Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Charity begins at home: non-coding RNA functions in DNA repair

Abstract

During the past decade, evolutionarily conserved microRNAs (miRNAs) have been characterized as regulators of almost every cellular process and signalling pathway. There is now emerging evidence that this new class of regulators also impinges on the DNA damage response (DDR). Both miRNAs and other small non-coding RNAs (ncRNAs) are induced at DNA breaks and mediate the repair process. These intriguing observations raise the possibility that crosstalk between ncRNAs and the DDR might provide a means of efficient and accurate DNA repair and facilitate the maintenance of genomic stability.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interplay between miRNAs and the DDR.
Figure 2: miRNA regulation of DSB repair pathway choice.
Figure 3: Emerging roles for ncRNAs in DSB repair.

Similar content being viewed by others

References

  1. Ciccia, A. & Elledge, S. J. The DNA damage response: making it safe to play with knives. Mol. Cell 40, 179–204 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Chapman, J. R., Tayloy, G. R. M. & Boulton, S. J. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell 47, 495–510 (2012).

    Article  CAS  Google Scholar 

  3. Bennett, C. B., Lewis, A. L., Baldwin, K. K. & Resnick, M. A. Lethality induced by a single site-specific double-strand break in a dispensable yeast plasmid. Proc. Natl Acad. Sci. USA 90, 5613–5617 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang, L. C., Clarkin, K. C. & Wahl, G. M. Sensitivity and selectivity of the DNA damage sensor responsible for activating p53-dependent G1 arrest. Proc. Natl Acad. Sci. USA 93, 4827–4832 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. San Filippo, J., Sung, P. & Klein, H. Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem. 77, 229–257 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Lieber, M. R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79, 181–211 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Alexander, R. P., Fang, G., Rozowsky, J., Snyder, M. & Gerstein, M. B. Annotating non-coding regions of the genome. Nature Rev. Genet. 11, 559–571 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Esteller, M. Non-coding RNAs in human disease. Nature Rev. Genet. 12, 861–874 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Watanabe, T. et al. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev. 20, 1732–1743 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Aravin, A. A., Sachidanandam, R., Girard, A., Fejes-Toth, K. & Hannon, G. J. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316, 744–747 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, G. & Reinke, V. A. C. elegans Piwi, PRG-1, regulates 21U-RNAs during spermatogenesis. Curr. Biol. 18, 861–867 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Siomi, M. C., Sato, K., Pezic, D. & Aravin, A. A. PIWI-interacting small RNAs: the vanguard of genome defence. Nature Rev. Mol. Cell Biol. 12, 246–258 (2011).

    Article  CAS  Google Scholar 

  13. Kapranov, P., Willingham, A. T. & Gingeras, T. R. Genome-wide transcription and the implications for genomic organization. Nature Rev. Genet. 8, 413–423 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Rinn, J. L. & Chang, H. Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 81, 145–166 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Guttman, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223–227 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Khalil, A. M. et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl Acad. Sci. USA 106, 11667–11672 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Calin, G. A. et al. Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell 12, 215–229 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Lujambio, A. et al. CpG island hypermethylation-associated silencing of non-coding RNAs transcribed from ultraconserved regions in human cancer. Oncogene 29, 6390–6401 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee, H. C. et al. qiRNA is a new type of small interfering RNA induced by DNA damage. Nature 459, 274–277 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wei, W. et al. A role for small RNAs in DNA double-strand break repair. Cell 149, 101–112 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Francia, S. et al. Site-specific DICER and DROSHA RNA products control the DNA-damage response. Nature 488, 231–235 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Michalik, K. M., Bottcher, R. & Forstemann, K. A small RNA response at DNA ends in Drosophila. Nucleic Acids Res. 40, 9596–9603 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bartel, D. P. microRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fabian, M. R., Sonenberg, N. & Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 79, 351–379 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Huntzinger, E. & Izaurralde, E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nature Rev. Genet. 12, 99–110 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Friedman, R. C., Farh, K. K., Burge, C. B. & Bartel, D. P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Davis-Dusenbery, B. N. & Hata, A. Mechanisms of control of microRNA biogenesis. J. Biochem. 148, 381–392 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ghildiyal, M. & Zamore, P. D. Small silencing RNAs: an expanding universe. Nature Rev. Genet. 10, 94–108 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Fabian, M. R. & Sonenberg, N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nature Struct. Mol. Biol. 19, 586–593 (2012).

    Article  CAS  Google Scholar 

  30. Czech, B. & Hannon, G. J. Small RNA sorting: matchmaking for Argonautes. Nature Rev. Genet. 12, 19–31 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Pasquinelli, A. E. microRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nature Rev. Genet. 13, 271–282 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Pryde, F. et al. 53BP1 exchanges slowly at the sites of DNA damage and appears to require RNA for its association with chromatin. J. Cell Sci. 118, 2043–2055 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Ganesan, S. et al. BRCA1 supports XIST RNA concentration on the inactive X chromosome. Cell 111, 393–405 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Yoo, S. & Dynan, W. S. Characterization of the RNA binding properties of Ku protein. Biochemistry 37, 1336–1343 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Adamson, B., Smogorzewska, A., Sigoillot, F. D., King, R. W. & Elledge, S. J. A genome-wide homologous recombination screen identifies the RNA-binding protein RBMX as a component of the DNA-damage response. Nature Cell Biol. 14, 318–328 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Polo, S. E. et al. Regulation of DNA-end resection by hnRNPU-like proteins promotes DNA double-strand break signaling and repair. Mol. Cell 45, 505–516 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Landau, D. A. & Slack, F. J. microRNAs in mutagenesis, genomic instability, and DNA repair. Semin. Oncol. 38, 743–751 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wan, G., Mathur, R., Hu, X., Zhang, X. & Lu, X. miRNA response to DNA damage. Trends Biochem. Sci. 36, 478–484 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hermeking, H. microRNAs in the p53 network: micromanagement of tumour suppression. Nature Rev. Cancer 12, 613–626 (2012).

    Article  CAS  Google Scholar 

  40. He, L., He, X., Lowe, S. W. & Hannon, G. J. microRNAs join the p53 network — another piece in the tumour-suppression puzzle. Nature Rev. Cancer 7, 819–822 (2007).

    Article  CAS  Google Scholar 

  41. Hu, H. & Gatti, R. A. microRNAs: new players in the DNA damage response. J. Mol. Cell. Biol. 3, 151–158 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Maes, O. C., An, J., Sarojini, H., Wu, H. & Wang, E. Changes in microRNA expression patterns in human fibroblasts after low-LET radiation. J. Cell Biochem. 105, 824–834 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Pothof, J. et al. microRNA-mediated gene silencing modulates the UV-induced DNA-damage response. EMBO J. 28, 2090–2099 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Josson, S., Sung, S. Y., Lao, K., Chung, L. W. & Johnstone, P. A. Radiation modulation of microRNA in prostate cancer cell lines. Prostate 68, 1599–1606 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Templin, T. et al. Radiation-induced micro-RNA expression changes in peripheral blood cells of radiotherapy patients. Int. J. Radiat. Oncol. Biol. Phys. 80, 549–557 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, X., Wan, G., Berger, F. G., He, X. & Lu, X. The ATM kinase induces microRNA biogenesis in the DNA damage response. Mol. Cell 41, 371–383 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Trabucchi, M. et al. The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 459, 1010–1014 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tang, D. et al. ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J. Biol. Chem. 277, 12710–12717 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Paroo, Z., Ye, X., Chen, S. & Liu, Q. Phosphorylation of the human microRNA-generating complex mediates MAPK/Erk signaling. Cell 139, 112–122 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kawai, S. & Amano, A. BRCA1 regulates microRNA biogenesis via the DROSHA microprocessor complex. J. Cell Biol. 197, 201–208 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chang, S. et al. Tumor suppressor BRCA1 epigenetically controls oncogenic microRNA-155. Nature Med. 17, 1275–1282 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Niu, J. et al. DNA damage induces NF-κB-dependent microRNA-21 up-regulation and promotes breast cancer cell invasion. J. Biol. Chem. 287, 21783–21795 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Miranda, K. C. et al. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 126, 1203–1217 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Ward, I. M. et al. 53BP1 cooperates with p53 and functions as a haploinsufficient tumor suppressor in mice. Mol. Cell. Biol. 25, 10079–10086 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ward, I. M., Minn, K., van Deursen, J. & Chen, J. p53binding protein 53BP1 is required for DNA damage responses and tumor suppression in mice. Mol. Cell. Biol. 23, 2556–2563 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Takeyama, K. et al. Integrative analysis reveals 53BP1 copy loss and decreased expression in a subset of human diffuse large B-cell lymphomas. Oncogene 27, 318–322 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Hu, H., Du, L., Nagabayashi, G., Seeger, R. C. & Gatti, R. A. ATM is down-regulated by N-Myc-regulated microRNA-421. Proc. Natl Acad. Sci. USA 107, 1506–1511 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bouwman, P. et al. 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nature Struct. Mol. Biol. 17, 688–695 (2010).

    Article  CAS  Google Scholar 

  59. Yan, D. et al. Targeting DNA-PKcs and ATM with miR-101 sensitizes tumors to radiation. PLoS ONE 5, e11397 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Song, L. et al. miR-18a impairs DNA damage response through downregulation of ataxia telangiectasia mutated (ATM) kinase. PLoS ONE 6, e25454 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fang, Y. et al. ATR functions as a gene dosage-dependent tumor suppressor on a mismatch repair-deficient background. EMBO J. 23, 3164–3174 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lal, A. et al. miR-24-mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nature Struct. Mol. Biol. 16, 492–498 (2009).

    Article  CAS  Google Scholar 

  63. Moskwa, P. et al. miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol. Cell 41, 210–220 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Mueller, C. R. & Roskelley, C. D. Regulation of BRCA1 expression and its relationship to sporadic breast cancer. Breast Cancer Res. 5, 45–52 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Krishnan, K. et al. microRNA-182-5p targets a network of genes involved in DNA repair. RNA 18 Dec 2012 (doi:10.1261/rna.034926.112).

  66. Liu, Z. et al. miR-182 overexpression in tumourigenesis of high-grade serous ovarian carcinoma. J. Pathol. 228, 204–215 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Wang, Y., Huang, J. W., Calses, P., Kemp, C. J. & Taniguchi, T. miR-96 downregulates REV1 and RAD51 to promote cellular sensitivity to cisplatin and PARP inhibition. Cancer Res. 72, 4037–4046 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang, Y. et al. microRNA-138 modulates DNA damage response by repressing histone H2AX expression. Mol. Cancer Res. 9, 1100–1111 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Garcia, A. I. et al. Down-regulation of BRCA1 expression by miR-146a and miR-146b-5p in triple negative sporadic breast cancers. EMBO Mol. Med. 3, 279–290 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hudson, R. S. et al. microRNA-1 is a candidate tumor suppressor and prognostic marker in human prostate cancer. Nucleic Acids Res. 40, 3689–3703 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Song, L. et al. Up-regulation of miR-1245 by c-myc targets BRCA2 and impairs DNA repair. J. Mol. Cell. Biol. 4, 108–117 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Lejeune, E. & Allshire, R. C. Common ground: small RNA programming and chromatin modifications. Curr. Opin. Cell Biol. 23, 258–265 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. van Wolfswinkel, J. C. & Ketting, R. F. The role of small non-coding RNAs in genome stability and chromatin organization. J. Cell Sci. 123, 1825–1839 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Brown, J. D., Mitchell, S. E. & O'Neill, R. J. Making a long story short: noncoding RNAs and chromosome change. Heredity 108, 42–49 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Kedde, M. et al. Telomerase-independent regulation of ATR by human telomerase RNA. J. Biol. Chem. 281, 40503–40514 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Azzalin, C. M., Reichenbach, P., Khoriauli, L., Giulotto, E. & Lingner, J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318, 798–801 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Schoeftner, S. & Blasco, M. A. Chromatin regulation and non-coding RNAs at mammalian telomeres. Semin. Cell Dev. Biol. 21, 186–193 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Deng, Z., Norseen, J., Wiedmer, A., Riethman, H. & Lieberman, P. M. TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres. Mol. Cell 35, 403–413 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Flynn, R. L. et al. TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNA. Nature 471, 532–536 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Storici, F., Bebenek, K., Kunkel, T. A., Gordenin, D. A. & Resnick, M. A. RNA-templated DNA repair. Nature 447, 338–341 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nowacki, M. et al. RNA-mediated epigenetic programming of a genome-rearrangement pathway. Nature 451, 153–158 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Pankotai, T., Bonhomme, C., Chen, D. & Soutoglou, E. DNAPKcs-dependent arrest of RNA polymerase II transcription in the presence of DNA breaks. Nature Struct. Mol. Biol. 19, 276–282 (2012).

    Article  CAS  Google Scholar 

  83. Shanbhag, N. M., Rafalska-Metcalf, I. U., Balane-Bolivar, C., Janicki, S. M. & Greenberg, R. A. ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell 141, 970–981 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Helmink, B. A. et al. H2AX prevents CtIP-mediated DNA end resection and aberrant repair in G1-phase lymphocytes. Nature 469, 245–249 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Bunting, S. F. et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141, 243–254 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chapman, J. R., Sossick, A. J., Boulton, S. J. & Jackson, S. P. BRCA1-associated exclusion of 53BP1 from DNA damage sites underlies temporal control of DNA repair. J. Cell Sci. 2 May 2012 (doi:10.1242/jcs.105353).

  87. Shrivastav, M., De Haro, L. P. & Nickoloff, J. A. Regulation of DNA double-strand break repair pathway choice. Cell Res. 18, 134–147 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Weinstock, D. M., Brunet, E. & Jasin, M. Formation of NHEJ-derived reciprocal chromosomal translocations does not require Ku70. Nature Cell Biol. 9, 978–981 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Saberi, A. et al. RAD18 and poly(ADP-ribose) polymerase independently suppress the access of nonhomologous end joining to double-strand breaks and facilitate homologous recombination-mediated repair. Mol. Cell. Biol. 27, 2562–2571 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Karanam, K., Kafri, R., Loewer, A. & Lahav, G. Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase. Mol. Cell 47, 320–329 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Shibata, A. et al. Factors determining DNA double-strand break repair pathway choice in G2 phase. EMBO J. 30, 1079–1092 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Verdel, A. et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tattermusch, A. & Brockdorff, N. A scaffold for X chromosome inactivation. Hum. Genet. 130, 247–253 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Grosshans, H., Johnson, T., Reinert, K. L., Gerstein, M. & Slack, F. J. The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in C. elegans. Dev. Cell 8, 321–330 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Bao, N., Lye, K. W. & Barton, M. K. microRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev. Cell 7, 653–662 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Wang, X. et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 454, 126–130 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

D.C. is supported by the National Cancer Institute (NCI) (R01CA142698), the National Institute of Allergy and Infectious Diseases (NIAID) (R01 AI101897-01), a Basic Scholar Grant (ACS), the Ann-Fuller Foundation and start-up funds from the Dana-Farber Cancer Institute (DFCI). M.E.B. is supported by a fellowship from the Fonds de la Recherche en Santé du Québec (FRSQ). The authors apologize to their colleagues whose work could not be discussed owing to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipanjan Chowdhury.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Dipanjan Chowdhury's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chowdhury, D., Choi, Y. & Brault, M. Charity begins at home: non-coding RNA functions in DNA repair. Nat Rev Mol Cell Biol 14, 181–189 (2013). https://doi.org/10.1038/nrm3523

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3523

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing