Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Endocytic control of growth factor signalling: multivesicular bodies as signalling organelles

Abstract

Signal transduction and endocytosis are intertwined processes. The internalization of ligand-activated receptors by endocytosis has classically been thought to attenuate signals by targeting receptors for degradation in lysosomes, but it can also maintain signals in early signalling endosomes. In both cases, localization to multivesicular endosomesen route to lysosomes is thought to terminate signalling. However, during WNT signal transduction, sequestration of the enzyme glycogen synthase kinase 3 (GSK3) inside multivesicular endosomes results in the stabilization of many cytosolic proteins. Thus, the role of endocytosis during signal transduction may be more diverse than anticipated, and multivesicular endosomes may constitute a crucial signalling organelle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Current models for the intersection between endocytosis and signalling pathways.
Figure 2: Endocytosis is required for canonical WNT signalling.
Figure 3: Generation of protein half-life biosensors and their potential use in signalling integration studies.
Figure 4: Hypothesis: the dorsal determinants of the Xenopus laevis egg may be endosomal components.

Similar content being viewed by others

References

  1. Katzmann, D. J., Odorizzi, G. & Emr, S. D. Receptor downregulation and multivesicular-body sorting. Nature Rev. Mol. Cell Biol. 12, 893–905 (2002).

    Google Scholar 

  2. Piper, R. C. & Katzmann, D. J. Biogenesis and function of multivesicular bodies. Annu. Rev. Cell Dev. Biol. 23, 519–547 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. McKanna, J. A., Haigler, H. T. & Cohen, S. Hormone receptor topology and dynamics: morphological analysis using ferritin-labeled epidermal growth factor. Proc. Natl Acad. Sci. USA 76, 5689–5693 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hurley, J. H. ESCRT complexes and the biogenesis of multivesicular bodies. Curr. Opin. Cell Biol. 20, 4–11 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Raiborg, C. & Stenmark, H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458, 445–452 (2009).

    CAS  PubMed  Google Scholar 

  6. Sorkin, A. & von Zastrow, M. Endocytosis and signalling: intertwining molecular networks. Nature Rev. Mol. Cell Biol. 10, 609–622 (2009).

    CAS  Google Scholar 

  7. García-Regalado, A. et al. G protein-coupled receptor-promoted trafficking of Gβ1γ2 leads to AKT activation at endosomes via a mechanism mediated by Gβ1γ2-Rab11a interaction. Mol. Biol. Cell 19, 4188–4200 (2008).

    PubMed  PubMed Central  Google Scholar 

  8. Grimes, M. L. et al. Endocytosis of activated TrkA: evidence that nerve growth factor induces formation of signaling endosomes. J. Neurosci. 16, 7950–7964 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Watson, F. L. et al. Neurotrophins use the Erk5 pathway to mediate a retrograde survival response. Nature Neurosci. 4, 981–988 (2001).

    CAS  PubMed  Google Scholar 

  10. Tsukazaki, T., Chiang, T. A., Davison, A. F., Attisano, L. & Wrana, J. L. SARA, a FYVE domain protein that recruits Smad2 to the TGFβ receptor. Cell 95, 779–791 (1998).

    CAS  PubMed  Google Scholar 

  11. Hayes, S., Chawla, A. & Corvera, S. TGFβ receptor internalization into EEA1-enriched early endosomes: role in signaling to Smad2. J. Cell Biol. 158, 1239–1249 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Taelman, V. F. et al. Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell 143, 1136–1148 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bilic, J. et al. Wnt induces LRP6 signalosomes and promotes Dishevelled-dependent LRP6 phosphorylation. Science 316, 1619–1622 (2007).

    CAS  PubMed  Google Scholar 

  14. Zeng, X. et al. Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via Frizzled, Dishevelled and Axin functions. Development 135, 367–375 (2008).

    CAS  PubMed  Google Scholar 

  15. Metcalfe, C., Mendoza-Topaz, C., Mieszczanek, J. & Bienz, M. Stability elements in the LRP6 cytoplasmic tail confer efficient signalling upon DIX-dependent polymerization. J. Cell Sci. 123, 1588–1599 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mi, K., Dolan, P. J. & Johnson, G. V. W. The low density lipoprotein receptor-related protein 6 interacts with glycogen synthase kinase 3 and attenuates activity. J. Biol. Chem. 281, 4787–4794 (2006).

    CAS  PubMed  Google Scholar 

  17. Cselenyi, C. S. et al. LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3's phosphorylation of β-catenin. Proc. Natl Acad. Sci. USA 105, 8032–8037 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Piao, S. et al. Direct inhibition of GSK3β by the phosphorylated cytoplasmic domain of LRP6 in Wnt/β-catenin signaling. PLoS ONE 3, e4046 (2008).

    PubMed  PubMed Central  Google Scholar 

  19. Wu, G., Huang, H., Garcia Abreu, J. & He, X. Inhibition of GSK3 phosphorylation of β-catenin via phosphorylated PPPSPXS motifs of Wnt coreceptor LRP6. PLoS ONE 4, e4926 (2009).

    PubMed  PubMed Central  Google Scholar 

  20. Ding, V. W., Chen, R. H. & McCormick, F. Differential regulation of glycogen synthase kinase 3β by insulin and Wnt signaling. J. Biol. Chem. 275, 32475–32481 (2000).

    CAS  PubMed  Google Scholar 

  21. Blitzer, J. T. & Nusse, R. A critical role for endocytosis in Wnt signaling. BMC Cell Biol. 7, 28 (2006).

    PubMed  PubMed Central  Google Scholar 

  22. Platta, H. W. & Stenmark, H. Endocytosis and signaling. Curr. Opin. Cell. Biol. 23, 393–403 (2011).

    CAS  PubMed  Google Scholar 

  23. Kleijmeer, M. et al. Reorganization of multivesicular bodies regulates MHC class II antigen presentation by dendritic cells. J. Cell Biol. 155, 53–63 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cohen, P. & Frame, S. The renaissance of GSK3. Nature Rev. Mol. Cell Biol. 2, 769–776 (2001).

    CAS  Google Scholar 

  25. Logan, C. Y. & Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810 (2004).

    CAS  PubMed  Google Scholar 

  26. Clevers, H. Wnt/β-catenin signaling in development and disease. Cell 127, 469–480 (2006).

    CAS  PubMed  Google Scholar 

  27. Yamamoto, H., Komekado, H. & Kikuchi, A. Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of β-catenin. Dev. Cell 11, 213–223 (2006).

    CAS  PubMed  Google Scholar 

  28. Wegener, C. S. et al. Ultrastructural characterization of giant endosomes induced by GTPase-deficient Rab5. Histochem. Cell Biol. 133, 41–55 (2010).

    PubMed  Google Scholar 

  29. Jékely, G. & Rørth, P. Hrs mediates downregulation of multiple signalling receptors in Drosophila. EMBO Rep. 4, 1163–1168 (2003).

    PubMed  PubMed Central  Google Scholar 

  30. Stern, K. A. et al. Epidermal growth factor receptor fate is controlled by Hrs tyrosine phosphorylation sites that regulate Hrs degradation. Mol. Cell. Biol. 27, 888–898 (2007).

    CAS  PubMed  Google Scholar 

  31. Malerød, L., Stuffers, S., Brech, A. & Stenmark, H. Vps22/EAP30 in ESCRT-II mediates endosomal sorting of growth factor and chemokine receptors destined for lysosomal degradation. Traffic 8, 1617–1629 (2007).

    PubMed  Google Scholar 

  32. Bache, K. G. et al. The ESCRT-III subunit hVps24 is required for degradation but not silencing of the epidermal growth factor receptor. Mol. Biol. Cell 17, 2513–2523 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Chanut-Delalande, H. et al. The Hrs/Stam complex acts as a positive and negative regulator of RTK signaling during Drosophila development. PLoS ONE 5, e10245 (2010).

    PubMed  PubMed Central  Google Scholar 

  34. Toyoshima, M. et al. Inhibition of tumor growth and metastasis by depletion of vesicular sorting protein Hrs: its regulatory role on E-cadherin and β-catenin. Cancer Res. 67, 5162–5171 (2007).

    CAS  PubMed  Google Scholar 

  35. Falguières, T., Luyet, P. P. & Gruenberg, J. Molecular assemblies and membrane domains in multivesicular endosome dynamics. J. Exp. Cell Res. 315, 1567–1573 (2009).

    Google Scholar 

  36. Von Bartheld, C. S. & Altick, A. L. Multivesicular bodies in neurons: distribution, protein content, and trafficking functions. Prog. Neurobiol. 93, 313–340 (2011).

    PubMed  PubMed Central  Google Scholar 

  37. Fuentealba, L. C. et al. Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal. Cell 131, 980–993 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Eivers, E., Demagny, H., Choi, R. H. & De Robertis, E. M. A molecular competition between wingless and BMP signaling controlled by mad phosphorylations. Sci. Signal. 4, ra68 (2011).

    PubMed  Google Scholar 

  39. Wu, D. & Pan, W. GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem. Sci. 35, 161–168 (2010).

    CAS  PubMed  Google Scholar 

  40. Jope, R. S. & Johnson, G. V. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem. Sci. 29, 95–102 (2004).

    CAS  PubMed  Google Scholar 

  41. Kim, N. G., Xu, C. & Gumbiner, B. M. Identification of targets of the Wnt pathway destruction complex in addition to β-catenin. Proc. Natl Acad. Sci. USA 106, 5165–5170 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Huang, H. R., Chen, Z. J., Kunes, S., Chang, G. D. & Maniatis, T. Endocytic pathway is required for Drosophila Toll innate immune signaling. Proc. Natl Acad. Sci. USA 107, 8322–8327 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Luttrell, L. M. et al. β-arrestin-dependent formation of β2 adrenergic receptor-Src protein kinase complexes. Science 283, 655–661 (1999).

    CAS  PubMed  Google Scholar 

  44. Ahn, S., Maudsley, S., Luttrell, L. M., Lefkowitz, R. J. & Daaka, Y. Src-mediated tyrosine phosphorylation of dynamin is required for β2-adrenergic receptor internalization and mitogen-activated protein kinase signaling. J. Biol. Chem. 274, 1185–1188 (1999).

    CAS  PubMed  Google Scholar 

  45. Hanyaloglu, A. C., McCullagh, E. & von Zastrow, M. Essential role of Hrs in a recycling mechanism mediating functional resensitization of cell signaling. EMBO J. 24, 2265–2283 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Devergne, O., Ghiglione, C. & Noselli, S. The endocytic control of JAK/STAT signalling in Drosophila. J. Cell Sci. 120, 3457–3464 (2007).

    CAS  PubMed  Google Scholar 

  47. Vidal, O. M., Stec, W., Bausek, N., Smythe, E. & Zeidler, M. P. Negative regulation of Drosophila JAK–STAT signalling by endocytic trafficking. J. Cell Sci. 123, 3457–3466 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Coumailleau, F., Fürthauer, M., Knoblich, J. A. & González-Gaitán, M. Directional Delta and Notch trafficking in Sara endosomes during asymmetric cell division. Nature 458, 1051–1055 (2009).

    CAS  PubMed  Google Scholar 

  49. Wilkin, M. et al. Drosophila HOPS and AP-3 complex genes are required for a Deltex-regulated activation of notch in the endosomal trafficking pathway. Dev. Cell 15, 762–772 (2008).

    CAS  PubMed  Google Scholar 

  50. Fürthauer, M. & González-Gaitán, M. Endocytic regulation of notch signalling during development. Traffic 10, 792–802 (2009).

    PubMed  Google Scholar 

  51. Rowning, B. A. et al. Microtubule-mediated transport of organelles and localization of β-catenin to the future dorsal side of Xenopus eggs. Proc. Natl Acad. Sci. USA 94, 1224–1229 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Weaver, C. & Kimelman, D. Move it or lose it: axis specification in Xenopus. Development 131, 3491–3499 (2004).

    CAS  PubMed  Google Scholar 

  53. Nieuwkoop, P. D. Origin and establishment of embryonic polar axes in amphibian development. Curr. Top. Dev. Biol. 11, 115–132 (1977).

    CAS  PubMed  Google Scholar 

  54. Black, S. D. & Gerhart, J. C. High-frequency twinning of Xenopus laevis embryos from eggs centrifuged before first cleavage. Dev. Biol. 116, 228–240 (1986).

    CAS  PubMed  Google Scholar 

  55. McMahon, A. P. & Moon, R. T. Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell 58, 1075–1084 (1989).

    CAS  PubMed  Google Scholar 

  56. De Robertis, E. M. Spemann's organizer and self-regulation in amphibian embryos. Nature Rev. Mol. Cell Biol. 7, 296–302 (2006).

    CAS  Google Scholar 

  57. Leyns, L., Bouwmeester, T., Kim, S. H., Piccolo, S. & De Robertis, E. M. Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88, 747–756 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Opresko, L., Wiley, H. S. & Wallace, R. A. Differential postendocytotic compartmentation in Xenopus oocytes is mediated by a specifically bound ligand. Cell 22, 47–57 (1980).

    CAS  PubMed  Google Scholar 

  59. Balinsky, B. I. Changes in the ultrastructure of amphibian eggs following fertilization. Acta Embryol. Morphol. Exp. 9, 132–154 (1966).

    CAS  PubMed  Google Scholar 

  60. Miller, J. R. et al. Establishment of the dorsal–ventral axis in Xenopus embryos coincides with the dorsal enrichment of Dishevelled that is dependent on cortical rotation. J. Cell Biol. 146, 427–437 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Tao, Q. et al. Maternal Wnt11 activates the canonical Wnt signaling pathway required for axis formation in Xenopus embryos. Cell 120, 857–871 (2005).

    CAS  PubMed  Google Scholar 

  62. Sotelo, J. R. & Porter, K. R. An electron microscope study of the rat ovum. J. Biophys. Biochem. Cytol. 5, 327–342 (1959).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Young, T. W. et al. Up-regulation of tumor susceptibility gene 101 conveys poor prognosis through suppression of p21 expression in ovarian cancer. Clin. Cancer Res. 13, 3848–3854 (2007).

    CAS  PubMed  Google Scholar 

  64. Oh, K. B., Stanton, M. J., West, W. W., Todd, G. L. & Wagner, K. U. Tsg101 is upregulated in a subset of invasive human breast cancers and its targeted overexpression in transgenic mice reveals weak oncogenic properties for mammary cancer initiation. Oncogene 26, 5950–5959 (2007).

    CAS  PubMed  Google Scholar 

  65. Liu, R. T. et al. Overexpression of tumor susceptibility gene TSG101 in human papillary thyroid carcinomas. Oncogene 21, 4830–4837 (2002).

    CAS  PubMed  Google Scholar 

  66. Vaccari, T. & Bilder, D. The Drosophila tumor suppressor vps25 prevents nonautonomous overproliferation by regulating notch trafficking. Dev. Cell 9, 687–698 (2005).

    CAS  PubMed  Google Scholar 

  67. Thompson, B. J. et al. Tumor suppressor properties of the ESCRT-II complex component Vps25 in Drosophila. Dev. Cell 9, 711–720 (2005).

    CAS  PubMed  Google Scholar 

  68. Li, J., Belogortseva, N., Porter, D. & Park, M. Chmp1A functions as a novel tumor suppressor gene in human embryonic kidney and ductal pancreatic tumor cells. Cell Cycle 7, 2886–2893 (2008).

    CAS  PubMed  Google Scholar 

  69. Wilson, E. M., Oh, Y., Hwa, V. & Rosenfeld, R. G. Interaction of IGF-binding protein-related protein 1 with a novel protein, neuroendocrine differentiation factor, results in neuroendocrine differentiation of prostate cancer cells. J. Clin. Endocrinol. Metab. 86, 4504–4511 (2001).

    CAS  PubMed  Google Scholar 

  70. Babst, M. A protein's final ESCRT. Traffic 6, 2–9 (2005).

    CAS  PubMed  Google Scholar 

  71. Babst, M., Wendland, B., Estepa, E. J. & Emr, S. D. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J. 17, 2982–2993 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Fernandez-Borja . et al. Multivesicular body morphogenesis requires phosphatidyl-inositol 3-kinase activity. Curr. Biol. 9, 55–58 (1999).

    CAS  PubMed  Google Scholar 

  73. Stoorvogel, W., Strous, G. J., Geuze, H. J., Oorschot, V. & Schwartz, A. L. Late endosomes derive from early endosomes by maturation. Cell 65, 417–427 (1991).

    CAS  PubMed  Google Scholar 

  74. Ohashi, M., Miwako, I., Yamamoto, A. & Nagayama, K. Arrested maturing multivesicular endosomes observed in a Chinese hamster ovary cell mutant, LEX2, isolated by repeated flow-cytometric cell sorting. J. Cell Sci. 113, 2187–2205 (2000).

    CAS  PubMed  Google Scholar 

  75. Maxfield, F. R. & McGraw, T. E. Endocytic recycling. Nature Rev. Mol. Cell Biol. 5, 121–132 (2004).

    CAS  Google Scholar 

  76. Woodman, P. G. & Futter, C. E. Multivesicular bodies: co-ordinated progression to maturity. Curr. Opin. Cell Biol. 20, 408–414 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Raiborg, C., Rusten, T. E. & Stenmark, H. Protein sorting into multivesicular endosomes. Curr. Opin. Cell Biol. 15, 446–455 (2003).

    CAS  PubMed  Google Scholar 

  78. Gruenberg, J. & Stenmark, H. The biogenesis of multivesicular endosomes. Nature Rev. Mol. Cell Biol. 5, 317–323 (2004).

    CAS  Google Scholar 

  79. Harding, C., Heuser, J. & Stahl, P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J. Cell Biol. 97, 329–339 (1983).

    CAS  PubMed  Google Scholar 

  80. Denzer, K., Kleijmeer, M. J., Heijnen, H. F., Stoorvogel, W. & Geuze, H. J. Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J. Cell Sci. 113, 3365–3374 (2000).

    CAS  PubMed  Google Scholar 

  81. Février, B. & Raposo, G. Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr. Opin. Cell Biol. 16, 415–421 (2004).

    PubMed  Google Scholar 

  82. Murk, J. L., Stoorvogel, W., Kleijmeer, M. J. & Geuze, H. J. The plasticity of multivesicular bodies and the regulation of antigen presentation. Semin. Cell Dev. Biol. 13, 303–311 (2002).

    CAS  PubMed  Google Scholar 

  83. Sahu, R. et al. Microautophagy of cytosolic proteins by late endosomes. Dev. Cell 20, 131–139 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Cruciat, C. M. et al. Requirement of prorenin receptor and vacuolar H+-ATPase-mediated acidification for Wnt signaling. Science 327, 459–463 (2010).

    CAS  PubMed  Google Scholar 

  85. MacDonald, B. T., Tamai, K. & He, X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9–26 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of our laboratory for comments on the manuscript, the Deutsche Forschungsgemeinschaft for supporting R.D. and the US National Institutes of Health for support. E.M.D.R. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward M. De Robertis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Edward M. De Robertis's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobrowolski, R., De Robertis, E. Endocytic control of growth factor signalling: multivesicular bodies as signalling organelles. Nat Rev Mol Cell Biol 13, 53–60 (2012). https://doi.org/10.1038/nrm3244

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3244

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing