condition in which toxic substances that are associated with certain bacteria — endotoxins — access the bloodstream.

MICROARRAY ANALYSIS

The analysis of either genomic or cDNA samples by hybridization, which enables the quantitation of the amount of different nucleic acid molecules that are present in a sample of interest.

UBIQUITYLATION

The attachment of the protein ubiquitin to lysine residues of other molecules, often as a tag for their rapid cellular degradation.

LAMELLIPODIA

Flattened, sheet-like structures, which are composed of a crosslinked F-actin meshwork that project from the surface of a cell. They are often associated with cell migration.

ENDOSOME

An organelle that carries materials ingested by endocytosis, and passes them to lysosomes for degradation or recycles them to the cell surface.

MAST CELL

A type of leukocyte of the granulocyte subclass.

TROJAN PEPTIDES

Peptides that are based on the ability of derivatives of the Penetratin 1 peptide — which is extracted from the third helix of the homeodomain of Antennapedia — to cross cell membranes with a remarkable efficiency.

DEGRANULATION

The process by which perforin-filled granules are released when a cytotoxic T cell or natural killer cell contacts its target (typically a tumour cell).

ENTEROCOLITIS

A condition in which the small intestine and the colon are inflamed.

EXTRAVASATION

The process that describes how a cell or a substance can pass between two endothelial cells of a blood vessel into the surrounding tissue.

EPITHELIAL–MESENCHYMAL TRANSITION

The conversion from an epithelial to a mesenchymal phenotype, which is a normal component of embryonic development. In carcinomas, this transformation results in altered cell morphology, the expression of mesenchymal proteins and increased invasiveness.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greer, P. Closing in on the biological functions of fps/fes and fer. Nat Rev Mol Cell Biol 3, 278–289 (2002). https://doi.org/10.1038/nrm783

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm783

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing