Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Physical influences of the extracellular environment on cell migration

Key Points

  • Cells alter their migratory phenotypes and velocity in response to the physical properties of their extracellular environment.

  • Confinement, adhesion, stiffness and topology of the extracellular environment are key physical variables influencing cell migration.

  • Univariate profiles and phase diagrams enable an understanding of how physical variables influence cell migration.

  • Numerical simulations enable systematic exploration of the phase space to highlight regions for experimental exploration.

Abstract

The way in which a cell migrates is influenced by the physical properties of its surroundings, in particular the properties of the extracellular matrix. How the physical aspects of the cell's environment affect cell migration poses a considerable challenge when trying to understand migration in complex tissue environments and hinders the extrapolation of in vitro analyses to in vivo situations. A comprehensive understanding of these problems requires an integrated biochemical and biophysical approach. In this Review, we outline the findings that have emerged from approaches that span these disciplines, with a focus on actin-based cell migration in environments with different stiffness, dimensionality and geometry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physical variables influencing cell migration.
Figure 2: Example of velocity and phenotypic phase space for cell migration with the location of univariate profiles and a bivariate phase diagram indicated.
Figure 3: Summary of studies examining the relationship between confinement, adhesion or rigidity, and migration velocity for extracellular matrix gels and microchannels.

Similar content being viewed by others

References

  1. Munjal, A. & Lecuit, T. Actomyosin networks and tissue morphogenesis. Development 141, 1789–1793 (2014).

    CAS  PubMed  Google Scholar 

  2. Gillitzer, R. & Goebeler, M. Chemokines in cutaneous wound healing. J. Leukoc. Biol. 69, 513–521 (2001).

    CAS  PubMed  Google Scholar 

  3. Wolf, K. & Friedl, P. Extracellular matrix determinants of proteolytic and non-proteolytic cell migration. Trends Cell Biol. 21, 736–744 (2011).

    CAS  PubMed  Google Scholar 

  4. Friedl, P. & Wolf, K. Plasticity of cell migration: a multiscale tuning model. J. Cell Biol. 188, 11–19 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Madsen, C. D. & Sahai, E. Cancer dissemination — lessons from leukocytes. Dev. Cell 19, 13–26 (2010).

    CAS  PubMed  Google Scholar 

  6. Sabeh, F. et al. Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP. J. Cell Biol. 167, 769–781 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wolf, K. et al. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160, 267–277 (2003). Seminal paper describing the plasticity of cancer cell migration.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sahai, E. & Marshall, C. J. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nature Cell Biol. 5, 711–719 (2003).

    CAS  PubMed  Google Scholar 

  9. Lammermann, T. et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008). Key paper showing that integrins are not required for dendritic cell migration in many contexts.

    PubMed  Google Scholar 

  10. Nobes, C. D. & Hall, A. Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).

    CAS  PubMed  Google Scholar 

  11. Svitkina, T. M. & Borisy, G. G. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145, 1009–1026 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Petrie, R. J., Gavara, N., Chadwick, R. S. & Yamada, K. M. Nonpolarized signaling reveals two distinct modes of 3D cell migration. J. Cell Biol. 197, 439–455 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wilson, K. et al. Mechanisms of leading edge protrusion in interstitial migration. Nature Commun. 4, 2896 (2013).

    Google Scholar 

  14. Tozluoglu, M. et al. Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions. Nature Cell Biol. 15, 751–762 (2013).

    CAS  PubMed  Google Scholar 

  15. Charras, G. T., Hu, C. K., Coughlin, M. & Mitchison, T. J. Reassembly of contractile actin cortex in cell blebs. J. Cell Biol. 175, 477–490 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Stroka, K. M. et al. Water permeation drives tumor cell migration in confined microenvironments. Cell 157, 611–623 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zatulovskiy, E., Tyson, R., Bretschneider, T. & Kay, R. R. Bleb-driven chemotaxis of Dictyostelium cells. J. Cell Biol. 204, 1027–1044 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yoshida, K. & Soldati, T. Dissection of amoeboid movement into two mechanically distinct modes. J. Cell Sci. 119, 3833–3844 (2006).

    CAS  PubMed  Google Scholar 

  19. Beningo, K. A., Dembo, M. & Wang, Y. L. Responses of fibroblasts to anchorage of dorsal extracellular matrix receptors. Proc. Natl Acad. Sci. USA 101, 18024–18029 (2004).

    CAS  PubMed  Google Scholar 

  20. Sanz-Moreno, V. et al. Rac activation and inactivation control plasticity of tumor cell movement. Cell 135, 510–523 (2008).

    CAS  PubMed  Google Scholar 

  21. Hung, W. C. et al. Distinct signaling mechanisms regulate migration in unconfined versus confined spaces. J. Cell Biol. 202, 807–824 (2013). Combines the use of microfabrication techniques with conventional cell biology manipulations and imaging to examine how confinement affects cell migration.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bergert, M., Chandradoss, S. D., Desai, R. A. & Paluch, E. Cell mechanics control rapid transitions between blebs and lamellipodia during migration. Proc. Natl Acad. Sci. USA 109, 14434–14439 (2012).

    CAS  PubMed  Google Scholar 

  23. Lauffenburger, D. A. & Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).

    CAS  PubMed  Google Scholar 

  24. Doyle, A. D., Wang, F. W., Matsumoto, K. & Yamada, K. M. One-dimensional topography underlies three-dimensional fibrillar cell migration. J. Cell Biol. 184, 481–490 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fraley, S. I. et al. A distinctive role for focal adhesion proteins in three-dimensional cell motility. Nature Cell Biol. 12, 598–604 (2010).

    CAS  PubMed  Google Scholar 

  26. Kubow, K. E. & Horwitz, A. R. Reducing background fluorescence reveals adhesions in 3D matrices. Nature Cell Biol. 13, 3–5 (2011).

    CAS  PubMed  Google Scholar 

  27. Huveneers, S. & Danen, E. H. Adhesion signaling — crosstalk between integrins Src and Rho. J. Cell Sci. 122, 1059–1069 (2009).

    CAS  PubMed  Google Scholar 

  28. Wolf, K. et al. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201, 1069–1084 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ivkovic, S. et al. Direct inhibition of myosin II effectively blocks glioma invasion in the presence of multiple motogens. Mol. Biol. Cell 23, 533–542 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Beadle, C. et al. The role of myosin II in glioma invasion of the brain. Mol. Biol. Cell 19, 3357–3368 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Harada, T. et al. Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. J. Cell Biol. 204, 669–682 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rowat, A. C. et al. Nuclear envelope composition determines the ability of neutrophil-type cells to passage through micron-scale constrictions. J. Biol. Chem. 288, 8610–8618 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Rowat, A. C., Lammerding, J. & Ipsen, J. H. Mechanical properties of the cell nucleus and the effect of emerin deficiency. Biophys. J. 91, 4649–4664 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Discher, D. E., Janmey, P. & Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    CAS  PubMed  Google Scholar 

  35. Trichet, L. et al. Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness. Proc. Natl Acad. Sci. USA 109, 6933–6938 (2012).

    CAS  PubMed  Google Scholar 

  36. Schwarz, U. S. & Gardel, M. L. United we stand: integrating the actin cytoskeleton and cell-matrix adhesions in cellular mechanotransduction. J. Cell Sci. 125, 3051–3060 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sawada, Y. et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127, 1015–1026 (2006). Provides a detailed molecular paradigm of how force exerted on cell adhesion complexes can modulate cell signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Guilluy, C. et al. The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins. Nature Cell Biol. 13, 722–727 (2011).

    PubMed  Google Scholar 

  39. Tominaga, T. et al. Diaphanous-related formins bridge Rho GTPase and Src tyrosine kinase signaling. Mol. Cell 5, 13–25 (2000).

    CAS  PubMed  Google Scholar 

  40. Gupton, S. L., Eisenmann, K., Alberts, A. S. & Waterman-Storer, C. M. mDia2 regulates actin and focal adhesion dynamics and organization in the lamella for efficient epithelial cell migration. J. Cell Sci. 120, 3475–3487 (2007).

    CAS  PubMed  Google Scholar 

  41. Webb, D. J. et al. FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nature Cell Biol. 6, 154–161 (2004).

    CAS  PubMed  Google Scholar 

  42. Franco, S. J. et al. Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nature Cell Biol. 6, 977–983 (2004).

    CAS  PubMed  Google Scholar 

  43. Ezratty, E. J., Partridge, M. A. & Gundersen, G. G. Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase. Nature Cell Biol. 7, 581–590 (2005).

    CAS  PubMed  Google Scholar 

  44. Wu, X., Gan, B., Yoo, Y. & Guan, J. L. FAK-mediated Src phosphorylation of endophilin A2 inhibits endocytosis of MT1-MMP and promotes ECM degradation. Dev. Cell 9, 185–196 (2005).

    CAS  PubMed  Google Scholar 

  45. Sato, H., Kita, M. & Seiki, M. v-Src activates the expression of 92-kDa type IV collagenase gene through the AP-1 site and the GT box homologous to retinoblastoma control elements. A mechanism regulating gene expression independent of that by inflammatory cytokines. J. Biol. Chem. 268, 23460–23468 (1993).

    CAS  PubMed  Google Scholar 

  46. Courtneidge, S. A., Azucena, E. F., Pass, I., Seals, D. F. & Tesfay, L. The SRC substrate Tks5, podosomes (invadopodia), and cancer cell invasion. Cold Spring Harb. Symp. Quant. Biol. 70, 167–171 (2005).

    CAS  PubMed  Google Scholar 

  47. Ghassemi, S. et al. Cells test substrate rigidity by local contractions on submicrometer pillars. Proc. Natl Acad. Sci. USA 109, 5328–5333 (2012).

    CAS  PubMed  Google Scholar 

  48. Plotnikov, S. V., Pasapera, A. M., Sabass, B. & Waterman, C. M. Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 151, 1513–1527 (2012). Gives new insights into localized sensing of matrix rigidity.

    CAS  PubMed  Google Scholar 

  49. Elosegui-Artola, A. et al. Rigidity sensing and adaptation through regulation of integrin types. Nature Mater. 13, 631–637 (2014). Combines experimentation and modelling to show how the rate of actin retrograde flow can be a mechanosensing mechanism and how it can be tuned by varying integrin adhesion bond properties.

    CAS  Google Scholar 

  50. Trappmann, B. et al. Extracellular-matrix tethering regulates stem-cell fate. Nature Mater. 11, 642–649 (2012).

    CAS  Google Scholar 

  51. Ulrich, T. A., Lee, T. G., Shon, H. K., Moon, D. W. & Kumar, S. Microscale mechanisms of agarose-induced disruption of collagen remodeling. Biomaterials 32, 5633–5642 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Medjkane, S., Perez-Sanchez, C., Gaggioli, C., Sahai, E. & Treisman, R. Myocardin-related transcription factors and SRF are required for cytoskeletal dynamics and experimental metastasis. Nature Cell Biol. 11, 257–268 (2009).

    CAS  PubMed  Google Scholar 

  53. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    CAS  PubMed  Google Scholar 

  54. Mellad, J. A., Warren, D. T. & Shanahan, C. M. Nesprins LINC the nucleus and cytoskeleton. Curr. Opin. Cell Biol. 23, 47–54 (2011).

    CAS  PubMed  Google Scholar 

  55. Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).

    PubMed  PubMed Central  Google Scholar 

  56. Ho, C. Y., Jaalouk, D. E., Vartiainen, M. K. & Lammerding, J. Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics. Nature 497, 507–511 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim, D. H., Provenzano, P. P., Smith, C. L. & Levchenko, A. Matrix nanotopography as a regulator of cell function. J. Cell Biol. 197, 351–360 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Rowe, R. G. & Weiss, S. J. Breaching the basement membrane: who, when and how? Trends Cell Biol. 18, 560–574 (2008).

    CAS  PubMed  Google Scholar 

  59. Mason, B. N., Starchenko, A., Williams, R. M., Bonassar, L. J. & Reinhart-King, C. A. Tuning three-dimensional collagen matrix stiffness independently of collagen concentration modulates endothelial cell behavior. Acta Biomaterialia 9, 4635–4644 (2013).

    CAS  PubMed  Google Scholar 

  60. Small, J. V., Stradal, T., Vignal, E. & Rottner, K. The lamellipodium: where motility begins. Trends Cell Biol. 12, 112–120 (2002).

    CAS  PubMed  Google Scholar 

  61. Petrie, R. J., Koo, H. & Yamada, K. M. Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix. Science 345, 1062–1065 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sharma, V. P. et al. Reconstitution of in vivo macrophage–tumor cell pairing and streaming motility on one-dimensional micro-patterned substrates. Intravital 1, 77–85 (2012).

    PubMed  PubMed Central  Google Scholar 

  63. Provenzano, P. P. et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4, 38 (2006).

    PubMed  PubMed Central  Google Scholar 

  64. Mim, C. & Unger, V. M. Membrane curvature and its generation by BAR proteins. Trends Biochem. Sci. 37, 526–533 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Galic, M. et al. External push and internal pull forces recruit curvature-sensing N-BAR domain proteins to the plasma membrane. Nature Cell Biol. 14, 874–881 (2012). Details how substrate texture causes local membrane curvature and recruitment of N-BAR proteins, leading to actomyosin regulation.

    CAS  PubMed  Google Scholar 

  66. Kim, D. H. et al. Guided cell migration on microtextured substrates with variable local density and anisotropy. Adv. Funct. Mater. 19, 1579–1586 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kim, D. H. et al. Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients. Biomaterials 30, 5433–5444 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Le Berre, M. et al. Geometric friction directs cell migration. Phys. Rev. Lett. 111, 198101 (2013).

    CAS  PubMed  Google Scholar 

  69. Campbell, I. D. & Humphries, M. J. Integrin structure, activation, and interactions. Cold Spring Harb. Perspect. Biol. 3, a004994 (2011).

    PubMed  PubMed Central  Google Scholar 

  70. Boettiger, D. Mechanical control of integrin-mediated adhesion and signaling. Curr. Opin. Cell Biol. 24, 592–599 (2012).

    CAS  PubMed  Google Scholar 

  71. Larjava, H., Plow, E. F. & Wu, C. Kindlins: essential regulators of integrin signalling and cell-matrix adhesion. EMBO Rep. 9, 1203–1208 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee, H. S., Lim, C. J., Puzon-McLaughlin, W., Shattil, S. J. & Ginsberg, M. H. RIAM activates integrins by linking talin to ras GTPase membrane-targeting sequences. J. Biol. Chem. 284, 5119–5127 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lafuente, E. M. et al. RIAM, an Ena/VASP and Profilin ligand, interacts with Rap1-GTP and mediates Rap1-induced adhesion. Dev. Cell 7, 585–595 (2004).

    CAS  PubMed  Google Scholar 

  74. Hogg, N., Patzak, I. & Willenbrock, F. The insider's guide to leukocyte integrin signalling and function. Nature Rev. Immunol. 11, 416–426 (2011).

    CAS  Google Scholar 

  75. Gross, O. et al. DDR1-deficient mice show localized subepithelial GBM thickening with focal loss of slit diaphragms and proteinuria. Kidney Int. 66, 102–111 (2004).

    CAS  PubMed  Google Scholar 

  76. Moon, J. J. et al. Role of cell surface heparan sulfate proteoglycans in endothelial cell migration and mechanotransduction. J. Cell. Physiol. 203, 166–176 (2005).

    CAS  PubMed  Google Scholar 

  77. Mandeville, J. T., Lawson, M. A. & Maxfield, F. R. Dynamic imaging of neutrophil migration in three dimensions: mechanical interactions between cells and matrix. J. Leukoc. Biol. 61, 188–200 (1997).

    CAS  PubMed  Google Scholar 

  78. Brown, N. H. Null mutations in the α PS2 and β PS integrin subunit genes have distinct phenotypes. Development 120, 1221–1231 (1994).

    CAS  PubMed  Google Scholar 

  79. Kardash, E. et al. A role for Rho GTPases and cell-cell adhesion in single-cell motility in vivo. Nature Cell Biol. 12, 47–53 (2010).

    CAS  PubMed  Google Scholar 

  80. Niewiadomska, P., Godt, D. & Tepass, U. DE-cadherin is required for intercellular motility during Drosophila oogenesis. J. Cell Biol. 144, 533–547 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Cai, D. et al. Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration. Cell 157, 1146–1159 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Friedl, P., Locker, J., Sahai, E. & Segall, J. E. Classifying collective cancer cell invasion. Nature Cell Biol. 14, 777–783 (2012).

    PubMed  Google Scholar 

  83. Kim, J. H. et al. Propulsion and navigation within the advancing monolayer sheet. Nature Mater. 12, 856–863 (2013).

    CAS  Google Scholar 

  84. Tambe, D. T. et al. Collective cell guidance by cooperative intercellular forces. Nature Mater. 10, 469–475 (2011).

    CAS  Google Scholar 

  85. Vedula, S. R. et al. Epithelial bridges maintain tissue integrity during collective cell migration. Nature Mater. 13, 87–96 (2014).

    CAS  Google Scholar 

  86. Zaman, M. H. et al. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl Acad. Sci. USA 103, 10889–10894 (2006).

    CAS  PubMed  Google Scholar 

  87. Hoffmann, J. C. & West, J. L. Three-dimensional photolithographic micropatterning: a novel tool to probe the complexities of cell migration. Integr. Biol. 5, 817–827 (2013).

    CAS  Google Scholar 

  88. Peyton, S. R. et al. Marrow-derived stem cell motility in 3D synthetic scaffold is governed by geometry along with adhesivity and stiffness. Biotechnol. Bioengineer. 108, 1181–1193 (2011).

    CAS  Google Scholar 

  89. da Silva, J., Lautenschlager, F., Kuo, C. H., Guck, J. & Sivaniah, E. 3D inverted colloidal crystals in realistic cell migration assays for drug screening applications. Integr. Biol. 3, 1202–1206 (2011).

    CAS  Google Scholar 

  90. DiMilla, P. A., Barbee, K. & Lauffenburger, D. A. Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys. J. 60, 15–37 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Carey, S. P., Kraning-Rush, C. M., Williams, R. M. & Reinhart-King, C. A. Biophysical control of invasive tumor cell behavior by extracellular matrix microarchitecture. Biomaterials 33, 4157–4165 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Han, S. et al. A versatile assay for monitoring in vivo-like transendothelial migration of neutrophils. Lab Chip 12, 3861–3865 (2012).

    CAS  PubMed  Google Scholar 

  94. Kraning-Rush, C. M., Carey, S. P., Lampi, M. C. & Reinhart-King, C. A. Microfabricated collagen tracks facilitate single cell metastatic invasion in 3D. Integr. Biol. 5, 606–616 (2013).

    CAS  Google Scholar 

  95. Harley, B. A. et al. Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions. Biophys. J. 95, 4013–4024 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Booth-Gauthier, E. A. et al. Hutchinson–Gilford progeria syndrome alters nuclear shape and reduces cell motility in three dimensional model substrates. Integr. Biol. 5, 569–577 (2013).

    CAS  Google Scholar 

  97. Alexander, S., Koehl, G. E., Hirschberg, M., Geissler, E. K. & Friedl, P. Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model. Histochem. Cell Biol. 130, 1147–1154 (2008).

    CAS  PubMed  Google Scholar 

  98. Wolf, K. et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nature Cell Biol. 9, 893–904 (2007).

    CAS  PubMed  Google Scholar 

  99. Wolf, K. et al. Collagen-based cell migration models in vitro and in vivo. Semin. Cell Dev. Biol. 20, 931–941 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Irimia, D. & Toner, M. Spontaneous migration of cancer cells under conditions of mechanical confinement. Integr. Biol. 1, 506–512 (2009).

    CAS  Google Scholar 

  101. Jacobelli, J. et al. Confinement-optimized three-dimensional T cell amoeboid motility is modulated via myosin IIA-regulated adhesions. Nature Immunol. 11, 953–961 (2010).

    CAS  Google Scholar 

  102. Balzer, E. M. et al. Physical confinement alters tumor cell adhesion and migration phenotypes. FASEB J. 26, 4045–4056 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Pathak, A. & Kumar, S. Independent regulation of tumor cell migration by matrix stiffness and confinement. Proc. Natl Acad. Sci. USA 109, 10334–10339 (2012).

    CAS  PubMed  Google Scholar 

  104. Irimia, D., Charras, G., Agrawal, N., Mitchison, T. & Toner, M. Polar stimulation and constrained cell migration in microfluidic channels. Lab Chip 7, 1783–1790 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Pathak, A. & Kumar, S. Transforming potential and matrix stiffness co-regulate confinement sensitivity of tumor cell migration. Integr. Biol. 5, 1067–1075 (2013).

    CAS  Google Scholar 

  106. Nakatsuji, N. & Johnson, K. E. Experimental manipulation of a contact guidance system in amphibian gastrulation by mechanical tension. Nature 307, 453–455 (1984).

    CAS  PubMed  Google Scholar 

  107. Provenzano, P. P., Inman, D. R., Eliceiri, K. W., Trier, S. M. & Keely, P. J. Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization. Biophys. J. 95, 5374–5384 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Sidani, M., Wyckoff, J., Xue, C., Segall, J. E. & Condeelis, J. Probing the microenvironment of mammary tumors using multiphoton microscopy. J. Mammary Gland Biol. Neoplasia 11, 151–163 (2006).

    PubMed  Google Scholar 

  109. Kwon, K. W. et al. Nanotopography-guided migration of T cells. J. Immunol. 189, 2266–2273 (2012).

    CAS  PubMed  Google Scholar 

  110. Teixeira, A. I., Abrams, G. A., Bertics, P. J., Murphy, C. J. & Nealey, P. F. Epithelial contact guidance on well-defined micro- and nanostructured substrates. J. Cell Sci. 116, 1881–1892 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Liliensiek, S. J. et al. Modulation of human vascular endothelial cell behaviors by nanotopographic cues. Biomaterials 31, 5418–5426 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Uttayarat, P., Toworfe, G. K., Dietrich, F., Lelkes, P. I. & Composto, R. J. Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: orientation of actin filaments and focal adhesions. J. Biomed. Mater. Res. A 75, 668–680 (2005).

    PubMed  Google Scholar 

  113. Uttayarat, P. et al. Microtopography and flow modulate the direction of endothelial cell migration. Am. J. Physiol. Heart Circ. Physiol. 294, H1027–H1035 (2008).

    CAS  PubMed  Google Scholar 

  114. Kim, D. H. et al. Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proc. Natl Acad. Sci. USA 107, 565–570 (2010).

    CAS  PubMed  Google Scholar 

  115. Lamers, E. et al. The influence of nanoscale topographical cues on initial osteoblast morphology and migration. Eur. Cells Mater. 20, 329–343 (2010).

    CAS  Google Scholar 

  116. Davies, P. F., Zilberberg, J. & Helmke, B. P. Spatial microstimuli in endothelial mechanosignaling. Circul. Res. 92, 359–370 (2003).

    CAS  Google Scholar 

  117. Franco, D. et al. Accelerated endothelial wound healing on microstructured substrates under flow. Biomaterials 34, 1488–1497 (2013).

    CAS  PubMed  Google Scholar 

  118. Morgan, J. T. et al. Integration of basal topographic cues and apical shear stress in vascular endothelial cells. Biomaterials 33, 4126–4135 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Zaman, M. H., Kamm, R. D., Matsudaira, P. & Lauffenburger, D. A. Computational model for cell migration in three-dimensional matrices. Biophys. J. 89, 1389–1397 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Stewart, M. P. et al. Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 469, 226–230 (2011).

    CAS  PubMed  Google Scholar 

  121. Moffitt, J. R., Chemla, Y. R., Smith, S. B. & Bustamante, C. Recent advances in optical tweezers. Annu. Rev. Biochem. 77, 205–228 (2008).

    CAS  PubMed  Google Scholar 

  122. Lautenschlager, F. & Piel, M. Microfabricated devices for cell biology: all for one and one for all. Curr. Opin. Cell Biol. 25, 116–124 (2013).

    CAS  PubMed  Google Scholar 

  123. Ilina, O., Bakker, G. J., Vasaturo, A., Hofmann, R. M. & Friedl, P. Two-photon laser-generated microtracks in 3D collagen lattices: principles of MMP-dependent and -independent collective cancer cell invasion. Phys. Biol. 8, 015010 (2011).

    PubMed  Google Scholar 

  124. Legant, W. R. et al. Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions. Proc. Natl Acad. Sci. USA 110, 881–886 (2013).

    CAS  PubMed  Google Scholar 

  125. Style, R. W. et al. Traction force microscopy in physics and biology. Soft Matter 10, 4047–4055 (2014).

    CAS  PubMed  Google Scholar 

  126. Colombelli, J. & Solon, J. Force communication in multicellular tissues addressed by laser nanosurgery. Cell Tissue Res. 352, 133–147 (2013).

    PubMed  Google Scholar 

  127. Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Steigemann, P. et al. Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell 136, 473–484 (2009).

    PubMed  Google Scholar 

  129. Karunarathne, W. K., Giri, L., Patel, A. K., Venkatesh, K. V. & Gautam, N. Optical control demonstrates switch-like PIP3 dynamics underlying the initiation of immune cell migration. Proc. Natl Acad. Sci. USA 110, E1575–E1583 (2013).

    PubMed  Google Scholar 

  130. Abdel-Ghany, M. et al. The interacting binding domains of the β4 integrin and calcium-activated chloride channels (CLCAs) in metastasis. J. Biol. Chem. 278, 49406–49416 (2003).

    CAS  PubMed  Google Scholar 

  131. Schumann, K. et al. Immobilized chemokine fields and soluble chemokine gradients cooperatively shape migration patterns of dendritic cells. Immunity 32, 703–713 (2010).

    CAS  PubMed  Google Scholar 

  132. Lo, C. M., Wang, H. B., Dembo, M. & Wang, Y. L. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Chen, Y. et al. ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314, 1792–1795 (2006).

    CAS  PubMed  Google Scholar 

  134. Polacheck, W. J., Charest, J. L. & Kamm, R. D. Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc. Natl Acad. Sci. USA 108, 11115–11120 (2011).

    CAS  PubMed  Google Scholar 

  135. Shields, J. D. et al. Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell 11, 526–538 (2007).

    CAS  PubMed  Google Scholar 

  136. Swartz, M. A. & Lund, A. W. Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nature Rev. Cancer 12, 210–219 (2012).

    CAS  Google Scholar 

  137. Prentice-Mott, H. V. et al. Biased migration of confined neutrophil-like cells in asymmetric hydraulic environments. Proc. Natl Acad. Sci. USA 110, 21006–21011 (2013).

    CAS  PubMed  Google Scholar 

  138. Allen, G. M., Mogilner, A. & Theriot, J. A. Electrophoresis of cellular membrane components creates the directional cue guiding keratocyte galvanotaxis. Curr. Biol. 23, 560–568 (2013). Provides new insights into and analysis of the mechanisms by which electric fields modify cell migration.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

G.C. is supported by a University Research Fellowship from the Royal Society. E.S. is supported by Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guillaume Charras or Erik Sahai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Isotropic

Equal in all directions.

Integrin

A heterodimeric molecule that binds to a wide range of extracellular matrix molecules and some cell surface molecules. The specificity of integrins is determined by the combination of α- and β-subunits. Importantly, their conformation can be regulated to modify their affinity for ligands. They frequently cluster, leading to changes in avidity for the matrix. Their cytoplasmic tails recruit a range of signalling molecules.

Actin polymerization

The addition of actin monomers to actin filaments; actin polymerization adjacent to the plasma membrane generates force that moves the plasma membrane forward. Many regulatory molecules can promote either the formation of new actin filaments or the extension of existing ones. If these regulators are associated with the plasma membrane, then actin polymerization occurs in a polarized manner.

Actomyosin contraction

Myosin motors can interact with actin filaments. Hydrolysis of ATP by myosin moves the actin filament relative to myosin. Many myosins are dimeric and can therefore move two actin filaments relative to one another. Actin filaments and dimeric myosins can form higher-order contractile networks.

Lamellipodia

Planar cell protrusions that are driven by F-actin polymerization.

RAC1

A small G protein that indirectly regulates ARP2/3 function and promotes the formation of lamellipodia.

ARP2/3 actin nucleation complex

Actin-related protein 2 (ARP2) and ARP3 form part of a complex that nucleates the formation of new actin filaments. This complex preferentially initiates new filaments from the side of existing filaments, leading to a branched actin network. ARP2/3 function is particularly associated with the formation of planar actin-driven protrusions known as lamellipodia.

Filopodia

Fine protrusions of the plasma membrane that are driven by actin polymerization.

Membrane blebs

Spherical membrane bulges formed by the combination of internal hydrostatic pressure and weak points of either the actin cortex or its linkage to the plasma membrane. Blebs rapidly fill with cytoplasm but initially lack F-actin. Bleb growth is slowed by actin polymerization under the membrane.

Focal adhesions

Large patches of integrins that typically develop from focal complexes. They grow and are stabilized by the application of actomyosin-driven force.

Elastic modulus

A measure of the deformability of a material — measured in Pascals.

Mechanotransduction

The process by which physical properties of the cellular environment are converted into changes in cell signalling and cell state.

Stress fibres

Contractile actomyosin cables that usually span two points of attachment to the substrate.

Isometric tension

Tension within a structure that is not changing length.

Focal complexes

Clusters of integrin-mediated adhesions. These structures are linked to F-actin. They can form and turnover rapidly, or may mature into focal adhesions.

BAR proteins

(Bin1/Amphiphysin/Rvs167 proteins). A family of proteins characterized by a long and slightly curved shape that can interact with membranes.

Haptotaxis

Movement directed by an immobile gradient in matrix components.

Chemotaxis

Movement directed by a soluble chemical gradient.

Cadherins

Calcium-dependent cell–cell adhesion molecules. Cadherins form homodimers that link cells together. The intracellular domain of cadherins is coupled indirectly to F-actin via catenins and eplin.

Phase diagram

A diagram that can be used to graphically display complex relationships between two or three parameters and cell phenotype.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charras, G., Sahai, E. Physical influences of the extracellular environment on cell migration. Nat Rev Mol Cell Biol 15, 813–824 (2014). https://doi.org/10.1038/nrm3897

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3897

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing