Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Unravelling stem cell dynamics by lineage tracing

Key Points

  • The rules governing cell fate choice are key to understanding the mechanisms that regulate stem cell behaviour in development and homeostasis and to identifying the factors leading to their dysregulation in disease.

  • Lineage-tracing approaches are essential to obtain information on the long-term self-renewal potential and fate choice of stem and progenitor cell populations.

  • Population-based methods involving the incorporation of thymidine analogues, such as 5-bromodeoxyuridine (BrdU), or the dilution of histone 2B (H2B)–GFP, provide quantitative information on proliferation kinetics and fate specification of cell populations.

  • Lineage-tracing methods based on the use of transgenic animal models provide access to quantitative information on the activity, potency and fate choice of individual stem cells and their progeny.

  • The quantitative analysis of lineage-tracing data following inducible genetic labelling has contributed to the understanding of the proliferative hierarchy and fate behaviour of stem and progenitor cell populations in the mouse interfollicular epidermis and the intestinal epithelium in homeostasis.

  • Lineage-tracing methods can also be used to study the renewal and lineage potential of precursors in adult tissue, as well as during embryonic and postnatal development.

  • Lineage-tracing assays in animal models provide new quantitative insights into the fate behaviour and tumour-maintaining potential of cells within solid tumours.

Abstract

During embryonic and postnatal development, the different cells types that form adult tissues must be generated and specified in a precise temporal manner. During adult life, most tissues undergo constant renewal to maintain homeostasis. Lineage-tracing and genetic labelling technologies are beginning to shed light on the mechanisms and dynamics of stem and progenitor cell fate determination during development, tissue maintenance and repair, as well as their dysregulation in tumour formation. Statistical approaches, based on proliferation assays and clonal fate analyses, provide quantitative insights into cell kinetics and fate behaviour. These are powerful techniques to address new questions and paradigms in transgenic mouse models and other model systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lineage tracing as a quantitative tool.
Figure 2: Lineage tracing of the intestinal epithelium.
Figure 3: Clonal dynamics of the skin epidermis.
Figure 4: Lineage tracing during epithelial development.
Figure 5: Clonal dynamics of tumour cells.

Similar content being viewed by others

References

  1. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).

    CAS  PubMed  Google Scholar 

  2. Kao, C. F. & Lee, T. Birth time/order-dependent neuron type specification. Curr. Opin. Neurobiol. 20, 14–21 (2010).

    CAS  PubMed  Google Scholar 

  3. Slater, J. L., Landman, K. A., Hughes, B. D., Shen, Q. & Temple, S. Cell lineage tree models of neurogenesis. J. Theor. Biol. 256, 164–179 (2009).

    PubMed  Google Scholar 

  4. He, J. et al. How variable clones build an invariant retina. Neuron 75, 786–798 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Morrison, S. J. & Kimble, J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441, 1068–1074 (2006).

    CAS  PubMed  Google Scholar 

  6. Morrison, S. J. & Spradling, A. C. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132, 598–611 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Fuchs, E. The tortoise and the hair: slow-cycling cells in the stem cell race. Cell 137, 811–819 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, L. & Clevers, H. Coexistence of quiescent and active adult stem cells in mammals. Science 327, 542–545 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Graf, T. & Stadtfeld, M. Heterogeneity of embryonic and adult stem cells. Cell Stem Cell 3, 480–483 (2008).

    CAS  PubMed  Google Scholar 

  10. Cotsarelis, G., Cheng, S. Z., Dong, G., Sun, T. T. & Lavker, R. M. Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 57, 201–209 (1989).

    CAS  PubMed  Google Scholar 

  11. Cotsarelis, G., Sun, T. T. & Lavker, R. M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61, 1329–1337 (1990). First study to demonstrate that hair follicle stem cells are slow cycling.

    CAS  PubMed  Google Scholar 

  12. Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363 (2004). Describes a novel method based on the expression of H2B–GFP to isolate slow-cycling cells and quantify proliferation dynamics in vivo.

    CAS  PubMed  Google Scholar 

  13. Buckingham, M. E. & Meilhac, S. M. Tracing cells for tracking cell lineage and clonal behavior. Dev. Cell 21, 394–409 (2011).

    CAS  PubMed  Google Scholar 

  14. Kretzschmar, K. & Watt, F. M. Lineage tracing. Cell 148, 33–45 (2012).

    CAS  PubMed  Google Scholar 

  15. Van keymeulen, A. & Blanpain, C. Tracing epithelial stem cells during development, homeostasis, and repair. J. Cell Biol. 197, 575–584 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007). Reports for the first time the use of a multicolour reporter mice to perform lineage-tracing experiments.

    CAS  PubMed  Google Scholar 

  17. Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010).

    CAS  PubMed  Google Scholar 

  18. Schroeder, T. Long-term single-cell imaging of mammalian stem cells. Nature Methods 8, S30–S35 (2011).

    CAS  PubMed  Google Scholar 

  19. Zhu, Y., Huang, Y. F., Kek, C. & Bulavin, D. V. Apoptosis differently affects lineage tracing of Lgr5 and Bmi1 intestinal stem cell populations. Cell Stem Cell 12, 298–303 (2013).

    CAS  PubMed  Google Scholar 

  20. Barker, N., Bartfeld, S. & Clevers, H. Tissue-resident adult stem cell populations of rapidly self-renewing organs. Cell Stem Cell 7, 656–670 (2010).

    CAS  PubMed  Google Scholar 

  21. Barker, N., van Oudenaarden, A. & Clevers, H. Identifying the stem cell of the intestinal crypt: strategies and pitfalls. Cell Stem Cell 11, 452–460 (2012).

    CAS  PubMed  Google Scholar 

  22. Cheng, H. & Leblond, C. P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cell. Am. J. Anat. 141, 461–479 (1974). Using a labelling approach, this study proposes that columnar basal cells located at the bottom of the crypts correspond to the stem cells of the mouse intestine.

    CAS  PubMed  Google Scholar 

  23. Bjerknes, M. & Cheng, H. The stem-cell zone of the small intestinal epithelium. III. Evidence from columnar, enteroendocrine, and mucous cells in the adult mouse. Am. J. Anat. 160, 77–91 (1981).

    CAS  PubMed  Google Scholar 

  24. Potten, C. S., Hume, W. J., Reid, P. & Cairns, J. The segregation of DNA in epithelial stem cells. Cell 15, 899–906 (1978).

    CAS  PubMed  Google Scholar 

  25. Potten, C. S., Wilson, J. W. & Booth, C. Regulation and significance of apoptosis in the stem cells of the gastrointestinal epithelium. Stem Cells 15, 82–93 (1997).

    CAS  PubMed  Google Scholar 

  26. Ponder, B. A. et al. Derivation of mouse intestinal crypts from single progenitor cells. Nature 313, 689–691 (1985). First demonstration that intestinal and colonic crypts become monoclonal with time.

    CAS  PubMed  Google Scholar 

  27. Griffiths, D. F., Davies, S. J., Williams, D., Williams, G. T. & Williams, E. D. Demonstration of somatic mutation and colonic crypt clonality by X-linked enzyme histochemistry. Nature 333, 461–463 (1988).

    CAS  PubMed  Google Scholar 

  28. Winton, D. J., Blount, M. A. & Ponder, B. A. A clonal marker induced by mutation in mouse intestinal epithelium. Nature 333, 463–466 (1988).

    CAS  PubMed  Google Scholar 

  29. Bjerknes, M. & Cheng, H. Clonal analysis of mouse intestinal epithelial progenitors. Gastroenterology 116, 7–14 (1999).

    CAS  PubMed  Google Scholar 

  30. Williams, E. D., Lowes, A. P., Williams, D. & Williams, G. T. A stem cell niche theory of intestinal crypt maintenance based on a study of somatic mutation in colonic mucosa. Am. J. Pathol. 141, 773–776 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. van de Wetering, M. et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111, 241–250 (2002).

    CAS  PubMed  Google Scholar 

  32. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007). First study to show, using lineage-tracing experiments, that columnar basal cells correspond to the stem cells of the mouse intestine.

    CAS  PubMed  Google Scholar 

  33. Sangiorgi, E. & Capecchi, M. R. Bmi1 is expressed in vivo in intestinal stem cells. Nature Genet. 40, 915–920 (2008).

    CAS  PubMed  Google Scholar 

  34. Montgomery, R. K. et al. Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. Proc. Natl Acad. Sci. USA 108, 179–184 (2011).

    CAS  PubMed  Google Scholar 

  35. Takeda, N. et al. Interconversion between intestinal stem cell populations in distinct niches. Science 334, 1420–1424 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tian, H. et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478, 255–259 (2011). Shows, for the first time, the competence of other intestinal cells to acquire stem cell properties upon columnar basal cell depletion.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Munoz, J. et al. The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent '+4' cell markers. EMBO J. 31, 3079–3091 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Itzkovitz, S. et al. Single-molecule transcript counting of stem-cell markers in the mouse intestine. Nature Cell Biol. 14, 106–114 (2012).

    CAS  Google Scholar 

  39. Buczacki, S. J. et al. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature 495, 65–69 (2013).

    CAS  PubMed  Google Scholar 

  40. Lopez-Garcia, C., Klein, A. M., Simons, B. D. & Winton, D. J. Intestinal stem cell replacement follows a pattern of neutral drift. Science 330, 822–825 (2010).

    CAS  PubMed  Google Scholar 

  41. van Es, J. H. et al. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nature Cell Biol. 14, 1099–1104 (2012).

    CAS  PubMed  Google Scholar 

  42. Blanpain, C. & Fuchs, E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nature Rev. Mol. Cell Biol. 10, 207–217 (2009).

    CAS  Google Scholar 

  43. Mackenzie, I. C. Relationship between mitosis and the ordered structure of the stratum corneum in mouse epidermis. Nature 226, 653–655 (1970).

    CAS  PubMed  Google Scholar 

  44. Potten, C. S. The epidermal proliferative unit: the possible role of the central basal cell. Cell Tissue Kinet. 7, 77–88 (1974).

    CAS  PubMed  Google Scholar 

  45. Potten, C. S. & Loeffler, M. Epidermal cell proliferation. I. Changes with time in the proportion of isolated, paired and clustered labelled cells in sheets of murine epidermis. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 53, 279–285 (1987).

    CAS  PubMed  Google Scholar 

  46. Loeffler, M., Potten, C. S. & Wichmann, H. E. Epidermal cell proliferation. II. A comprehensive mathematical model of cell proliferation and migration in the basal layer predicts some unusual properties of epidermal stem cells. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 53, 286–300 (1987).

    CAS  PubMed  Google Scholar 

  47. Potten, C. S. & Morris, R. J. Epithelial stem cells in vivo. J. Cell Sci. Suppl. 10, 45–62 (1988).

    CAS  PubMed  Google Scholar 

  48. Barrandon, Y. & Green, H. Three clonal types of keratinocyte with different capacities for multiplication. Proc. Natl Acad. Sci. USA 84, 2302–2306 (1987). First ex vivo functional demonstration of the proliferative heterogeneity within the epidermis.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Jones, P. H. & Watt, F. M. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 73, 713–724 (1993). First study showing that cells with higher proliferation potential can be isolated by flow cytometry from a complex epithelial tissue.

    CAS  PubMed  Google Scholar 

  50. Jones, P. H., Harper, S. & Watt, F. M. Stem cell patterning and fate in human epidermis. Cell 80, 83–93 (1995).

    CAS  PubMed  Google Scholar 

  51. Mackenzie, I. C. Retroviral transduction of murine epidermal stem cells demonstrates clonal units of epidermal structure. J. Invest. Dermatol. 109, 377–383 (1997).

    CAS  PubMed  Google Scholar 

  52. Kolodka, T. M., Garlick, J. A. & Taichman, L. B. Evidence for keratinocyte stem cells in vitro: long term engraftment and persistence of transgene expression from retrovirus-transduced keratinocytes. Proc. Natl Acad. Sci. USA 95, 4356–4361 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ghazizadeh, S. & Taichman, L. B. Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin. EMBO J. 20, 1215–1222 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ro, S. & Rannala, B. Evidence from the stop-EGFP mouse supports a niche-sharing model of epidermal proliferative units. Exp. Dermatol. 14, 838–843 (2005).

    PubMed  Google Scholar 

  55. Ro, S. & Rannala, B. A stop-EGFP transgenic mouse to detect clonal cell lineages generated by mutation. EMBO Rep. 5, 914–920 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Clayton, E. et al. A single type of progenitor cell maintains normal epidermis. Nature 446, 185–189 (2007). First quantitative clonal analysis of the interfollicular epidermis.

    CAS  PubMed  Google Scholar 

  57. Doupe, D. P., Klein, A. M., Simons, B. D. & Jones, P. H. The ordered architecture of murine ear epidermis is maintained by progenitor cells with random fate. Dev. Cell 18, 317–323 (2010).

    CAS  PubMed  Google Scholar 

  58. Lapouge, G. et al. Identifying the cellular origin of squamous skin tumors. Proc. Natl Acad. Sci. USA 108, 7431–7436 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Mascre, G. et al. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 489, 257–262 (2012).

    CAS  PubMed  Google Scholar 

  60. Lavker, R. M. & Sun, T.-T. Heterogeneity in epidermal basal keratinocytes: morphological and functional correlations. Science 215, 1239–1241 (1982).

    CAS  PubMed  Google Scholar 

  61. Lavker, R. M. & Sun, T.-T. Epidermal stem cells. J. Invest. Dermatol. 81, 121s–127s (1983).

    CAS  PubMed  Google Scholar 

  62. Tani, H., Morris, R. J. & Kaur, P. Enrichment for murine keratinocyte stem cells based on cell surface phenotype. Proc. Natl Acad. Sci. USA 97, 10960–10965 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Li, A., Simmons, P. J. & Kaur, P. Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proc. Natl Acad. Sci. USA 95, 3902–3907 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ito, M. et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nature Med. 11, 1351–1354 (2005).

    CAS  PubMed  Google Scholar 

  65. Levy, V., Lindon, C., Zheng, Y., Harfe, B. D. & Morgan, B. A. Epidermal stem cells arise from the hair follicle after wounding. FASEB J. 21, 1358–1366 (2007).

    CAS  Google Scholar 

  66. Snippert, H. J. et al. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327, 1385–1389 (2010).

    CAS  PubMed  Google Scholar 

  67. Jaks, V. et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nature Genet. 40, 1291–1299 (2008).

    CAS  PubMed  Google Scholar 

  68. Doupe, D. P. et al. A single progenitor population switches behavior to maintain and repair esophageal epithelium. Science 337, 1091–1093 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Rossi, D. J. et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc. Natl Acad. Sci. USA 102, 9194–9199 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Conboy, I. M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764 (2005).

    CAS  PubMed  Google Scholar 

  71. Giangreco, A., Qin, M., Pintar, J. E. & Watt, F. M. Epidermal stem cells are retained in vivo throughout skin aging. Aging Cell 7, 250–259 (2008).

    CAS  PubMed  Google Scholar 

  72. Gupta, V. & Poss, K. D. Clonally dominant cardiomyocytes direct heart morphogenesis. Nature 484, 479–484 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Tzouanacou, E., Wegener, A., Wymeersch, F. J., Wilson, V. & Nicolas, J. F. Redefining the progression of lineage segregations during mammalian embryogenesis by clonal analysis. Dev. Cell 17, 365–376 (2009).

    CAS  PubMed  Google Scholar 

  74. Van Keymeulen, A. et al. Distinct stem cells contribute to mammary gland development and maintenance. Nature 479, 189–193 (2011). First lineage-tracing and clonal analysis during mammary gland development and homeostasis.

    CAS  PubMed  Google Scholar 

  75. Wang, X. et al. A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461, 495–500 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu, J. et al. Regenerated luminal epithelial cells are derived from preexisting luminal epithelial cells in adult mouse prostate. Mol. Endocrinol. 25, 1849–1857 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Choi, N., Zhang, B., Zhang, L., Ittmann, M. & Xin, L. Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation. Cancer Cell 21, 253–265 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ousset, M. et al. Multipotent and unipotent progenitors contribute to prostate postnatal development. Nature Cell Biol. 14, 1131–1138 (2012).

    CAS  PubMed  Google Scholar 

  79. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    CAS  PubMed  Google Scholar 

  80. Magee, J. A., Piskounova, E. & Morrison, S. J. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21, 283–296 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Driessens, G., Beck, B., Caauwe, A., Simons, B. D. & Blanpain, C. Defining the mode of tumour growth by clonal analysis. Nature 488, 527–530 (2012). First quantitative clonal analysis of tumour growth.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Schepers, A. G. et al. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337, 730–735 (2012). This study, together with reference 81, supports the existence of cancer stem cells during tumour growth in its natural environment.

    CAS  PubMed  Google Scholar 

  83. Zomer, A. et al. Intravital imaging of cancer stem cell plasticity in mammary tumors. Stem Cells 31, 602–606 (2013).

    CAS  PubMed  Google Scholar 

  84. Nakagawa, T., Sharma, M., Nabeshima, Y., Braun, R. E. & Yoshida, S. Functional hierarchy and reversibility within the murine spermatogenic stem cell compartment. Science 328, 62–67 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bystrykh, L. V., Verovskaya, E., Zwart, E., Broekhuis, M. & de Haan, G. Counting stem cells: methodological constraints. Nature Methods 9, 567–574 (2012).

    CAS  PubMed  Google Scholar 

  86. Lu, R., Neff, N. F., Quake, S. R. & Weissman, I. L. Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding. Nature Biotechnol. 29, 928–933 (2011).

    CAS  Google Scholar 

  87. Kreso, A. et al. Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339, 543–548 (2013).

    CAS  PubMed  Google Scholar 

  88. Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118–1129 (2008).

    CAS  PubMed  Google Scholar 

  89. Klein, A. M. & Simons, B. D. Universal patterns of stem cell fate in cycling adult tissues. Development 138, 3103–3111 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

B.D.S. thanks A. Klein for important discussions and contributions, and he gratefully acknowledges the financial support of the Wellcome Trust (grant number 098357/Z/12/Z). C.B. is an investigator of Walloon Excellence in Life Science and Biotechnology (WELBIO), and he is supported by the Belgian Fund for Scientific Research (FNRS) and the European Research Council (ERC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cédric Blanpain or Benjamin D. Simons.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

Cédric Blanpain's homepage

PowerPoint slides

Glossary

Equipotent precursor cells

A group of progenitor cells that present the same intrinsic capacity to renew and differentiate. The term equipotency does not imply that all cells will give rise to identical daughter cells, as the cell cycle time may be different between equipotent progenitors, and the choice between renewal and differentiation may be stochastically defined.

Terminal divisions

Cell divisions that lead to the generation of two terminally differentiated cells that will not divide anymore.

Stem cell niche

The particular microenvironment in which stem cells reside. The stem cell niche is thought to regulate stem cell activity and influence fate decisions through the release of extrinsic signals (for example, growth factors, morphogens, nutriments and oxygen).

Pulse-chase

A method that involves the administration of nucleotide analogues for a certain period (pulse), followed by a period during which no nucleotide analogues is administrated (chase). During the chase period, cells that divide will dilute the label equally between the two daughter cells. After a few rounds of cell division (3–4 divisions), the label typically becomes undetectable. By contrast, in non-dividing cells the label remains detectable, and these cells are thus termed label-retaining.

Clonal density

The density of labelled cells that allows the fate of single labelled cells to be resolved and followed over time.

Genetic labelling

A method of cell labelling that uses a genetic system (such as a fluorescent reporter gene). The advantage of genetic labelling is its irreversibility, leading to a permanent expression of the reporter gene in the cells initially labelled and all their progeny. Non-genetic labelling, based on, for example, the incorporation of fluorescent dyes in some cells, eventually becomes undetectable as the dyes are diluted.

Scaling behaviour

Behaviour that does not vary under a change of scale. For example, for a population defined by a statistical size distribution, while the average size may change over time, if the chance of finding a member of the population with a size greater than some multiple of the average remains constant over time, the distribution is said to scale.

Neutral drift

A term that was initially used to define the statistical distribution of gene mutations (drift) with no selective advantage (neutral) in a human population. This term can be used to describe a similar phenomenology in other contexts such as the time evolution of the statistical distribution of clone sizes in a lineage-tracing assay.

Rete ridges

Defines the bottom of the undulation present in the human skin epidermis, which was thought to contain human epidermal stem cells in certain parts of the body.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanpain, C., Simons, B. Unravelling stem cell dynamics by lineage tracing. Nat Rev Mol Cell Biol 14, 489–502 (2013). https://doi.org/10.1038/nrm3625

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3625

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer