Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transcription

Mechanisms of transcription-coupled DNA repair

Key Points

  • Transcription-coupled repair (TCR) — the fast, preferential repair of the transcribed strand of an active gene — occurs in both prokaryotes and eukaryotes. This kind of repair is performed by the nucleotide excision repair (NER) or the base excision repair (BER) pathways.

  • Different factors allow the repair machinery to be specifically targetted to the transcribed strand and the global genome, respectively. The best-studied TCR factors are CSA and CSB (yeast Rad26), but factors such as XPG and TFIIH also have a role.

  • Cells respond to DNA damage by globally downregulating transcription. This might be brought about by several mechanisms working concomitantly.

  • TCR is triggered by the stalled polymerase itself. In the promoter of an active gene, repair is slow. TCR is extra fast immediately downstream from the transcription initiation site, presumably because TFIIH is still associated with the polymerase at this point.

  • Nucleosomes are inhibitory to NER on the non-transcribed strand (repair being slower towards the cores), whereas the speed of TCR is not affected by the presence of the same nucleosomes.

  • In the transcribed strand, RNA polymerase II (RNAPII) is an obstacle to TCR and Rad26/CSB is required to overcome this obstacle to fast repair.

  • Several models for the mechanism of TCR have been proposed, and they all incorporate some sort of displacement of RNAPII from the site of DNA damage.

  • Although much has been learned about the factors and processes affecting TCR, much still needs to be learned about the precise molecular mechanism of the reaction.

Abstract

Several types of helix-distorting DNA lesions block the passage of elongating RNA polymerase II. Surprisingly, such transcription-blocking lesions are usually repaired considerably faster than non-obstructive lesions in the non-transcribed strand or in the genome overall. In this review, our knowledge of eukaryotic transcription-coupled repair (TCR) will be considered from the point of view of transcription, and current models for the mechanism of TCR will be discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanism of nucleotide excision repair and base excision repair.
Figure 2: Models for the mechanism of transcriptional downregulation in response to DNA damage.
Figure 3: Speed of repair in an active gene.
Figure 4: Models for transcription-coupled repair.

Similar content being viewed by others

References

  1. Tornaletti, S. & Hanawalt, P. C. Effect of DNA lesions on transcription elongation. Biochimie 81, 139–146 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Mello, J. A., Lippard, S. J. & Essigmann, J. M. DNA adducts of cis-diamminedichloroplatinum(II) and its trans isomer inhibit RNA polymerase II differentially in vivo. Biochemistry 34, 14783–14791 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Corda, Y., Job, C., Anin, M. F., Leng, M. & Job, D. Spectrum of DNA–platinum adduct recognition by prokaryotic and eukaryotic DNA-dependent RNA polymerases. Biochemistry 32, 8582–8588 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Corda, Y., Job, C., Anin, M. F., Leng, M. & Job, D. Transcription by eucaryotic and procaryotic RNA polymerases of DNA modified at a d(GG) or a d(AG) site by the antitumor drug cis-diamminedichloroplatinum(II). Biochemistry 30, 222–230 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Donahue, B. A., Yin, S., Taylor, J. S., Reines, D. & Hanawalt, P. C. Transcript cleavage by RNA polymerase II arrested by a cyclobutane pyrimidine dimer in the DNA template. Proc. Natl Acad. Sci. USA 91, 8502–8506 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Selby, C. P., Drapkin, R., Reinberg, D. & Sancar, A. RNA polymerase II stalled at a thymine dimer: footprint and effect on excision repair. Nucleic Acids Res. 25, 787–793 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Brooks, P. J. et al. The oxidative DNA lesion 8,5′-(S)-cyclo-2′-deoxyadenosine is repaired by the nucleotide excision repair pathway and blocks gene expression in mammalian cells. J. Biol. Chem. 275, 22355–22362 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Le Page, F. et al. Transcription-coupled repair of 8-oxoguanine: requirement for XPG, TFIIH, and CSB and implications for Cockayne syndrome. Cell 101, 159–171 (2000).This paper describes the discovery that Cockayne's syndrome mutations lead to a highly elevated mutation frequency at 8-oxo-guanine lesions, and that unrepaired 8-oxo–guanine blocks transcription by RNAPII.

    Article  CAS  PubMed  Google Scholar 

  9. Bohr, V. A., Smith, C. A., Okumoto, D. S. & Hanawalt, P. C. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40, 359–369 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Mellon, I., Bohr, V. A., Smith, C. A. & Hanawalt, P. C. Preferential DNA repair of an active gene in human cells. Proc. Natl Acad. Sci. USA 83, 8878–8882 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mellon, I., Spivak, G. & Hanawalt, P. C. Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 51, 241–249 (1987).This paper showed that only the transcribed strand of an active gene is preferentially repaired and is therefore the basis for the definition of TCR.

    Article  CAS  PubMed  Google Scholar 

  12. Hanawalt, P. C. Controlling the efficiency of excision repair. Mutat. Res. 485, 3–13 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Christians, F. C. & Hanawalt, P. C. Repair in ribosomal RNA genes is deficient in xeroderma pigmentosum group C and in Cockayne's syndrome cells. Mutat. Res. 323, 179–187 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Verhage, R. A., Van de Putte, P. & Brouwer, J. Repair of rDNA in Saccharomyces cerevisiae: RAD4-independent strand-specific nucleotide excision repair of RNA polymerase I transcribed genes Nucleic Acids Res. 24, 1020–1025 (1996).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Balajee, A. S. & Bohr, V. A. Genomic heterogeneity of nucleotide excision repair. Gene 250, 15–30 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Wood, R. D. Nucleotide excision repair in mammalian cells. J. Biol. Chem. 272, 23465–23468 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Lindahl, T., Karran, P. & Wood, R. D. DNA excision repair pathways. Curr. Opin. Genet. Dev. 7, 158–169 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Memisoglu, A. & Samson, L. Base excision repair in yeast and mammals. Mutat. Res. 451, 39–51 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Nouspikel, T., Lalle, P., Leadon, S. A., Cooper, P. K. & Clarkson, S. G. A common mutational pattern in Cockayne syndrome patients from xeroderma pigmentosum group G: implications for a second XPG function. Proc. Natl Acad. Sci. USA 94, 3116–3121 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cooper, P. K., Nouspikel, T., Clarkson, S. G. & Leadon, S. A. Defective transcription-coupled repair of oxidative base damage in Cockayne syndrome patients from XP group G. Science 275, 990–993 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Araujo, S. J., Nigg, E. A. & Wood, R. D. Strong functional interactions of TFIIH with XPC and XPG in human DNA nucleotide excision repair, without a preassembled repairosome. Mol. Cell. Biol. 21, 2281–2291 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Volker, M. et al. Sequential assembly of the nucleotide excision repair factors in vivo. Mol. Cell 8, 213–224 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Guzder, S. N., Sung, P., Prakash, L. & Prakash, S. Nucleotide excision repair in yeast is mediated by sequential assembly of repair factors and not by a pre-assembled repairosome. J. Biol. Chem. 271, 8903–8910 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Svejstrup, J. Q. et al. Different forms of TFIIH for transcription and DNA repair: holo-TFIIH and a nucleotide excision repairosome. Cell 80, 21–28 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Rodriguez, K. et al. Affinity purification and partial characterization of a yeast multiprotein complex for nucleotide excision repair using histidine-tagged Rad14 protein. J. Biol. Chem. 273, 34180–34189 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Batty, D., Rapic-Otrin, V., Levine, A. S. & Wood, R. D. Stable binding of human XPC complex to irradiated DNA confers strong discrimination for damaged sites. J. Mol. Biol. 300, 275–290 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Sugasawa, K. et al. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol. Cell 2, 223–232 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Svejstrup, J. Q., Vichi, P. & Egly, J. M. The multiple roles of transcription/repair factor TFIIH. Trends Biochem. Sci. 21, 346–350 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Frit, P., Bergmann, E. & Egly, J. M. Transcription factor IIH: a key player in the cellular response to DNA damage. Biochimie 81, 27–38 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Henning, K. A. et al. The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell 82, 555–564 (1995).This paper describes the cloning of the CSA gene.

    Article  CAS  PubMed  Google Scholar 

  31. Troelstra, C. et al. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes. Cell 71, 939–953 (1992).This paper describes the cloning of the CSB gene.

    Article  CAS  PubMed  Google Scholar 

  32. van Hoffen, A. et al. Deficient repair of the transcribed strand of active genes in Cockayne's syndrome cells. Nucleic Acids Res. 21, 5890–5895 (1993).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Venema, J., Mullenders, L. H., Natarajan, A. T., van Zeeland, A. A. & Mayne, L. V. The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA. Proc. Natl Acad. Sci. USA 87, 4707–4711 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Andrews, A. D., Barrett, S. F., Yoder, F. W. & Robbins, J. H. Cockayne's syndrome fibroblasts have increased sensitivity to ultraviolet light but normal rates of unscheduled DNA synthesis. J. Invest. Dermatol. 70, 237–239 (1978).

    Article  CAS  PubMed  Google Scholar 

  35. van Gool, A. J. et al. The Cockayne syndrome B protein, involved in transcription-coupled DNA repair, resides in an RNA polymerase II-containing complex. EMBO J. 16, 5955–5965 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. van Gool, A. J. et al. RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6. EMBO J. 13, 5361–5369 (1994).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Bhatia, P. K., Verhage, R. A., Brouwer, J. & Friedberg, E. C. Molecular cloning and characterization of Saccharomyces cerevisiae RAD28, the yeast homolog of the human Cockayne syndrome A (CSA) gene. J. Bacteriol. 178, 5977–5988 (1996).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Eisen, J. A., Sweder, K. S. & Hanawalt, P. C. Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res. 23, 2715–2723 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Citterio, E. et al. ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor. Mol. Cell. Biol. 20, 7643–7653 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Selby, C. P. & Sancar, A. Cockayne syndrome group B protein enhances elongation by RNA polymerase II. Proc. Natl Acad. Sci. USA 94, 11205–11209 (1997).This paper describes the finding that CSB affects elongation by RNAPII.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nakatsu, Y. et al. XAB2, a novel tetratricopeptide repeat protein involved in transcription-coupled DNA repair and transcription. J. Biol. Chem. 275, 34931–34937 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Drapkin, R. et al. Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II. Nature 368, 769–772 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Schaeffer, L. et al. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 260, 58–63 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Schaeffer, L. et al. The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor. EMBO J. 13, 2388–2392 (1994).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Feaver, W. J. et al. Dual roles of a multiprotein complex from S. cerevisiae in transcription and DNA repair. Cell 75, 1379–1387 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, Z. et al. Transcription factor b (TFIIH) is required during nucleotide-excision repair in yeast. Nature 368, 74–76 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. O'Donovan, A., Davies, A. A., Moggs, J. G., West, S. C. & Wood, R. D. XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair. Nature 371, 432–435 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Habraken, Y., Sung, P., Prakash, L. & Prakash, S. A conserved 5′ to 3′ exonuclease activity in the yeast and human nucleotide excision repair proteins RAD2 and XPG. J. Biol. Chem. 269, 31342–31345 (1994).

    CAS  PubMed  Google Scholar 

  49. Klungland, A. et al. Base excision repair of oxidative DNA damage activated by XPG protein. Mol. Cell 3, 33–42 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Tang, J. Y., Hwang, B. J., Ford, J. M., Hanawalt, P. C. & Chu, G. Xeroderma pigmentosum p48 gene enhances global genomic repair and suppresses UV-induced mutagenesis. Mol. Cell 5, 737–744 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Venema, J., van Hoffen, A., Natarajan, A. T., van Zeeland, A. A. & Mullenders, L. H. The residual repair capacity of xeroderma pigmentosum complementation group C fibroblasts is highly specific for transcriptionally active DNA. Nucleic Acids Res. 18, 443–448 (1990).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Verhage, R. et al. The RAD7 and RAD16 genes, which are essential for pyrimidine dimer removal from the silent mating type loci, are also required for repair of the nontranscribed strand of an active gene in Saccharomyces cerevisiae. Mol. Cell. Biol. 14, 6135–6142 (1994).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Verhage, R. A. et al. Double mutants of Saccharomyces cerevisiae with alterations in global genome and transcription-coupled repair. Mol. Cell. Biol. 16, 496–502 (1996).This paper shows that yeast cells lacking a TCR gene ( RAD26 ) and a GGR gene ( RAD16 or RAD7 ) have much more defective TCR than cells lacking only RAD26 , which indicates considerable overlap between these repair reactions in yeast.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Critchlow, S. E. & Jackson, S. P. DNA end-joining: from yeast to man. Trends Biochem. Sci. 23, 394–398 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Yu, A., Fan, H. Y., Liao, D., Bailey, A. D. & Weiner, A. M. Activation of p53 or loss of the Cockayne syndrome group B repair protein causes metaphase fragility of human U1, U2, and 5S genes. Mol. Cell 5, 801–810 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Dianov, G. L., Houle, J. F., Iyer, N., Bohr, V. A. & Friedberg, E. C. Reduced RNA polymerase II transcription in extracts of cockayne syndrome and xeroderma pigmentosum/Cockayne syndrome cells. Nucleic Acids Res. 25, 3636–3642 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Balajee, A. S., May, A., Dianov, G. L., Friedberg, E. C. & Bohr, V. A. Reduced RNA polymerase II transcription in intact and permeabilized Cockayne syndrome group B cells. Proc. Natl Acad. Sci. USA 94, 4306–4311 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. van Oosterwijk, M. F., Versteeg, A., Filon, R., van Zeeland, A. A. & Mullenders, L. H. The sensitivity of Cockayne's syndrome cells to DNA-damaging agents is not due to defective transcription-coupled repair of active genes. Mol. Cell. Biol. 16, 4436–4444 (1996).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Rockx, D. A. et al. UV-induced inhibition of transcription involves repression of transcription initiation and phosphorylation of RNA polymerase II. Proc. Natl Acad. Sci. USA 97, 10503–10508 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dahmus, M. E. Reversible phosphorylation of the C-terminal domain of RNA polymerase II. J. Biol. Chem. 271, 19009–19012 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Vichi, P. et al. Cisplatin- and UV-damaged DNA lure the basal transcription factor TFIID/TBP. EMBO J. 16, 7444–7456 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. You, Z., Feaver, W. J. & Friedberg, E. C. Yeast RNA polymerase II transcription in vitro is inhibited in the presence of nucleotide excision repair: complementation of inhibition by Holo-TFIIH and requirement for RAD26. Mol. Cell. Biol. 18, 2668–2676 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Christians, F. C. & Hanawalt, P. C. Inhibition of transcription and strand-specific DNA repair by α-amanitin in Chinese hamster ovary cells. Mutat. Res. 274, 93–101 (1992).

    Article  CAS  PubMed  Google Scholar 

  64. Sweder, K. S. & Hanawalt, P. C. Preferential repair of cyclobutane pyrimidine dimers in the transcribed strand of a gene in yeast chromosomes and plasmids is dependent on transcription. Proc. Natl Acad. Sci. USA 89, 10696–10700 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Teng, Y. & Waters, R. Excision repair at the level of the nucleotide in the upstream control region, the coding sequence and in the region where transcription terminates of the Saccharomyces cerevisiae MFA2 gene and the role of RAD26. Nucleic Acids Res. 28, 1114–1119 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Tijsterman, M. & Brouwer, J. Rad26, the yeast homolog of the cockayne syndrome B gene product, counteracts inhibition of DNA repair due to RNA polymerase II transcription. J. Biol. Chem. 274, 1199–1202 (1999).This paper indicates that a major role of Rad26/CSB is to allow repair of DNA damage encountered by elongating RNAPII.

    Article  CAS  PubMed  Google Scholar 

  67. Tijsterman, M., de Pril, R., Tasseron-de Jong, J. G. & Brouwer, J. RNA polymerase II transcription suppresses nucleosomal modulation of UV-induced (6-4) photoproduct and cyclobutane pyrimidine dimer repair in yeast. Mol. Cell. Biol. 19, 934–940 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Tijsterman, M., Verhage, R. A., van de Putte, P., Tasseron-de Jong, J. G. & Brouwer, J. Transitions in the coupling of transcription and nucleotide excision repair within RNA polymerase II-transcribed genes of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 94, 8027–8032 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tijsterman, M., Tasseron-de Jong, J. G., van de Putte, P. & Brouwer, J. Transcription-coupled and global genome repair in the Saccharomyces cerevisiae RPB2 gene at nucleotide resolution. Nucleic Acids Res. 24, 3499–3506 (1996).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Tu, Y., Tornaletti, S. & Pfeifer, G. P. DNA repair domains within a human gene: selective repair of sequences near the transcription initiation site. EMBO J. 15, 675–683 (1996).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Tu, Y., Bates, S. & Pfeifer, G. P. Sequence-specific and domain-specific DNA repair in xeroderma pigmentosum and Cockayne syndrome cells. J. Biol. Chem. 272, 20747–20755 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Tu, Y., Bates, S. & Pfeifer, G. P. The transcription-repair coupling factor CSA is required for efficient repair only during the elongation stages of RNA polymerase II transcription. Mutat. Res. 400, 143–151 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Dvir, A., Conaway, J. W. & Conaway, R. C. Mechanism of transcription initiation and promoter escape by RNA polymerase II. Curr. Opin. Genet. Dev. 11, 209–214 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Zawel, L., Kumar, K. P. & Reinberg, D. Recycling of the general transcription factors during RNA polymerase II transcription. Genes Dev. 9, 1479–1490 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Tantin, D., Kansal, A. & Carey, M. Recruitment of the putative transcription-repair coupling factor CSB/ERCC6 to RNA polymerase II elongation complexes. Mol. Cell. Biol. 17, 6803–6814 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Tantin, D. RNA polymerase II elongation complexes containing the Cockayne syndrome group B protein interact with a molecular complex containing the transcription factor IIH components xeroderma pigmentosum B and p62. J. Biol. Chem. 273, 27794–27799 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Wellinger, R. E. & Thoma, F. Nucleosome structure and positioning modulate nucleotide excision repair in the non-transcribed strand of an active gene. EMBO J. 16, 5046–5056 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Wada, T. et al. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev. 12, 343–356 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Hartzog, G. A., Wada, T., Handa, H. & Winston, F. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes Dev. 12, 357–369 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Jansen, L. E. et al. Spt4 modulates Rad26 requirement in transcription-coupled nucleotide excision repair. EMBO J. 19, 6498–6507 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Otero, G. et al. Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. Mol. Cell 3, 109–118 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Svejstrup, J. Q. Transcription-coupled DNA repair without the transcription–coupling repair factor. Trends Biochem. Sci. 26, 151 (2001).

    Article  CAS  Google Scholar 

  83. Selby, C. P. & Sancar, A. Molecular mechanism of transcription-repair coupling. Science 260, 53–58 (1993).

    Article  CAS  PubMed  Google Scholar 

  84. Selby, C. P. & Sancar, A. Human transcription-repair coupling factor CSB/ERCC6 is a DNA-stimulated ATPase but is not a helicase and does not disrupt the ternary transcription complex of stalled RNA polymerase II. J. Biol. Chem. 272, 1885–1890 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Hara, R., Selby, C. P., Liu, M., Price, D. H. & Sancar, A. Human transcription release factor 2 dissociates RNA polymerases I and II stalled at a cyclobutane thymine dimer. J. Biol. Chem. 274, 24779–24786 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Verhage, R. A., Heyn, J., van de Putte, P. & Brouwer, J. Transcription elongation factor S-II is not required for transcription-coupled repair in yeast. Mol. Gen. Genet. 254, 284–290 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Peterson, C. L. & Workman, J. L. Promoter targeting and chromatin remodeling by the SWI/SNF complex. Curr. Opin. Genet. Dev. 10, 187–192 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Mu, D. & Sancar, A. Model for XPC-independent transcription-coupled repair of pyrimidine dimers in humans. J. Biol. Chem. 272, 7570–7573 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Bregman, D. B. et al. UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells. Proc Natl Acad Sci USA 93, 11586–11590 (1996).This paper shows that RNAPII is post-translationally modified in response to UV-irradiation, and that this modification is compromised in Cockayne's syndrome cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Beaudenon, S. L., Huacani, M. R., Wang, G., McDonnell, D. P. & Huibregtse, J. M. Rsp5 ubiquitin-protein ligase mediates DNA damage-induced degradation of the large subunit of RNA polymerase II in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 6972–6979 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Huibregtse, J. M., Yang, J. C. & Beaudenon, S. L. The large subunit of RNA polymerase II is a substrate of the Rsp5 ubiquitin-protein ligase. Proc. Natl Acad. Sci. USA 94, 3656–3661 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ratner, J. N., Balasubramanian, B., Corden, J., Warren, S. L. & Bregman, D. B. Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. Implications for transcription-coupled DNA repair. J. Biol. Chem. 273, 5184–5189 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. McKay, B. C. et al. UV light-induced degradation of RNA polymerase II is dependent on the Cockayne's syndrome A and B proteins but not p53 or MLH1. Mutat. Res. 485, 93–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Luo, Z., Zheng, J., Lu, Y. & Bregman, D. B. Ultraviolet radiation alters the phosphorylation of RNA polymerase II large subunit and accelerates its proteasome-dependent degradation. Mutat. Res. 486, 259–274 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Lommel, L., Bucheli, M. E. & Sweder, K. S. Transcription-coupled repair in yeast is independent from ubiquitylation of RNA pol II: implications for Cockayne's syndrome. Proc. Natl Acad. Sci. USA 97, 9088–9092 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Friedberg, E. C., Fischhaber, P. L. & Kisker, C. Error-prone DNA polymerases. Novel structures and the benefits of infidelity. Cell 107, 9–12 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Holbrook, N. J. & Fornace, A. J. Jr. Response to adversity: molecular control of gene activation following genotoxic stress. New Biol. 3, 825–833 (1991).

    CAS  PubMed  Google Scholar 

  98. de Boer, J. & Hoeijmakers, J. H. Nucleotide excision repair and human syndromes. Carcinogenesis 21, 453–460 (2000).Excellent review of syndromes that are associated with defects in DNA repair and TCR.

    Article  CAS  PubMed  Google Scholar 

  99. Mayne, L. V. & Lehmann, A. R. Failure of RNA synthesis to recover after UV irradiation: an early defect in cells from individuals with Cockayne's syndrome and xeroderma pigmentosum. Cancer Res. 42, 1473–1478 (1982).

    CAS  PubMed  Google Scholar 

  100. Lehmann, A. R. The xeroderma pigmentosum group D (XPD) gene: one gene, two functions, three diseases. Genes Dev. 15, 15–23 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Berneburg, M. & Lehmann, A. R. Xeroderma pigmentosum and related disorders: defects in DNA repair and transcription. Adv. Genet 43, 71–102 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Hanawalt, P. C. DNA repair. The bases for Cockayne syndrome. Nature 405, 415–416 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Citterio, E., Vermeulen, W. & Hoeijmakers, J. H. Transcriptional healing. Cell 101, 447–450 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work relevant to this review was supported by an in-house grant from the Imperial Cancer Research Fund. T. Lindahl and B. Winkler are thanked for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Encyclopedia of Life Sciences:

DNA-repair-deficiency disorders

 OMIM:

trichothiodystrophy

XPA

XPF

XPG

 Saccharomyces Genome Database:

Rad1

Rad2

Rad3

Rad4

RAD7

Rad10

Rad14

RAD16

Rad23

Rad25

RAD26

RAD28

Rsp5

Spt4

URA3

 Swiss-Prot:

CSA

DDB2

ERCC1

FEN1

HHR23B

RPB1

T4 endonuclease V

XAB2

XPA

XPB

XPC

XPD

XPF

XPG

FURTHER READING

Human DNA repair genes

Glossary

DNA LIGASE

Seals DNA breaks containing a 5′-phosphorylated end and a 3′-OH end. Several different DNA ligases are found in eukaryotic cells.

TFIIH

(Transcription factor IIH). One of the factors that are generally required for RNA polymerase II-dependent transcription. Also has an essential role in nucleotide excision repair.

HELICASE

An enzyme that uses the energy of ATP hydrolysis to unwind/separate the two strands of DNA.

ENDONUCLEASE

Cuts DNA internally. Often, but not always, cuts at specific recognition sequences.

DNA GLYCOSYLASE

Binds specifically to a target base and hydrolyses the N-glycosylic bond. This releases the inappropriate base while keeping the DNA backbone intact. Several distinct glycosylases exist in eukaryotic cells.

ABASIC SITE

A nucleotide site that has lost the base.

'FLAP' ENDONUCLEASE

A structure-specific endonuclease, which cleaves off a single-stranded piece of DNA that is not base-paired owing to, for example, mismatched bases.

SNF2 PROTEIN FAMILY

A family of proteins that have helicase-like ATPase domains, yet are not helicases. Rather than unwinding DNA strands, these proteins remodel protein–DNA contacts, such as histone–DNA contacts.

SWI/SNF-LIKE COMPLEXES

Protein complexes that contain a subunit that is homologous to SNF2.

WD40 REPEAT

A protein motif used by a variety of proteins for protein–protein interactions.

ORTHOLOGUE

A homologue whose sequence and function has been conserved during evolution.

RING FINGER

Protein motif that is found in ubiquitin ligases.

RAD7 AND RAD16

Proteins that are required for global genome repair in yeast. They are very important for nucleotide excision repair of the non-transcribed strand of an active gene, but have only a minor role for repair on the transcribed strand/transcription-coupled repair.

NON-HOMOLOGOUS END-JOINING

Repair pathway in which severed DNA ends are re-joined. The prominent pathway for repairing double-stranded breaks in higher eukaryotic cells.

HYPOPHOSPHORYLATED RNAPII A-FORM

The carboxy-terminal domain (CTD) of the largest RNAPII subunit comprises 26–52 heptapeptide repeats (consensus Tyr-Ser-Pro-Thr-Ser-Pro-Ser). The RNAPII form that is hypophosphorylated on the CTD is called RNAPII-A, whereas the form that is multiply phosphorylated (hyperphosphorylated) on Ser2 and Ser5 of the repeat is called RNAPII-0.

TATA-BINDING PROTEIN

The TATA-binding protein (TBP) binds directly to the TATA sequence in the core promoter of a gene to initiate assembly of the general transcription factor machinery that enables RNAPII to transcribe the gene.

UBIQUITYLATION

The covalent linkage of the small protein ubiquitin to other proteins is essential for a variety of cellular processes. Ubiquitylation can mark proteins for rapid intracellular degradation, but can also have other consequences for the modified substrate protein.

UBIQUITIN LIGASE

The last enzyme in a cascade of ubiquitin-mobilizing proteins that together enable ubiquitylation. First, ubiquitin is activated by formation of a thioester bond to a ubiquitin- activating enzyme (E1). After transfer to a ubiquitin- conjugating enzyme (E2), ubiquitin is ligated to a protein substrate with the help of a ubiquitin protein ligase (E3). Several ubiquitin moieties can be added to the substrate, each time forming an isopeptide bond to an internal lysine residue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svejstrup, J. Mechanisms of transcription-coupled DNA repair. Nat Rev Mol Cell Biol 3, 21–29 (2002). https://doi.org/10.1038/nrm703

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm703

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing