Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A family business: stem cell progeny join the niche to regulate homeostasis

Key Points

  • Stem cells reside in specialized microenvironments, known as niches. Cellular components of the niche have important roles in regulating various stem cell behaviours, including activation, dormancy, differentiation and migration.

  • Traditionally, stem cell niches are thought to be composed of heterologous cell types derived from different lineages. Surprisingly, however, increasing evidence from both invertebrate and vertebrate stem cell systems shows that stem cell progeny themselves can also be important niche components and/or regulators of stem cell activity.

  • In the Drosophila melanogaster male germline, progeny of the somatic cyst stem cells can contribute to their niche, which is called the 'hub'. Although this contribution may be low during steady state, certain fly mutations have been found to cause the somatic cyst stem cells to adopt a hub cell fate.

  • In the mouse hair follicle, stem cells reside in the outermost layer of the follicle stem cell niche, which is located in an anatomical region known as the bulge. As these stem cells progress along their lineages to produce the hair and its channel, some terminally differentiated progeny end up back in the bulge, where they locate within the inner layer and function to maintain stem cell quiescence in the niche.

  • In the intestine, fast-cycling intestinal stem cells are located at the bottom of the crypt and are interspersed by terminally differentiated progeny called Paneth cells. Reduction of Paneth cell numbers is accompanied by a concomitant reduction in the stem cell population, suggesting a possible role of Paneth cells in regulating stem cell self-renewal.

  • In the adult haematopoietic system, most haematopoietic stem cells (HSCs) reside in the bone marrow. In this niche, regulatory T cells protect the HSCs from immune attack by making the niche an immune-privileged site. The mobilization and migration of HSCs also appears to be regulated by at least one additional HSC downstream lineage: macrophages.

Abstract

Stem cell niches, the discrete microenvironments in which the stem cells reside, play a dominant part in regulating stem cell activity and behaviours. Recent studies suggest that committed stem cell progeny become indispensable components of the niche in a wide range of stem cell systems. These unexpected niche inhabitants provide versatile feedback signals to their stem cell parents. Together with other heterologous cell types that constitute the niche, they contribute to the dynamics of the microenvironment. As progeny are often located in close proximity to stem cell niches, similar feedback regulations may be the underlying principles shared by different stem cell systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of adult stem cells.
Figure 2: CySCs contribute to 'hub' maintenance.
Figure 3: The HFSC niche: a dynamic interplay between HFSC progeny and dermal components.
Figure 4: ISCs generate Paneth cells that promote stem cell proliferation at the base of the intestinal crypt.
Figure 5: The HSC niche: a rich and complex environment.

Similar content being viewed by others

References

  1. Morris, R. J. & Potten, C. S. Highly persistent label-retaining cells in the hair follicles of mice and their fate following induction of anagen. J. Invest. Dermatol. 112, 470–475 (1999).

    CAS  PubMed  Google Scholar 

  2. Cotsarelis, G., Sun, T. T. & Lavker, R. M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61, 1329–1337 (1990). Marks slow-cycling cells located in the bulge region and suggests that they might be HFSCs.

    CAS  PubMed  Google Scholar 

  3. Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363 (2004). Describes the generation of a mouse model combining two transgenes to fluorescently tag slow-cycling cells, which has been widely applied to other systems, including the HSCs as in references 26 and 80.Also reports the transcriptional profiling that identified genes preferentially expressed by HFSCs.

    CAS  PubMed  Google Scholar 

  4. Gros, J., Manceau, M., Thome, V. & Marcelle, C. A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 435, 954–958 (2005).

    CAS  PubMed  Google Scholar 

  5. Collins, C. A. et al. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122, 289–301 (2005).

    CAS  PubMed  Google Scholar 

  6. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    CAS  PubMed  Google Scholar 

  7. Zhang, C. L., Zou, Y., He, W., Gage, F. H. & Evans, R. M. A role for adult TLX-positive neural stem cells in learning and behaviour. Nature 451, 1004–1007 (2008).

    CAS  PubMed  Google Scholar 

  8. Conboy, I. M. & Rando, T. A. The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev. Cell 3, 397–409 (2002).

    CAS  PubMed  Google Scholar 

  9. Villeda, S. A. et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477, 90–94 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Fuchs, E. The tortoise and the hair: slow-cycling cells in the stem cell race. Cell 137, 811–819 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, L. H. & Clevers, H. Coexistence of quiescent and active adult stem cells in mammals. Science 327, 542–545 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med. 3, 730–737 (1997).

    CAS  PubMed  Google Scholar 

  13. Yilmaz, O. H. et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441, 475–482 (2006).

    CAS  PubMed  Google Scholar 

  14. Barabe, F., Kennedy, J. A., Hope, K. J. & Dick, J. E. Modeling the initiation and progression of human acute leukemia in mice. Science 316, 600–604 (2007).

    CAS  PubMed  Google Scholar 

  15. Schober, M. & Fuchs, E. Tumor-initiating stem cells of squamous cell carcinomas and their control by TGF-β and integrin/focal adhesion kinase (FAK) signaling. Proc. Natl Acad. Sci. USA 108, 10544–10549 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schofield, R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4, 7–25 (1978). Postulates the existence of a stem cell niche.

    CAS  PubMed  Google Scholar 

  17. Xie, T. & Spradling, A. C. A niche maintaining germ line stem cells in the Drosophila ovary. Science 290, 328–330 (2000).

    CAS  PubMed  Google Scholar 

  18. Kiger, A. A., Jones, D. L., Schulz, C., Rogers, M. B. & Fuller, M. T. Stem cell self-renewal specified by JAK–STAT activation in response to a support cell cue. Science 294, 2542–2545 (2001).

    CAS  PubMed  Google Scholar 

  19. Tulina, N. & Matunis, E. Control of stem cell self-renewal in Drosophila spermatogenesis by JAK–STAT signaling. Science 294, 2546–2549 (2001). References 17–19 demonstrate the existence of niches for D. melanogaster germline stem cells and describe the signalling events involved. References 17 identifies 'cap cells' as key GSC niche components in the ovary. References 18 and 19 define the hub as the niche for testis GSCs.

    CAS  PubMed  Google Scholar 

  20. Rendl, M., Lewis, L. & Fuchs, E. Molecular dissection of mesenchymal-epithelial interactions in the hair follicle. PLoS Biol. 3, e331 (2005).

    PubMed  PubMed Central  Google Scholar 

  21. Kiel, M. J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    CAS  PubMed  Google Scholar 

  22. Chan, C. K. F. et al. Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature 457, 490–494 (2009).

    CAS  PubMed  Google Scholar 

  23. Lo Celso, C. et al. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457, 92–96 (2009).

    CAS  PubMed  Google Scholar 

  24. Xie, Y. C. et al. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 457, 97–101 (2009). References 23 and 24 apply live-imaging techniques to visualize mouse HSCs in their native bone marrow niches. References 24 images murine bones ex vivo , whereas reference 23 takes an in vivo approach to image cells within the bone marrow.

    CAS  PubMed  Google Scholar 

  25. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007). Shows, using Cre–ER– Rosa–LacZ lineage tracing that LGR5+ cells at the crypt base are fast-cycling ISCs.

    CAS  PubMed  Google Scholar 

  26. Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118–1129 (2008).

    CAS  PubMed  Google Scholar 

  27. Buch, T. et al. A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nature Methods 2, 419–426 (2005).

    CAS  PubMed  Google Scholar 

  28. Fuller, M. T. & Spradling, A. C. Male and female Drosophila germline stem cells: two versions of immortality. Science 316, 402–404 (2007).

    CAS  PubMed  Google Scholar 

  29. Kiger, A. A., White-Cooper, H. & Fuller, M. T. Somatic support cells restrict germline stem cell self-renewal and promote differentiation. Nature 407, 750–754 (2000).

    CAS  PubMed  Google Scholar 

  30. Leatherman, J. L. & Dinardo, S. Zfh-1 controls somatic stem cell self-renewal in the Drosophila testis and nonautonomously influences germline stem cell self-renewal. Cell Stem Cell 3, 44–54 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Flaherty, M. S. et al. chinmo is a functional effector of the JAK/STAT pathway that regulates eye development, tumor formation, and stem cell self-renewal in Drosophila. Dev. Cell 18, 556–568 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Issigonis, M. et al. JAK–STAT signal inhibition regulates competition in the Drosophila testis stem cell niche. Science 326, 153–156 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Leatherman, J. L. & DiNardo, S. Germline self-renewal requires cyst stem cells and stat regulates niche adhesion in Drosophila testes. Nature Cell Biol. 12, 806–811 (2010).

    CAS  PubMed  Google Scholar 

  34. Kawase, E., Wong, M. D., Ding, B. C. & Xie, T. Gbb/Bmp signaling is essential for maintaining germline stem cells and for repressing bam transcription in the Drosophila testis. Development 131, 1365–1375 (2004).

    CAS  PubMed  Google Scholar 

  35. Voog, J., D'Alterio, C. & Jones, D. L. Multipotent somatic stem cells contribute to the stem cell niche in the Drosophila testis. Nature 454, 1132–1136 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Harrison, D. A. & Perrimon, N. Simple and efficient generation of marked clones in Drosophila. Curr. Biol. 3, 424–433 (1993).

    CAS  PubMed  Google Scholar 

  37. Dinardo, S., Okegbe, T., Wingert, L., Freilich, S. & Terry, N. lines and bowl affect the specification of cyst stem cells and niche cells in the Drosophila testis. Development 138, 1687–1696 (2011). References 35 and 37 demonstrate that, under some circumstances, progeny of CySCs can differentiate into hub cells. Reference 35 observes this contribution during steady state. Reference 37 observes this conversion mainly when the CySCs carry mutations in the lines gene.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Morris, R. J. et al. Capturing and profiling adult hair follicle stem cells. Nature Biotech. 22, 411–417 (2004).

    CAS  Google Scholar 

  39. Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118, 635–648 (2004). Similarly to reference 3, references 38 and 39 delineate transcriptional profiling that identified genes preferentially expressed by HFSCs.

    CAS  PubMed  Google Scholar 

  40. Vidal, V. P. et al. Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment. Curr. Biol. 15, 1340–1351 (2005).

    CAS  PubMed  Google Scholar 

  41. Nowak, J. A., Polak, L., Pasolli, H. A. & Fuchs, E. Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell 3, 33–43 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Rhee, H., Polak, L. & Fuchs, E. Lhx2 maintains stem cell character in hair follicles. Science 312, 1946–1949 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Nguyen, H. et al. Tcf3 and Tcf4 are essential for long-term homeostasis of skin epithelia. Nature Genet. 41, 1068–1075 (2009).

    CAS  PubMed  Google Scholar 

  44. Nguyen, H., Rendl, M. & Fuchs, E. Tcf3 governs stem cell features and represses cell fate determination in skin. Cell 127, 171–183 (2006).

    CAS  PubMed  Google Scholar 

  45. Horsley, V., Aliprantis, A. O., Polak, L., Glimcher, L. H. & Fuchs, E. NFATc1 balances quiescence and proliferation of skin stem cells. Cell 132, 299–310 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hsu, Y. C., Pasolli, H. A. & Fuchs, E. Dynamics between stem cells, niche, and progeny in the hair follicle. Cell 144, 92–105 (2011). Details combinatorial pulse-chase and lineage-tracing experiments to monitor HFSCs after exiting the bulge. Reveals that some committed HFSC progeny return to the niche and confer inhibitory signals that help maintain HFSC quiescence in the bulge.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Greco, V. et al. A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell 4, 155–169 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nishimura, E. K. et al. Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416, 854–860 (2002).

    CAS  PubMed  Google Scholar 

  49. Tanimura, S. et al. Hair follicle stem cells provide a functional niche for melanocyte stem cells. Cell Stem Cell 8, 177–187 (2011).

    CAS  PubMed  Google Scholar 

  50. Rabbani, P. et al. Coordinated activation of wnt in epithelial and melanocyte stem cells initiates pigmented hair regeneration. Cell 145, 941–955 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Fujiwara, H. et al. The basement membrane of hair follicle stem cells is a muscle cell niche. Cell 144, 577–589 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Brownell, I., Guevara, E., Bai, C. B., Loomis, C. A. & Joyner, A. L. Nerve-derived Sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. Cell Stem Cell 8, 552–565 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lien, W. H. et al. Genome-wide maps of histone modifications unwind in vivo chromatin states of the hair follicle lineage. Cell Stem Cell 9, 219–232 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Rendl, M., Polak, L. & Fuchs, E. BMP signaling in dermal papilla cells is required for their hair follicle-inductive properties. Genes Dev. 22, 543–557 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Enshell-Seijffers, D., Lindon, C., Kashiwagi, M. & Morgan, B. A. β-catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair. Dev. Cell 18, 633–642 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Botchkarev, V. A. et al. Noggin is a mesenchymally derived stimulator of hair-follicle induction. Nature Cell Biol. 1, 158–164 (1999).

    CAS  PubMed  Google Scholar 

  57. Plikus, M. V. et al. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature 451, 340–344 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Festa, E. et al. Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell 146, 761–771 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Muller-Rover, S. et al. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J. Invest. Dermatol. 117, 3–15 (2001).

    CAS  PubMed  Google Scholar 

  60. Zhang, Y. V., Cheong, J., Ciapurin, N., McDermitt, D. J. & Tumbar, T. Distinct self-renewal and differentiation phases in the niche of infrequently dividing hair follicle stem cells. Cell Stem Cell 5, 267–278 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Gat, U., DasGupta, R., Degenstein, L. & Fuchs, E. De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β-catenin in skin. Cell 95, 605–614 (1998).

    CAS  PubMed  Google Scholar 

  62. Lo Celso, C., Prowse, D. M. & Watt, F. M. Transient activation of β-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development 131, 1787–1799 (2004).

    CAS  PubMed  Google Scholar 

  63. Van Mater, D., Kolligs, F. T., Dlugosz, A. A. & Fearon, E. R. Transient activation of β-catenin signaling in cutaneous keratinocytes is to trigger the active growth phase of the hair cycle in mice. Genes Dev. 17, 1219–1224 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kobielak, K., Stokes, N., de la Cruz, J., Polak, L. & Fuchs, E. Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling. Proc. Natl Acad. Sci. USA 104, 10063–10068 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Jamora, C., DasGupta, R., Kocieniewski, P. & Fuchs, E. Links between signal transduction, transcription and adhesion in epithelial bud development. Nature 422, 317–322 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang, J. W. et al. Bone morphogenetic protein signaling inhibits hair follicle anagen induction by restricting epithelial stem/progenitor cell activation and expansion. Stem Cells 24, 2826–2839 (2006).

    CAS  PubMed  Google Scholar 

  67. Andl, T. et al. Epithelial Bmpr1a regulates differentiation and proliferation in postnatal hair follicles and is essential for tooth development. Development 131, 2257–2268 (2004).

    CAS  PubMed  Google Scholar 

  68. Plikus, M. V. et al. Self-organizing and stochastic behaviors during the regeneration of hair stem cells. Science 332, 586–589 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ito, M. et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447, 316–320 (2007).

    CAS  PubMed  Google Scholar 

  70. Oshimori, N. & Fuchs, E. Paracrine TGF-β signaling counterbalances BMP-mediated repression in hair follicle stem cell activation. Cell Stem Cell 10, 63–75 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Oshima, H., Rochat, A., Kedzia, C., Kobayashi, K. & Barrandon, Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 104, 233–245 (2001).

    CAS  PubMed  Google Scholar 

  72. Inoue-Narita, T. et al. Pten deficiency in melanocytes results in resistance to hair graying and susceptibility to carcinogen-induced melanomagenesis. Cancer Res. 68, 5760–5768 (2008).

    CAS  PubMed  Google Scholar 

  73. Korinek, V. et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genet. 19, 379–383 (1998).

    CAS  PubMed  Google Scholar 

  74. He, X. C. et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-β-catenin signaling. Nature Genet. 36, 1117–1121 (2004).

    CAS  PubMed  Google Scholar 

  75. Potten, C. S., Owen, G. & Booth, D. Intestinal stem cells protect their genome by selective segregation of template DNA strands. J. Cell. Sci. 115, 2381–2388 (2002).

    CAS  PubMed  Google Scholar 

  76. Sangiorgi, E. & Capecchi, M. R. Bmi1 is expressed in vivo in intestinal stem cells. Nature Genet. 40, 915–920 (2008).

    CAS  PubMed  Google Scholar 

  77. Montgomery, R. K. et al. Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. Proc. Natl Acad. Sci. USA 108, 179–184 (2011).

    CAS  PubMed  Google Scholar 

  78. Takeda, N. et al. Interconversion between intestinal stem cell populations in distinct niches. Science 334, 1420–1424 (2011). Applying similar strategies to reference 25, references 76–78 show that slow-cycling cells located at the +4 position are also ISCs. Reference 78 shows that the two ISC populations are interchangeable.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Tian, H. et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478, 255–259 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Foudi, A. et al. Analysis of histone 2B–GFP retention reveals slowly cycling hematopoietic stem cells. Nature Biotech. 27, 84–90 (2009).

    CAS  Google Scholar 

  81. Gregorieff, A. et al. Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology 129, 626–638 (2005).

    CAS  PubMed  Google Scholar 

  82. Porter, E. M., Bevins, C. L., Ghosh, D. & Ganz, T. The multifaceted Paneth cell. Cell. Mol. Life Sci. 59, 156–170 (2002).

    CAS  PubMed  Google Scholar 

  83. Sato, T. et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469, 415–418 (2011). Shows that, when Paneth cell numbers are reduced by either mutations or ablations, LGR5+ ISC numbers are reduced concomitantly, suggesting an interdependency of ISCs on one of their downstream lineages.

    CAS  PubMed  Google Scholar 

  84. Mustata, R. C. et al. Lgr4 is required for Paneth cell differentiation and maintenance of intestinal stem cells ex vivo. EMBO Rep. 12, 558–564 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Shroyer, N. F., Wallis, D., Venken, K. J. T., Bellen, H. J. & Zoghbi, H. Y. Gfi1 functions downstream of Math1 to control intestinal secretory cell subtype allocation and differentiation. Genes Dev. 19, 2412–2417 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Bastide, P. et al. Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium. J. Cell Biol. 178, 635–648 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Mori-Akiyama, Y. et al. SOX9 is required for the differentiation of paneth cells in the intestinal epithelium. Gastroenterology 133, 539–546 (2007).

    CAS  PubMed  Google Scholar 

  88. Garabedian, E. M., Roberts, L. J. J., McNevin, M. S. & Gordon, J. I. Examining the role of Paneth cells in the small intestine by lineage ablation in transgenic mice. J. Biol. Chem. 272, 23729–23740 (1997).

    CAS  PubMed  Google Scholar 

  89. van der Flier, L. G. et al. Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell 136, 903–912 (2009).

    CAS  PubMed  Google Scholar 

  90. Sato, T. et al. Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    CAS  PubMed  Google Scholar 

  91. de Lau, W. et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476, 293–297 (2011).

    CAS  PubMed  Google Scholar 

  92. Glinka, A. et al. LGR4 and LGR5 are R-spondin receptors mediating Wnt/β-catenin and Wnt/PCP signalling. EMBO Rep. 12, 1055–1061 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Haramis, A. P. et al. De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 303, 1684–1686 (2004).

    CAS  PubMed  Google Scholar 

  94. Morrison, S. J., Uchida, N. & Weissman, I. L. The biology of hematopoietic stem cells. Annu. Rev. Cell Dev. Biol. 11, 35–71 (1995).

    CAS  PubMed  Google Scholar 

  95. Wright, D. E., Wagers, A. J., Gulati, A. P., Johnson, F. L. & Weissman, I. L. Physiological migration of hematopoietic stem and progenitor cells. Science 294, 1933–1936 (2001).

    CAS  PubMed  Google Scholar 

  96. Zhang, J. W. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836–841 (2003).

    CAS  PubMed  Google Scholar 

  97. Calvi, L. M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003).

    CAS  PubMed  Google Scholar 

  98. Hattori, K. et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1+ stem cells from bone-marrow microenvironment. Nature Med. 8, 841–849 (2002).

    CAS  PubMed  Google Scholar 

  99. Sugiyama, T., Kohara, H., Noda, M. & Nagasawa, T. Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25, 977–988 (2006).

    CAS  PubMed  Google Scholar 

  100. North, T. E. et al. Hematopoietic stem cell development is dependent on blood flow. Cell 137, 736–748 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Naveiras, O. et al. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460, 259–263 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Mendez-Ferrer, S. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466, 829–834 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Omatsu, Y. et al. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33, 387–399 (2010).

    CAS  PubMed  Google Scholar 

  104. Raaijmakers, M. H. et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464, 852–857 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Yamazaki, S. et al. Nonmyelinating schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147, 1146–1158 (2011).

    CAS  PubMed  Google Scholar 

  106. Visnjic, D. et al. Conditional ablation of the osteoblast lineage in Col2.3Δtk transgenic mice. J. Bone Miner. Res. 16, 2222–2231 (2001).

    CAS  PubMed  Google Scholar 

  107. Visnjic, D. et al. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103, 3258–3264 (2004).

    CAS  PubMed  Google Scholar 

  108. Miyamoto, K. et al. Osteoclasts are dispensable for hematopoietic stem cell maintenance and mobilization. J. Exp. Med. 208, 2175–2181 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Fujisaki, J. et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 474, 216–219 (2011). Provides evidence suggesting that T Reg cells protect their HSC parents from immune attack by making the endosteal niche an immune-privileged site.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Winkler, I. G. et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116, 4815–4828 (2010).

    CAS  PubMed  Google Scholar 

  111. Chow, A. et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J. Exp. Med. 208, 261–271 (2011). References 110 and 111 show that macrophages, which are a type of HSC progeny of the myeloid lineage, function in retaining HSCs in their bone marrow niche.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Christopher, M. J., Rao, M., Liu, F., Woloszynek, J. R. & Link, D. C. Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. J. Exp. Med. 208, 251–260 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Wieschaus, E. & Szabad, J. The development and function of the female germ line in Drosophila melanogaster: a cell lineage study. Dev. Biol. 68, 29–46 (1979).

    CAS  PubMed  Google Scholar 

  114. Lin, H. & Spradling, A. C. Germline stem cell division and egg chamber development in transplanted Drosophila germaria. Dev. Biol. 159, 140–152 (1993).

    CAS  PubMed  Google Scholar 

  115. Xie, T. & Spradling, A. C. decapentaplegic is essential for the maintenance and division of germline stem cells in the Drosophila ovary. Cell 94, 251–260 (1998).

    CAS  PubMed  Google Scholar 

  116. Casanueva, M. O. & Ferguson, E. L. Germline stem cell number in the Drosophila ovary is regulated by redundant mechanisms that control Dpp signaling. Development 131, 1881–1890 (2004).

    CAS  PubMed  Google Scholar 

  117. Mondal, B. C. et al. Interaction between differentiating cell- and niche-derived signals in hematopoietic progenitor maintenance. Cell 147, 1589–1600 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank B. Keyes, T. Chen and M. Genander for critical readings and comments of the manuscript. Y.-C.H. was a Starr Stem Cell Scholars postdoctoral fellow and is now supported by a New York Stem Cell Foundation–Druckenmiller fellowship. E.F. is a Howard Hughes Medical Institute Investigator. This work is supported by a grant from the US National Institutes of Health (R01-AR050452).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine Fuchs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Elaine Fuchs's homepage

Glossary

Basement membrane

A sheet-like structure that is composed of extracellular matrix and separates the cavity and surfaces of an organ.

Cancer stem cells

Long-term self-renewing cells within a tumour that are responsible for initiating the cancer and propagating it. The term does not reflect the origin of these cells or their molecular similarities to normal stem cells. Rather, these cells are tumour-initiating cells and can execute a differentiation programme, but it is an aberrant one.

Bulge

A protruding structure of the hair follicle in which hair follicle and melanocyte stem cells reside.

Integrins

A family of cell adhesion receptors that mediate either cell–cell interactions or cell–extracellular matrix interactions. Integrins are heterodimers with two distinct subunits, which are known as the α-subunit and the β-subunit.

Hair shaft

A terminally differentiated structure that protrudes out from the skin surface as a hair.

Transient amplifying progeny

A special population of stem cell progeny responsible for the bulk of tissue growth. Transient amplifying cells are larger in quantity and are capable of massive expansion and proliferation within in a short time. However, they can only undergo a finite number of divisions.

Crypt

A moat-like tubular invagination of the intestinal epithelium. Crypts contain intestinal stem cells and Paneth cells.

Villi

Finger-like structures that project into the lumen of the intestine. Villi contain the absorptive enterocytes and mucus-secreting goblet cells. These cells live for a few days before they die and are shed from the intestinal epithelium.

Myeloid

A lineage containing macrophages, monocytes, neutrophils, basophils, eosinophils, erythrocytes, megakaryocytes and dendritic cells.

Lymphoid

A lineage containing all of the T cells, B cells and natural killer cells.

Myelofibrosis

A disease in which fibrous scars accumulate in the bone marrow cavity.

Non-myelinating Schwann cells

Schwann cells are the glia cells of the peripheral nerve system. Non-myelinating Schwann cells lack a myelin sheath. They are often found to wrap around axons with a smaller diameter and are important for the survival and function of neurons

Endosteal lining

A thin layer of connective tissue that lines the medullary cavity of a bone.

Mesenchymal stem cells

(MSCs). Multipotent stem cells capable of giving rise to a wide range of mesenchymal cells, including adipocytes, chondrocytes and osteoblasts.

Myelodysplasia

A group of disorders in which the bone marrow does not function normally and insufficient numbers of blood cells are produced.

Syngeneic

When donors are genetically identical or at least immunologically compatible with recipients.

Allogeneic

When donors are from the same species but are genetically different from recipients.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, YC., Fuchs, E. A family business: stem cell progeny join the niche to regulate homeostasis. Nat Rev Mol Cell Biol 13, 103–114 (2012). https://doi.org/10.1038/nrm3272

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3272

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing