Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Finding the end: recruitment of telomerase to telomeres

Key Points

  • The ends of linear chromosomes pose two problems to eukaryotic cells: the end-protection problem; and the end-replication problem. End protection is necessary to prevent natural ends of chromosomes from being recognized as DNA breaks that require DNA repair, and end replication is required to compensate for the inability of replicative polymerases to copy the extreme ends of chromosomes.

  • The telomerase ribonucleoprotein enzyme uses its internal RNA template for replicating the ends of chromosomes to furnish telomeric DNA, which is bound by telomeric proteins that facilitate chromosome end protection.

  • How does telomerase get recruited to chromosomes? The telomerase–telomere connection is mediated by TPP1 in humans, Ccq1 in fission yeast and Cdc13 in budding yeast. The amino-terminal OB-fold domain of human TPP1 binds telomerase, recruits telomerase to telomeres and increases telomerase processivity.

  • Ccq1, a Schizosaccharomyces pombe-specific telomeric protein, recruits telomerase to telomeres in this organism. Phosphorylation of Ccq1 by the Tel1 and Rad3 kinases regulates its binding to the ever shorter telomeres 1 (Est1) subunit of S. pombe telomerase.

  • Binding of the heterodimeric Ku70–Ku80 to its binding site on Tlc1, the RNA subunit of Saccharomyces cerevisiae telomerase, facilitates localization of telomerase in the nucleus of this organism. The interaction between the telomeric single-stranded DNA-binding protein Cdc13 and the telomerase subunit Est1 tethers budding yeast telomerase to telomeres.

Abstract

Telomeres, the ends of linear eukaryotic chromosomes, are characterized by the presence of multiple repeats of a short DNA sequence. This telomeric DNA is protected from illicit repair by telomere-associated proteins, which in mammals form the shelterin complex. Replicative polymerases are unable to synthesize DNA at the extreme ends of chromosomes, but in unicellular eukaryotes such as yeast and in mammalian germ cells and stem cells, telomere length is maintained by a ribonucleoprotein enzyme known as telomerase. Recent work has provided insights into the mechanisms of telomerase recruitment to telomeres, highlighting the contribution of telomere-associated proteins, including TPP1 in humans, Ccq1 in Schizosaccharomyces pombe and Cdc13 and Ku70–Ku80 in Saccharomyces cerevisiae.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chromosome end protection versus telomerase recruitment and action.
Figure 2: Structures of telomeric proteins and telomerase components.
Figure 3: Models for telomerase recruitment in humans and S. pombe.
Figure 4: Model for telomerase recruitment in Saccharomyces cerevisiae.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Palm, W. & de Lange, T. How shelterin protects mammalian telomeres. Annu. Rev. Genet. 42, 301–334 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Levy, M. Z., Allsopp, R. C., Futcher, A. B., Greider, C. W. & Harley, C. B. Telomere end-replication problem and cell aging. J. Mol. Biol. 225, 951–960 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Pardue, M. L. & DeBaryshe, P. G. Drosophila telomeres: a variation on the telomerase theme. Fly (Austin) 2, 101–110 (2008).

    Article  Google Scholar 

  4. Jaskelioff, M. et al. Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469, 102–106 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Dokal, I. Dyskeratosis congenita. Hematol. Am. Soc. Hematol. Educ. Program 2011, 480–486 (2011).

    Article  Google Scholar 

  6. Cifuentes-Rojas, C. & Shippen, D. E. Telomerase regulation. Mutat. Res. 730, 20–27 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Lewis, K. A. & Wuttke, D. S. Telomerase and telomere-associated proteins: structural insights into mechanism and evolution. Structure 20, 28–39 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Egan, E. D. & Collins, K. Biogenesis of telomerase ribonucleoproteins. RNA 18, 1747–1759 (2012). This excellent review describes the T. thermophila telomerase holoenzyme, which is not covered in detail in this Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zakian, V. A. Telomeres: the beginnings and ends of eukaryotic chromosomes. Exp. Cell Res. 318, 1456–1460 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Williamson, J. R., Raghuraman, M. K. & Cech, T. R. Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell 59, 871–880 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. Sundquist, W. I. & Klug, A. Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature 342, 825–829 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Griffith, J. D. et al. Mammalian telomeres end in a large duplex loop. Cell 97, 503–514 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Fairall, L., Chapman, L., Moss, H., de Lange, T. & Rhodes, D. Structure of the TRFH dimerization domain of the human telomeric proteins TRF1 and TRF2. Mol. Cell 8, 351–361 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Court, R., Chapman, L., Fairall, L. & Rhodes, D. How the human telomeric proteins TRF1 and TRF2 recognize telomeric DNA: a view from high-resolution crystal structures. EMBO Rep. 6, 39–45 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Nishikawa, T. et al. Solution structure of a telomeric DNA complex of human TRF1. Structure 9, 1237–1251 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Hanaoka, S., Nagadoi, A. & Nishimura, Y. Comparison between TRF2 and TRF1 of their telomeric DNA-bound structures and DNA-binding activities. Protein Sci. 14, 119–130 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cooper, J. P., Nimmo, E. R., Allshire, R. C. & Cech, T. R. Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature 385, 744–747 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Shore, D. & Nasmyth, K. Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Cell 51, 721–732 (1987).

    Article  CAS  PubMed  Google Scholar 

  19. Hardy, C. F., Sussel, L. & Shore, D. A. RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes Dev. 6, 801–814 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Wotton, D. & Shore, D. A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev. 11, 748–760 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Li, B., Oestreich, S. & de Lange, T. Identification of human Rap1: implications for telomere evolution. Cell 101, 471–483 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Chikashige, Y. & Hiraoka, Y. Telomere binding of the Rap1 protein is required for meiosis in fission yeast. Curr. Biol. 11, 1618–1623 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Horvath, M. P., Schweiker, V. L., Bevilacqua, J. M., Ruggles, J. A. & Schultz, S. C. Crystal structure of the Oxytricha nova telomere end binding protein complexed with single strand DNA. Cell 95, 963–974 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Baumann, P. & Cech, T. R. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292, 1171–1175 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Baumann, P., Podell, E. & Cech, T. R. Human Pot1 (protection of telomeres) protein: cytolocalization, gene structure, and alternative splicing. Mol. Cell. Biol. 22, 8079–8087 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Loayza, D. & De Lange, T. POT1 as a terminal transducer of TRF1 telomere length control. Nature 423, 1013–1018 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Lei, M., Podell, E. R. & Cech, T. R. Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nature Struct. Mol. Biol. 11, 1223–1229 (2004).

    Article  CAS  Google Scholar 

  28. Hockemeyer, D., Daniels, J. P., Takai, H. & de Lange, T. Recent expansion of the telomeric complex in rodents: two distinct POT1 proteins protect mouse telomeres. Cell 126, 63–77 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Wu, L. et al. Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell 126, 49–62 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, F. et al. The POT1–TPP1 telomere complex is a telomerase processivity factor. Nature 445, 506–510 (2007). Reports the stimulation of telomerase in vitro by the POT1–TPP1 complex and also solves the high-resolution crystal structure of the N-terminal OB-fold domain of TPP1.

    Article  CAS  PubMed  Google Scholar 

  31. Hockemeyer, D. et al. Telomere protection by mammalian Pot1 requires interaction with Tpp1. Nature Struct. Mol. Biol. 14, 754–761 (2007).

    Article  CAS  Google Scholar 

  32. Guo, X. et al. Dysfunctional telomeres activate an ATM–ATR-dependent DNA damage response to suppress tumorigenesis. EMBO J. 26, 4709–4719 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, D. et al. PTOP interacts with POT1 and regulates its localization to telomeres. Nature Cell Biol. 6, 673–680 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Denchi, E. L. & de Lange, T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 448, 1068–1071 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Taylor, D. J., Podell, E. R., Taatjes, D. J. & Cech, T. R. Multiple POT1–TPP1 proteins coat and compact long telomeric single-stranded DNA. J. Mol. Biol. 410, 10–17 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lei, M., Podell, E. R., Baumann, P. & Cech, T. R. DNA self-recognition in the structure of Pot1 bound to telomeric single-stranded DNA. Nature 426, 198–203 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Miyoshi, T., Kanoh, J., Saito, M. & Ishikawa, F. Fission yeast Pot1–Tpp1 protects telomeres and regulates telomere length. Science 320, 1341–1344 (2008). Identifies the S. pombe telomeric proteins Ccq1, Poz1 and Tpz1 and demonstrates that Ccq1 is a positive regulator of telomere length.

    Article  CAS  PubMed  Google Scholar 

  38. Nandakumar, J. & Cech, T. R. DNA-induced dimerization of the single-stranded DNA binding telomeric protein Pot1 from Schizosaccharomyces pombe. Nucleic Acids Res. 40, 235–244 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Altschuler, S. E., Dickey, T. H. & Wuttke, D. S. Schizosaccharomyces pombe protection of telomeres 1 utilizes alternate binding modes to accommodate different telomeric sequences. Biochemistry 50, 7503–7513 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Nugent, C. I., Hughes, T. R., Lue, N. F. & Lundblad, V. Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274, 249–252 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Grandin, N., Reed, S. I. & Charbonneau, M. Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. Genes Dev. 11, 512–527 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Grandin, N., Damon, C. & Charbonneau, M. Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13. EMBO J. 20, 1173–1183 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Anderson, E. M., Halsey, W. A. & Wuttke, D. S. Delineation of the high-affinity single-stranded telomeric DNA-binding domain of Saccharomyces cerevisiae Cdc13. Nucleic Acids Res. 30, 4305–4313 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mitton-Fry, R. M., Anderson, E. M., Hughes, T. R., Lundblad, V. & Wuttke, D. S. Conserved structure for single-stranded telomeric DNA recognition. Science 296, 145–147 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Mitton-Fry, R. M., Anderson, E. M., Theobald, D. L., Glustrom, L. W. & Wuttke, D. S. Structural basis for telomeric single-stranded DNA recognition by yeast Cdc13. J. Mol. Biol. 338, 241–255 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Sun, J. et al. Structural bases of dimerization of yeast telomere protein Cdc13 and its interaction with the catalytic subunit of DNA polymerase α. Cell Res. 21, 258–274 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Gao, H., Cervantes, R. B., Mandell, E. K., Otero, J. H. & Lundblad, V. RPA-like proteins mediate yeast telomere function. Nature Struct. Mol. Biol. 14, 208–214 (2007).

    Article  CAS  Google Scholar 

  48. Kim, S. H., Kaminker, P. & Campisi, J. TIN2, a new regulator of telomere length in human cells. Nature Genet. 23, 405–412 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Kim, S. H. et al. TIN2 mediates functions of TRF2 at human telomeres. J. Biol. Chem. 279, 43799–43804 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Ye, J. Z. et al. TIN2 binds TRF1 and TRF2 simultaneously and stabilizes the TRF2 complex on telomeres. J. Biol. Chem. 279, 47264–47271 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Ye, J. Z. et al. POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Genes Dev. 18, 1649–1654 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Houghtaling, B. R., Cuttonaro, L., Chang, W. & Smith, S. A dynamic molecular link between the telomere length regulator TRF1 and the chromosome end protector TRF2. Curr. Biol. 14, 1621–1631 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Chen, Y. et al. A shared docking motif in TRF1 and TRF2 used for differential recruitment of telomeric proteins. Science 319, 1092–1096 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. O'Connor, M. S., Safari, A., Xin, H., Liu, D. & Songyang, Z. A critical role for TPP1 and TIN2 interaction in high-order telomeric complex assembly. Proc. Natl Acad. Sci. USA 103, 11874–11879 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu, D., O'Connor, M. S., Qin, J. & Songyang, Z. Telosome, a mammalian telomere-associated complex formed by multiple telomeric proteins. J. Biol. Chem. 279, 51338–51342 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Takai, K. K., Hooper, S. M., Blackwood, S. L., Gandhi, R. & de Lange, T. In vivo stoichiometry of shelterin components. J. Biol. Chem. 285, 1457–1467 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sfeir, A. & de Lange, T. Removal of shelterin reveals the telomere end-protection problem. Science 336, 593–597 (2012). By conditional deletion of the entire mouse shelterin complex, the authors reveal six DNA damage signalling pathways that are normally repressed at telomeres.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Greider, C. W. & Blackburn, E. H. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337, 331–337 (1989).

    Article  CAS  PubMed  Google Scholar 

  59. Blasco, M. A., Funk, W., Villeponteau, B. & Greider, C. W. Functional characterization and developmental regulation of mouse telomerase RNA. Science 269, 1267–1270 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Singer, M. S. & Gottschling, D. E. TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266, 404–409 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. Webb, C. J. & Zakian, V. A. Identification and characterization of the Schizosaccharomyces pombe TER1 telomerase RNA. Nature Struct. Mol. Biol. 15, 34–42 (2008).

    Article  CAS  Google Scholar 

  62. Leonardi, J., Box, J. A., Bunch, J. T. & Baumann, P. TER1, the RNA subunit of fission yeast telomerase. Nature Struct. Mol. Biol. 15, 26–33 (2008).

    Article  CAS  Google Scholar 

  63. Chen, J. L. & Greider, C. W. Template boundary definition in mammalian telomerase. Genes Dev. 17, 2747–2752 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tzfati, Y., Fulton, T. B., Roy, J. & Blackburn, E. H. Template boundary in a yeast telomerase specified by RNA structure. Science 288, 863–867 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Box, J. A., Bunch, J. T., Zappulla, D. C., Glynn, E. F. & Baumann, P. A flexible template boundary element in the RNA subunit of fission yeast telomerase. J. Biol. Chem. 283, 24224–24233 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Theimer, C. A., Blois, C. A. & Feigon, J. Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function. Mol. Cell 17, 671–682 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Shefer, K. et al. A triple helix within a pseudoknot is a conserved and essential element of telomerase RNA. Mol. Cell. Biol. 27, 2130–2143 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Qiao, F. & Cech, T. R. Triple-helix structure in telomerase RNA contributes to catalysis. Nature Struct. Mol. Biol. 15, 634–640 (2008).

    Article  CAS  Google Scholar 

  69. Chen, J. L. & Greider, C. W. Determinants in mammalian telomerase RNA that mediate enzyme processivity and cross-species incompatibility. EMBO J. 22, 304–314 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lai, C. K., Miller, M. C. & Collins, K. Roles for RNA in telomerase nucleotide and repeat addition processivity. Mol. Cell 11, 1673–1683 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Berman, A. J., Akiyama, B. M., Stone, M. D. & Cech, T. R. The RNA accordion model for template positioning by telomerase RNA during telomeric DNA synthesis. Nature Struct. Mol. Biol. 18, 1371–1375 (2011).

    Article  CAS  Google Scholar 

  72. Qi, X. et al. RNA/DNA hybrid binding affinity determines telomerase template-translocation efficiency. EMBO J. 31, 150–161 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Bley, C. J. et al. RNA–protein binding interface in the telomerase ribonucleoprotein. Proc. Natl Acad. Sci. USA 108, 20333–20338 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen, J. L., Blasco, M. A. & Greider, C. W. Secondary structure of vertebrate telomerase RNA. Cell 100, 503–514 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Mitchell, J. R. & Collins, K. Human telomerase activation requires two independent interactions between telomerase RNA and telomerase reverse transcriptase. Mol. Cell 6, 361–371 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Chen, J. L., Opperman, K. K. & Greider, C. W. A critical stem-loop structure in the CR4-CR5 domain of mammalian telomerase RNA. Nucleic Acids Res. 30, 592–597 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mitchell, J. R., Wood, E. & Collins, K. A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402, 551–555 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Venteicher, A. S. et al. A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis. Science 323, 644–648 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tycowski, K. T., Shu, M. D., Kukoyi, A. & Steitz, J. A. A conserved WD40 protein binds the Cajal body localization signal of scaRNP particles. Mol. Cell 34, 47–57 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Seto, A. G., Livengood, A. J., Tzfati, Y., Blackburn, E. H. & Cech, T. R. A bulged stem tethers Est1p to telomerase RNA in budding yeast. Genes Dev. 16, 2800–2812 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Peterson, S. E. et al. The function of a stem–loop in telomerase RNA is linked to the DNA repair protein Ku. Nature Genet. 27, 64–67 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Stellwagen, A. E., Haimberger, Z. W., Veatch, J. R. & Gottschling, D. E. Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. Genes Dev. 17, 2384–2395 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Seto, A. G., Zaug, A. J., Sobel, S. G., Wolin, S. L. & Cech, T. R. Saccharomyces cerevisiae telomerase is an Sm small nuclear ribonucleoprotein particle. Nature 401, 177–180 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Box, J. A., Bunch, J. T., Tang, W. & Baumann, P. Spliceosomal cleavage generates the 3′ end of telomerase RNA. Nature 456, 910–914 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Tang, W., Kannan, R., Blanchette, M. & Baumann, P. Telomerase RNA biogenesis involves sequential binding by Sm and Lsm complexes. Nature 484, 260–264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fu, D. & Collins, K. Purification of human telomerase complexes identifies factors involved in telomerase biogenesis and telomere length regulation. Mol. Cell 28, 773–785 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zappulla, D. C. & Cech, T. R. Yeast telomerase RNA: a flexible scaffold for protein subunits. Proc. Natl Acad. Sci. USA 101, 10024–10029 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zappulla, D. C., Goodrich, K. & Cech, T. R. A miniature yeast telomerase RNA functions in vivo and reconstitutes activity in vitro. Nature Struct. Mol. Biol. 12, 1072–1077 (2005).

    Article  CAS  Google Scholar 

  89. Lebo, K. J. & Zappulla, D. C. Stiffened yeast telomerase RNA supports RNP function in vitro and in vivo. RNA 18, 1666–1678 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lingner, J. et al. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276, 561–567 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Meyerson, M. et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 90, 785–795 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Nakamura, T. M. et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 277, 955–959 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Gillis, A. J., Schuller, A. P. & Skordalakes, E. Structure of the Tribolium castaneum telomerase catalytic subunit TERT. Nature 455, 633–637 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Mitchell, M., Gillis, A., Futahashi, M., Fujiwara, H. & Skordalakes, E. Structural basis for telomerase catalytic subunit TERT binding to RNA template and telomeric DNA. Nature Struct. Mol. Biol. 17, 513–518 (2010).

    Article  CAS  Google Scholar 

  95. Lue, N. F. A physical and functional constituent of telomerase anchor site. J. Biol. Chem. 280, 26586–26591 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Moriarty, T. J., Ward, R. J., Taboski, M. A. & Autexier, C. An anchor site-type defect in human telomerase that disrupts telomere length maintenance and cellular immortalization. Mol. Biol. Cell 16, 3152–3161 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Finger, S. N. & Bryan, T. M. Multiple DNA-binding sites in Tetrahymena telomerase. Nucleic Acids Res. 36, 1260–1272 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Romi, E. et al. High-resolution physical and functional mapping of the template adjacent DNA binding site in catalytically active telomerase. Proc. Natl Acad. Sci. USA 104, 8791–8796 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wyatt, H. D., Tsang, A. R., Lobb, D. A. & Beattie, T. L. Human telomerase reverse transcriptase (hTERT) Q169 is essential for telomerase function in vitro and in vivo. PLoS ONE 4, e7176 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Jurczyluk, J. et al. Direct involvement of the TEN domain at the active site of human telomerase. Nucleic Acids Res. 39, 1774–1788 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Armbruster, B. N., Banik, S. S., Guo, C., Smith, A. C. & Counter, C. M. N-terminal domains of the human telomerase catalytic subunit required for enzyme activity in vivo. Mol. Cell. Biol. 21, 7775–7786 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Talley, J. M., DeZwaan, D. C., Maness, L. D., Freeman, B. C. & Friedman, K. L. Stimulation of yeast telomerase activity by the ever shorter telomere 3 (Est3) subunit is dependent on direct interaction with the catalytic protein Est2. J. Biol. Chem. 286, 26431–26439 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. van Steensel, B. & de Lange, T. Control of telomere length by the human telomeric protein TRF1. Nature 385, 740–743 (1997).

    Article  CAS  PubMed  Google Scholar 

  104. Ye, J. Z. & de Lange, T. TIN2 is a tankyrase 1 PARP modulator in the TRF1 telomere length control complex. Nature Genet. 36, 618–623 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Xin, H. et al. TPP1 is a homologue of ciliate TEBP-β and interacts with POT1 to recruit telomerase. Nature 445, 559–562 (2007). Demonstrates that the N-terminal OB-fold domain of TPP1 binds telomerase.

    Article  CAS  PubMed  Google Scholar 

  106. Latrick, C. M. & Cech, T. R. POT1–TPP1 enhances telomerase processivity by slowing primer dissociation and aiding translocation. EMBO J. 29, 924–933 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Abreu, E. et al. TIN2-tethered TPP1 recruits human telomerase to telomeres in vivo. Mol. Cell. Biol. 30, 2971–2982 (2010). Reports the requirement of the N-terminal OB-fold domain of TPP1 in telomerase recruitment to human telomeres.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tejera, A. M. et al. TPP1 is required for TERT recruitment, telomere elongation during nuclear reprogramming, and normal skin development in mice. Dev. Cell 18, 775–789 (2010). Describes the role of TPP1 in telomerase recruitment to mouse telomeres.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhong, F. L. et al. TPP1 OB-fold domain controls telomere maintenance by recruiting telomerase to chromosome ends. Cell 150, 481–494 (2012). Reports the sufficiency of the N-terminal OB-fold domain of TPP1 in telomerase recruitment to human telomeres and identifies key amino acids on TPP1 and TERT that are required for telomerase recruitment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sexton, A. N., Youmans, D. T. & Collins, K. Specificity requirements for human telomere protein interaction with telomerase holoenzyme. J. Biol. Chem. 287, 34455–34464 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nandakumar, J. et al. The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity. Nature 492, 285–289 (2012). Identifies a patch of amino acids on the surface of the N-terminal OB-fold domain of TPP1 that mediates telomerase binding, telomerase recruitment, telomerase processivity stimulation and telomere lengthening.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tomlinson, R. L., Ziegler, T. D., Supakorndej, T., Terns, R. M. & Terns, M. P. Cell cycle-regulated trafficking of human telomerase to telomeres. Mol. Biol. Cell 17, 955–965 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Jady, B. E., Richard, P., Bertrand, E. & Kiss, T. Cell cycle-dependent recruitment of telomerase RNA and Cajal bodies to human telomeres. Mol. Biol. Cell 17, 944–954 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lei, M., Zaug, A. J., Podell, E. R. & Cech, T. R. Switching human telomerase on and off with hPOT1 protein in vitro. J. Biol. Chem. 280, 20449–20456 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Zaug, A. J., Podell, E. R., Nandakumar, J. & Cech, T. R. Functional interaction between telomere protein TPP1 and telomerase. Genes Dev. 24, 613–622 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhao, Y. et al. Processive and distributive extension of human telomeres by telomerase under homeostatic and nonequilibrium conditions. Mol. Cell 42, 297–307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Savage, S. A. et al. TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita. Am. J. Hum. Genet. 82, 501–509 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Walne, A. J., Vulliamy, T., Beswick, R., Kirwan, M. & Dokal, I. TINF2 mutations result in very short telomeres: analysis of a large cohort of patients with dyskeratosis congenita and related bone marrow failure syndromes. Blood 112, 3594–3600 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sasa, G. S., Ribes-Zamora, A., Nelson, N. D. & Bertuch, A. A. Three novel truncating TINF2 mutations causing severe dyskeratosis congenita in early childhood. Clin. Genet. 81, 470–478 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Bessler, M., Wilson, D. B. & Mason, P. J. Dyskeratosis congenita. FEBS Lett. 584, 3831–3838 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yang, D., He, Q., Kim, H., Ma, W. & Songyang, Z. TIN2 protein dyskeratosis congenita missense mutants are defective in association with telomerase. J. Biol. Chem. 286, 23022–23030 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Canudas, S. et al. A role for heterochromatin protein 1γ at human telomeres. Genes Dev. 25, 1807–1819 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Houghtaling, B. R., Canudas, S. & Smith, S. A role for sister telomere cohesion in telomere elongation by telomerase. Cell Cycle 11, 19–25 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wenz, C. et al. Human telomerase contains two cooperating telomerase RNA molecules. EMBO J. 20, 3526–3534 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cristofari, G. & Lingner, J. Telomere length homeostasis requires that telomerase levels are limiting. EMBO J. 25, 565–574 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Prescott, J. & Blackburn, E. H. Functionally interacting telomerase RNAs in the yeast telomerase complex. Genes Dev. 11, 2790–2800 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Moser, B. A., Chang, Y. T., Kosti, J. & Nakamura, T. M. Tel1ATM and Rad3ATR kinases promote Ccq1–Est1 interaction to maintain telomeres in fission yeast. Nature Struct. Mol. Biol. 18, 1408–1413 (2011).

    Article  CAS  Google Scholar 

  128. Yamazaki, H., Tarumoto, Y. & Ishikawa, F. Tel1ATM and Rad3ATR phosphorylate the telomere protein Ccq1 to recruit telomerase and elongate telomeres in fission yeast. Genes Dev. 26, 241–246 (2012). References 127 and 128 demonstrate how the ATM and ATR kinases of S. pombe , Tel1 and Rad3, phosphorylate Ccq1 to facilitate Est1 binding and telomerase recruitment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Verdun, R. E. & Karlseder, J. The DNA damage machinery and homologous recombination pathway act consecutively to protect human telomeres. Cell 127, 709–720 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Sabourin, M. & Zakian, V. A. ATM-like kinases and regulation of telomerase: lessons from yeast and mammals. Trends Cell Biol. 18, 337–346 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Moser, B. A. et al. Differential arrival of leading and lagging strand DNA polymerases at fission yeast telomeres. EMBO J. 28, 810–820 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Moser, B. A., Subramanian, L., Khair, L., Chang, Y. T. & Nakamura, T. M. Fission yeast Tel1ATM and Rad3ATR promote telomere protection and telomerase recruitment. PLoS Genet. 5, e1000622 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Naito, T., Matsuura, A. & Ishikawa, F. Circular chromosome formation in a fission yeast mutant defective in two ATM homologues. Nature Genet. 20, 203–206 (1998).

    Article  CAS  PubMed  Google Scholar 

  134. Webb, C. J. & Zakian, V. A. Schizosaccharomyces pombe Ccq1 and TER1 bind the 14-3-3-like domain of Est1, which promotes and stabilizes telomerase–telomere association. Genes Dev. 26, 82–91 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lundblad, V. & Szostak, J. W. A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57, 633–643 (1989).

    Article  CAS  PubMed  Google Scholar 

  136. Lendvay, T. S., Morris, D. K., Sah, J., Balasubramanian, B. & Lundblad, V. Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. Genetics 144, 1399–1412 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hughes, T. R., Evans, S. K., Weilbaecher, R. G. & Lundblad, V. The Est3 protein is a subunit of yeast telomerase. Curr. Biol. 10, 809–812 (2000).

    Article  CAS  PubMed  Google Scholar 

  138. Virta-Pearlman, V., Morris, D. K. & Lundblad, V. Est1 has the properties of a single-stranded telomere end-binding protein. Genes Dev. 10, 3094–3104 (1996).

    Article  CAS  PubMed  Google Scholar 

  139. Qi, H. & Zakian, V. A. The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase α and the telomerase-associated est1 protein. Genes Dev. 14, 1777–1788 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhou, J., Hidaka, K. & Futcher, B. The Est1 subunit of yeast telomerase binds the Tlc1 telomerase RNA. Mol. Cell. Biol. 20, 1947–1955 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Evans, S. K. & Lundblad, V. Est1 and Cdc13 as comediators of telomerase access. Science 286, 117–120 (1999). Shows that Est1 can bridge Est2–Tlc1 and Cdc13 at telomeres by demonstrating that the requirement of Est1 for telomerase recruitment can be waived if the Est2 polypeptide is fused with the Cdc13 protein.

    Article  CAS  PubMed  Google Scholar 

  142. Pennock, E., Buckley, K. & Lundblad, V. Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell 104, 387–396 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Wu, Y. & Zakian, V. A. The telomeric Cdc13 protein interacts directly with the telomerase subunit Est1 to bring it to telomeric DNA ends in vitro. Proc. Natl Acad. Sci. USA 108, 20362–20369 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bianchi, A., Negrini, S. & Shore, D. Delivery of yeast telomerase to a DNA break depends on the recruitment functions of Cdc13 and Est1. Mol. Cell 16, 139–146 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Chan, A., Boule, J. B. & Zakian, V. A. Two pathways recruit telomerase to Saccharomyces cerevisiae telomeres. PLoS Genet. 4, e1000236 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Tseng, S. F., Shen, Z. J., Tsai, H. J., Lin, Y. H. & Teng, S. C. Rapid Cdc13 turnover and telomere length homeostasis are controlled by Cdk1-mediated phosphorylation of Cdc13. Nucleic Acids Res. 37, 3602–3611 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Li, S. et al. Cdk1-dependent phosphorylation of Cdc13 coordinates telomere elongation during cell-cycle progression. Cell 136, 50–61 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Taggart, A. K., Teng, S. C. & Zakian, V. A. Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science 297, 1023–1026 (2002). Demonstrates that Est1, Est2 and Cdc13 are associated with telomeres during telomere replication in the S phase of the cell cycle and suggests a telomerase-activating function for Est1 upon binding to Cdc13.

    Article  CAS  PubMed  Google Scholar 

  149. Tuzon, C. T., Wu, Y., Chan, A. & Zakian, V. A. The Saccharomyces cerevisiae telomerase subunit Est3 binds telomeres in a cell cycle- and Est1-dependent manner and interacts directly with Est1 in vitro. PLoS Genet. 7, e1002060 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. DeZwaan, D. C. & Freeman, B. C. The conserved Est1 protein stimulates telomerase DNA extension activity. Proc. Natl Acad. Sci. USA 106, 17337–17342 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. DeZwaan, D. C. & Freeman, B. C. Is there a telomere-bound 'EST' telomerase holoenzyme? Cell Cycle 9, 1913–1917 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. Lee, J., Mandell, E. K., Tucey, T. M., Morris, D. K. & Lundblad, V. The Est3 protein associates with yeast telomerase through an OB-fold domain. Nature Struct. Mol. Biol. 15, 990–997 (2008).

    Article  CAS  Google Scholar 

  153. Yu, E. Y., Wang, F., Lei, M. & Lue, N. F. A proposed OB-fold with a protein-interaction surface in Candida albicans telomerase protein Est3. Nature Struct. Mol. Biol. 15, 985–989 (2008).

    Article  CAS  Google Scholar 

  154. Yen, W. F., Chico, L., Lei, M. & Lue, N. F. Telomerase regulatory subunit Est3 in two Candida species physically interacts with the TEN domain of TERT and telomeric DNA. Proc. Natl Acad. Sci. USA 108, 20370–20375 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Fisher, T. S., Taggart, A. K. & Zakian, V. A. Cell cycle-dependent regulation of yeast telomerase by Ku. Nature Struct. Mol. Biol. 11, 1198–1205 (2004).

    Article  CAS  Google Scholar 

  156. Bertuch, A. A. & Lundblad, V. The Ku heterodimer performs separable activities at double-strand breaks and chromosome termini. Mol. Cell. Biol. 23, 8202–8215 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Pfingsten, J. S. et al. Mutually exclusive binding of telomerase RNA and DNA by Ku alters telomerase recruitment model. Cell 148, 922–932 (2011).

    Article  CAS  Google Scholar 

  158. Gallardo, F., Olivier, C., Dandjinou, A. T., Wellinger, R. J. & Chartrand, P. TLC1 RNA nucleo–cytoplasmic trafficking links telomerase biogenesis to its recruitment to telomeres. EMBO J. 27, 748–757 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Schober, H., Ferreira, H., Kalck, V., Gehlen, L. R. & Gasser, S. M. Yeast telomerase and the SUN domain protein Mps3 anchor telomeres and repress subtelomeric recombination. Genes Dev. 23, 928–938 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ferreira, H. C. et al. The PIAS homologue Siz2 regulates perinuclear telomere position and telomerase activity in budding yeast. Nature Cell Biol. 13, 867–874 (2011).

    Article  CAS  PubMed  Google Scholar 

  161. Gottschling, D. E., Aparicio, O. M., Billington, B. L. & Zakian, V. A. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63, 751–762 (1990).

    Article  CAS  PubMed  Google Scholar 

  162. Mishra, K. & Shore, D. Yeast Ku protein plays a direct role in telomeric silencing and counteracts inhibition by Rif proteins. Curr. Biol. 9, 1123–1126 (1999).

    Article  CAS  PubMed  Google Scholar 

  163. Lopez, C. R. et al. Ku must load directly onto the chromosome end in order to mediate its telomeric functions. PLoS Genet. 7, e1002233 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Ribes-Zamora, A., Mihalek, I., Lichtarge, O. & Bertuch, A. A. Distinct faces of the Ku heterodimer mediate DNA repair and telomeric functions. Nature Struct. Mol. Biol. 14, 301–307 (2007).

    Article  CAS  Google Scholar 

  165. Stansel, R. M., de Lange, T. & Griffith, J. D. T-loop assembly in vitro involves binding of TRF2 near the 3′ telomeric overhang. EMBO J. 20, 5532–5540 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zaug, A. J., Podell, E. R. & Cech, T. R. Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension in vitro. Proc. Natl Acad. Sci. USA 102, 10864–10869 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Pedroso, I. M., Hayward, W. & Fletcher, T. M. The effect of the TRF2 N-terminal and TRFH regions on telomeric G-quadruplex structures. Nucleic Acids Res. 37, 1541–1554 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wang, H., Nora, G. J., Ghodke, H. & Opresko, P. L. Single molecule studies of physiologically relevant telomeric tails reveal POT1 mechanism for promoting G-quadruplex unfolding. J. Biol. Chem. 286, 7479–7489 (2011).

    Article  CAS  PubMed  Google Scholar 

  169. Raghuraman, M. K. & Cech, T. R. Effect of monovalent cation-induced telomeric DNA structure on the binding of Oxytricha telomeric protein. Nucleic Acids Res. 18, 4543–4552 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Yanez, G. H., Khan, S. J., Locovei, A. M., Pedroso, I. M. & Fletcher, T. M. DNA structure-dependent recruitment of telomeric proteins to single-stranded/double-stranded DNA junctions. Biochem. Biophys. Res. Commun. 328, 49–56 (2005).

    Article  CAS  PubMed  Google Scholar 

  171. Schaffitzel, C. et al. In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei. Proc. Natl Acad. Sci. USA 98, 8572–8577 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Zahler, A. M., Williamson, J. R., Cech, T. R. & Prescott, D. M. Inhibition of telomerase by G-quartet DNA structures. Nature 350, 718–720 (1991).

    Article  CAS  PubMed  Google Scholar 

  173. Wang, Q. et al. G-quadruplex formation at the 3′ end of telomere DNA inhibits its extension by telomerase, polymerase and unwinding by helicase. Nucleic Acids Res. 39, 6229–6237 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

T.R.C. is an investigator at the Howard Hughes Medical Institute. The telomerase research in the author's laboratory is funded in part by the US National Institutes of Health (NIH) grants R01 GM099705 to T.R.C. and K99 CA167644 to J.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas R. Cech.

Ethics declarations

Competing interests

Thomas R. Cech and Jayakrishnan Nandakumarare inventors on a patent application relating to the identification of a patch on TPP1 that mediates telomerase recruitment.

Related links

Related links

FURTHER INFORMATION

Thomas R. Cech's homepage

Glossary

Dyskeratosis congenita

A rare genetic disease, characterized by abnormal skin pigmentation, nail dystrophy and mucosal leukoplakia, caused by telomere shortening owing to mutations in telomerase core components (telomerase reverse transcriptase (TERT) and a template-containing RNA component (TR)), telomerase accessory factors (such as dyskerin, telomerase Cajal body protein 1 (TCAB1), NHP2 and nucleolar protein 10 (Nop10)), or the shelterin protein TRF1-interacting nuclear protein 2 (TIN2).

Hoogsteen base-pairing

Non-Watson–Crick pairing that involves the N7 atom of a purine and is important in stabilizing triplex and quadruplex nucleic acid structures.

Cajal bodies

Conserved nuclear organelles that are involved in the biogenesis of small nuclear ribonucleoprotein (snRNP) particles and the maturation of the telomerase RNP.

Sm proteins

Proteins that form a ring which binds to a specific U-rich sequence near the 3′ ends of small nuclear RNAs involved in mRNA splicing, allowing nuclear import of the ribonucleoprotein.

T-motif

An amino acid sequence preceding the reverse transcriptase motif that is conserved among telomerase reverse transcriptase (TERT) proteins but not apparent in other reverse transcriptases.

Photocrosslink

The formation of covalent adducts between nucleotides and/or amino acids that are adjacent in a complex using light energy, generally in the ultraviolet range.

Immunofluorescence

Localization of a protein (or other macromolecule) within cells or tissues using a specific antibody that is derivatized with a fluorescent probe (direct immunofluorescence) or using a fluorescently labelled secondary antibody (indirect immunofluorescence).

Fluorescence in situ hybridization

(FISH). Localization of specific nucleic acid sequences in the cell by specific annealing of fluorescently labelled antisense oligonucleotide probes.

Chromatin immunoprecipitation

(ChIP). A technique that allows the isolation of DNA sequences bound to a protein of interest using specific antibodies.

Non-homologous end-joining

(NHEJ). A repair pathway of DNA double-strand breaks by directly ligating the broken ends without the need for a homologous template.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nandakumar, J., Cech, T. Finding the end: recruitment of telomerase to telomeres. Nat Rev Mol Cell Biol 14, 69–82 (2013). https://doi.org/10.1038/nrm3505

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3505

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing