Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis

Key Points

  • The epidermis is a specialized multilayered epithelium that provides a protective environmental barrier while also undergoing dynamic turnover and responding rapidly to injury.

  • Keratinocytes of the epidermis undergo several transformations as they differentiate and migrate outwards to replace cells that are shed at the body surface, thus maintaining epidermal homeostasis. Dynamic changes in adhesive junctions and the cytoskeleton of keratinocytes are a driving force in this morphogenesis.

  • In the basal layers, keratinocytes are tightly adhered to the basement membrane through integrin-based adhesions and hemidesmosomes and continue to proliferate through crosstalk between integrins and growth factor receptors. During stratification, orientated asymmetric cell divisions allow keratinocytes to move upwards into the spinous layer.

  • Keratinocytes in the spinous layer exit the cell cycle and establish increased intercellular connections, such as through desmosomes. They also induce signalling changes to promote epidermal differentiation and form tight junctions that provide an epidermal barrier. Components of the cytoskeleton, including the microtubule network, also dynamically rearrange in differentiating keratinocytes.

  • In the upper epidermis, keratinocytes generate a cornified envelope and unique junctions termed corneodesmosomes, which are assembled during the final stages of differentiation and cleaved to allow desquamation.

  • Several cytoskeletal and adhesive components are implicated in human diseases of the epidermis, highlighting the important role that these structural components have in actively ensuring normal epidermal homeostasis.

Abstract

To provide a stable environmental barrier, the epidermis requires an integrated network of cytoskeletal elements and cellular junctions. Nevertheless, the epidermis ranks among the body's most dynamic tissues, continually regenerating itself and responding to cutaneous insults. As keratinocytes journey from the basal compartment towards the cornified layers, they completely reorganize their adhesive junctions and cytoskeleton. These architectural components are more than just rivets and scaffolds — they are active participants in epidermal morphogenesis that regulate epidermal polarization, signalling and barrier formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Epidermal architecture.
Figure 2: Integrins crosstalk with growth factor receptors to regulate proliferation in the basal layer.
Figure 3: Mitotic spindle orientation directs stratification.
Figure 4: Desmoplakin regulates microtubule reorganization in the stratified epidermis.
Figure 5: Tight junction dynamics during antigen sampling.

Similar content being viewed by others

References

  1. Fuchs, E. & Raghavan, S. Getting under the skin of epidermal morphogenesis. Nature Rev. Genet. 3, 199–209 (2002).

    CAS  PubMed  Google Scholar 

  2. Candi, E., Schmidt, R. & Melino, G. The cornified envelope: a model of cell death in the skin. Nature Rev. Mol. Cell Biol. 6, 328–340 (2005).

    CAS  Google Scholar 

  3. Mack, J. A., Anand, S. & Maytin, E. V. Proliferation and cornification during development of the mammalian epidermis. Birth Defects Res. C Embryo Today 75, 314–329 (2005).

    CAS  PubMed  Google Scholar 

  4. Blanpain, C. & Fuchs, E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nature Rev. Mol. Cell Biol. 10, 207–217 (2009).

    CAS  Google Scholar 

  5. Hsu, Y. C., Pasolli, H. A. & Fuchs, E. Dynamics between stem cells, niche, and progeny in the hair follicle. Cell 144, 92–105 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Tsuruta, D., Hashimoto, T., Hamill, K. J. & Jones, J. C. Hemidesmosomes and focal contact proteins: functions and cross-talk in keratinocytes, bullous diseases and wound healing. J. Dermatol. Sci. 62, 1–7 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Watt, F. M. Role of integrins in regulating epidermal adhesion, growth and differentiation. EMBO J. 21, 3919–3926 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Margadant, C., Charafeddine, R. A. & Sonnenberg, A. Unique and redundant functions of integrins in the epidermis. FASEB J. 24, 4133–4152 (2010).

    CAS  PubMed  Google Scholar 

  9. Watt, F. in Keratinocyte Methods (eds Leigh, I. & Watt, F.) 113 (Cambridge Univ. Press, Cambridge, 1994).

    Google Scholar 

  10. Green, H. Terminal differentiation of cultured human epidermal cells. Cell 11, 405–416 (1977).

    CAS  PubMed  Google Scholar 

  11. De Potter, I. Y., Poumay, Y., Squillace, K. A. & Pittelkow, M. R. Human EGF receptor (HER) family and heregulin members are differentially expressed in epidermal keratinocytes and modulate differentiation. Exp. Cell Res. 271, 315–328 (2001).

    CAS  PubMed  Google Scholar 

  12. Aplin, A. E. & Juliano, R. L. Integrin and cytoskeletal regulation of growth factor signaling to the MAP kinase pathway. J. Cell Sci. 112, 695–706 (1999).

    CAS  PubMed  Google Scholar 

  13. Muller, E. J., Williamson, L., Kolly, C. & Suter, M. M. Outside-in signaling through integrins and cadherins: a central mechanism to control epidermal growth and differentiation? J. Invest. Dermatol. 128, 501–516 (2008).

    CAS  PubMed  Google Scholar 

  14. Guo, W. & Giancotti, F. G. Integrin signalling during tumour progression. Nature Rev. Mol. Cell Biol. 5, 816–826 (2004).

    CAS  Google Scholar 

  15. Aplin, A. E., Stewart, S. A., Assoian, R. K. & Juliano, R. L. Integrin-mediated adhesion regulates ERK nuclear translocation and phosphorylation of Elk-1. J. Cell Biol. 153, 273–282 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Dowling, J., Yu, Q. C. & Fuchs, E. β4 integrin is required for hemidesmosome formation, cell adhesion and cell survival. J. Cell Biol. 134, 559–572 (1996).

    CAS  PubMed  Google Scholar 

  17. van der Neut, R., Krimpenfort, P., Calafat, J., Niessen, C. M. & Sonnenberg, A. Epithelial detachment due to absence of hemidesmosomes in integrin β4 null mice. Nature Genet. 13, 366–369 (1996).

    CAS  PubMed  Google Scholar 

  18. Murgia, C. et al. Cell cycle and adhesion defects in mice carrying a targeted deletion of the integrin β4 cytoplasmic domain. EMBO J. 17, 3940–3951 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Niculescu, C. et al. Conditional ablation of integrin α6 in mouse epidermis leads to skin fragility and inflammation. Eur. J. Cell Biol. 90, 270–277 (2011).

    CAS  PubMed  Google Scholar 

  20. DiPersio, C. M. et al. α3β1 and α6β4 integrin receptors for laminin-5 are not essential for epidermal morphogenesis and homeostasis during skin development. J. Cell Sci. 113, 3051–3062 (2000).

    CAS  PubMed  Google Scholar 

  21. Raymond, K., Kreft, M., Janssen, H., Calafat, J. & Sonnenberg, A. Keratinocytes display normal proliferation, survival and differentiation in conditional β4-integrin knockout mice. J. Cell Sci. 118, 1045–1060 (2005).

    CAS  PubMed  Google Scholar 

  22. Hertle, M. D., Kubler, M. D., Leigh, I. M. & Watt, F. M. Aberrant integrin expression during epidermal wound healing and in psoriatic epidermis. J. Clin. Invest. 89, 1892–1901 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Haase, I., Hobbs, R. M., Romero, M. R., Broad, S. & Watt, F. M. A role for mitogen-activated protein kinase activation by integrins in the pathogenesis of psoriasis. J. Clin. Invest. 108, 527–536 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Carroll, J. M., Romero, M. R. & Watt, F. M. Suprabasal integrin expression in the epidermis of transgenic mice results in developmental defects and a phenotype resembling psoriasis. Cell 83, 957–968 (1995).

    CAS  PubMed  Google Scholar 

  25. Owens, D. M., Romero, M. R., Gardner, C. & Watt, F. M. Suprabasal α6β4 integrin expression in epidermis results in enhanced tumourigenesis and disruption of TGFβ signalling. J. Cell Sci. 116, 3783–3791 (2003).

    CAS  PubMed  Google Scholar 

  26. Owens, D. M., Broad, S., Yan, X., Benitah, S. A. & Watt, F. M. Suprabasal α5β1 integrin expression stimulates formation of epidermal squamous cell carcinomas without disrupting TGFβ signaling or inducing spindle cell tumors. Mol. Carcinog. 44, 60–66 (2005).

    CAS  PubMed  Google Scholar 

  27. Raghavan, S., Bauer, C., Mundschau, G., Li, Q. & Fuchs, E. Conditional ablation of β1 integrin in skin. Severe defects in epidermal proliferation, basement membrane formation, and hair follicle invagination. J. Cell Biol. 150, 1149–1160 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Brakebusch, C. et al. Skin and hair follicle integrity is crucially dependent on β1 integrin expression on keratinocytes. EMBO J. 19, 3990–4003 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lopez-Rovira, T., Silva-Vargas, V. & Watt, F. M. Different consequences of β1 integrin deletion in neonatal and adult mouse epidermis reveal a context-dependent role of integrins in regulating proliferation, differentiation, and intercellular communication. J. Invest. Dermatol. 125, 1215–1227 (2005).

    CAS  PubMed  Google Scholar 

  30. McMillan, J. R., Akiyama, M. & Shimizu, H. Epidermal basement membrane zone components: ultrastructural distribution and molecular interactions. J. Dermatol. Sci. 31, 169–177 (2003).

    CAS  PubMed  Google Scholar 

  31. DiPersio, C. M., Hodivala-Dilke, K. M., Jaenisch, R., Kreidberg, J. A. & Hynes, R. O. α3β1 Integrin is required for normal development of the epidermal basement membrane. J. Cell Biol. 137, 729–742 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Margadant, C. et al. Integrin α3β1 inhibits directional migration and wound re-epithelialization in the skin. J. Cell Sci. 122, 278–288 (2009).

    CAS  PubMed  Google Scholar 

  33. Lorenz, K. et al. Integrin-linked kinase is required for epidermal and hair follicle morphogenesis. J. Cell Biol. 177, 501–513 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lai-Cheong, J. E., Parsons, M. & McGrath, J. A. The role of kindlins in cell biology and relevance to human disease. Int. J. Biochem. Cell Biol. 42, 595–603 (2010).

    CAS  PubMed  Google Scholar 

  35. Ussar, S., Wang, H. V., Linder, S., Fassler, R. & Moser, M. The Kindlins: subcellular localization and expression during murine development. Exp. Cell Res. 312, 3142–3151 (2006).

    CAS  PubMed  Google Scholar 

  36. Siegel, D. H. et al. Loss of kindlin-1, a human homolog of the Caenorhabditis elegans actin–extracellular-matrix linker protein UNC-112, causes Kindler syndrome. Am. J. Hum. Genet. 73, 174–187 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Shimizu, H. et al. Immunohistochemical, ultrastructural, and molecular features of Kindler syndrome distinguish it from dystrophic epidermolysis bullosa. Arch. Dermatol. 133, 1111–1117 (1997).

    CAS  PubMed  Google Scholar 

  38. Lai-Cheong, J. E., Ussar, S., Arita, K., Hart, I. R. & McGrath, J. A. Colocalization of kindlin-1, kindlin-2, and migfilin at keratinocyte focal adhesion and relevance to the pathophysiology of Kindler syndrome. J. Invest. Dermatol. 128, 2156–2165 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Has, C. et al. Kindlin-1 is required for RhoGTPase-mediated lamellipodia formation in keratinocytes. Am. J. Pathol. 175, 1442–1452 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ussar, S. et al. Loss of Kindlin-1 causes skin atrophy and lethal neonatal intestinal epithelial dysfunction. PLoS Genet. 4, e1000289 (2008).

    PubMed  PubMed Central  Google Scholar 

  41. Herz, C. et al. Kindlin-1 is a phosphoprotein involved in regulation of polarity, proliferation, and motility of epidermal keratinocytes. J. Biol. Chem. 281, 36082–36090 (2006). Uses a mouse model to show that loss of kindlin 1 function, which causes a skin disorder called Kindler syndrome, is also a direct cause of ulcerative colitis-like symptoms, which occur as a result of impaired integrin inactivation and delamination of the intestinal epithelia in response to force.

    CAS  PubMed  Google Scholar 

  42. He, Y., Esser, P., Heinemann, A., Bruckner-Tuderman, L. & Has, C. Kindlin-1 and -2 have overlapping functions in epithelial cells implications for phenotype modification. Am. J. Pathol. 178, 975–982 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Raghavan, S., Vaezi, A. & Fuchs, E. A role for αβ1 integrins in focal adhesion function and polarized cytoskeletal dynamics. Dev. Cell 5, 415–427 (2003).

    CAS  PubMed  Google Scholar 

  44. Perez-Moreno, M., Jamora, C. & Fuchs, E. Sticky business: orchestrating cellular signals at adherens junctions. Cell 112, 535–548 (2003).

    CAS  PubMed  Google Scholar 

  45. Vasioukhin, V. & Fuchs, E. Actin dynamics and cell-cell adhesion in epithelia. Curr. Opin. Cell Biol. 13, 76–84 (2001).

    CAS  PubMed  Google Scholar 

  46. Vaezi, A., Bauer, C., Vasioukhin, V. & Fuchs, E. Actin cable dynamics and Rho/Rock orchestrate a polarized cytoskeletal architecture in the early steps of assembling a stratified epithelium. Dev. Cell 3, 367–381 (2002).

    CAS  PubMed  Google Scholar 

  47. Connelly, J. T. et al. Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nature Cell Biol. 12, 711–718 (2010). Using a micropatterning strategy, the authors reveal a novel mechanism by which cell shape drives keratinocyte differentiation through SRF signalling, irrespective of substrate area or composition.

    CAS  PubMed  Google Scholar 

  48. Miano, J. M., Long, X. & Fujiwara, K. Serum response factor: master regulator of the actin cytoskeleton and contractile apparatus. Am. J. Physiol. Cell Physiol. 292, C70–C81 (2007).

    CAS  PubMed  Google Scholar 

  49. Koegel, H. et al. Loss of serum response factor in keratinocytes results in hyperproliferative skin disease in mice. J. Clin. Invest. 119, 899–910 (2009). Reports the first keratinocyte-specific deletion of mouse SRF, revealing that postnatal loss of SRF is associated with development of psoriasis-like skin lesions characterized by inflammation, hyperproliferation, abnormal keratinocyte differentiation and disruption of the actin cytoskeleton.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Luxenburg, C., Amalia Pasolli, H., Williams, S. E. & Fuchs, E. Developmental roles for Srf, cortical cytoskeleton and cell shape in epidermal spindle orientation. Nature Cell Biol. 13, 203–214 (2011). In contrast to reference 49, this study reports that SRF-deficient keratinocytes fail to undergo cortical actin-dependent mitotic shape changes, which are required for localizing proteins that are important for directing spindle orientation, stratification and differentiation.

    CAS  PubMed  Google Scholar 

  51. Mehic, D., Bakiri, L., Ghannadan, M., Wagner, E. F. & Tschachler, E. Fos and jun proteins are specifically expressed during differentiation of human keratinocytes. J. Invest. Dermatol. 124, 212–220 (2005).

    CAS  PubMed  Google Scholar 

  52. Zenz, R. et al. Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins. Nature 437, 369–375 (2005).

    CAS  PubMed  Google Scholar 

  53. Mese, G., Richard, G. & White, T. W. Gap junctions: basic structure and function. J. Invest. Dermatol. 127, 2516–2524 (2007).

    CAS  PubMed  Google Scholar 

  54. Lai-Cheong, J. E., Arita, K. & McGrath, J. A. Genetic diseases of junctions. J. Invest. Dermatol. 127, 2713–2725 (2007).

    CAS  PubMed  Google Scholar 

  55. Gumbiner, B. M. Regulation of cadherin-mediated adhesion in morphogenesis. Nature Rev. Mol. Cell Biol. 6, 622–634 (2005).

    CAS  Google Scholar 

  56. Runswick, S. K., O'Hare, M. J., Jones, L., Streuli, C. H. & Garrod, D. R. Desmosomal adhesion regulates epithelial morphogenesis and cell positioning. Nature Cell Biol. 3, 823–830 (2001).

    CAS  PubMed  Google Scholar 

  57. Tinkle, C. L., Lechler, T., Pasolli, H. A. & Fuchs, E. Conditional targeting of E-cadherin in skin: insights into hyperproliferative and degenerative responses. Proc. Natl Acad. Sci. USA 101, 552–557 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Young, P. et al. E-cadherin controls adherens junctions in the epidermis and the renewal of hair follicles. EMBO J. 22, 5723–5733 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Tunggal, J. A. et al. E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions. EMBO J. 24, 1146–1156 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Tinkle, C. L., Pasolli, H. A., Stokes, N. & Fuchs, E. New insights into cadherin function in epidermal sheet formation and maintenance of tissue integrity. Proc. Natl Acad. Sci. USA 105, 15405–15410 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Niessen, C. M. & Gottardi, C. J. Molecular components of the adherens junction. Biochim. Biophys. Acta 1778, 562–571 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Koster, M. I. & Roop, D. R. Mechanisms regulating epithelial stratification. Annu. Rev. Cell Dev. Biol. 23, 93–113 (2007).

    CAS  PubMed  Google Scholar 

  63. Lechler, T. & Fuchs, E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437, 275–280 (2005). The first paper to show that basal cells in the mammalian epidermis undergo asymmetric divisions to drive stratification during epidermal morphogenesis. It also identifies the cytoarchitectural elements regulating this process.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Williams, S. E., Beronja, S., Pasolli, H. A. & Fuchs, E. Asymmetric cell divisions promote Notch-dependent epidermal differentiation. Nature 470, 353–358 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Poulson, N. D. & Lechler, T. Robust control of mitotic spindle orientation in the developing epidermis. J. Cell Biol. 191, 915–922 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Nieben, M. T., Niessen, C. M. Regulation of cell and tissue polarity: implications for skin homeostasis and disease. Expert Rev. Dermatol. 5, 671–687 (2010).

    Google Scholar 

  67. Vasioukhin, V., Bauer, C., Degenstein, L., Wise, B. & Fuchs, E. Hyperproliferation and defects in epithelial polarity upon conditional ablation of α-catenin in skin. Cell 104, 605–617 (2001).

    CAS  PubMed  Google Scholar 

  68. Kobielak, A. & Fuchs, E. Links between α-catenin, NF-κB, and squamous cell carcinoma in skin. Proc. Natl Acad. Sci. USA 103, 2322–2327 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Perez-Moreno, M. et al. p120-catenin mediates inflammatory responses in the skin. Cell 124, 631–644 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Perez-Moreno, M., Song, W., Pasolli, H. A., Williams, S. E. & Fuchs, E. Loss of p120 catenin and links to mitotic alterations, inflammation, and skin cancer. Proc. Natl Acad. Sci. USA 105, 15399–15404 (2008). References 69 and 70 report that, rather than resulting in overt defects in adherens junctions, conditional ablation of p120 catenin in mouse skin leads to chronic inflammatory responses through NF-κB activation, as well as mitotic defects through elevation of RHOA GTPase activity, leading to skin neoplasias.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hatzfeld, M. The p120 family of cell adhesion molecules. Eur. J. Cell Biol. 84, 205–214 (2005).

    CAS  PubMed  Google Scholar 

  72. Ridley, A. J. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol. 16, 522–529 (2006).

    CAS  PubMed  Google Scholar 

  73. Goldstein, B. & Macara, I. G. The PAR proteins: fundamental players in animal cell polarization. Dev. Cell 13, 609–622 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Lallemand, D., Curto, M., Saotome, I., Giovannini, M. & McClatchey, A. I. NF2 deficiency promotes tumorigenesis and metastasis by destabilizing adherens junctions. Genes Dev. 17, 1090–1100 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Gladden, A. B., Hebert, A. M., Schneeberger, E. E. & McClatchey, A. I. The NF2 tumor suppressor, Merlin, regulates epidermal development through the establishment of a junctional polarity complex. Dev. Cell 19, 727–739 (2010). Provides insight into the mechanism by which the FERM protein merlin promotes epidermal polarity and morphogenesis in vivo by coupling adherens junctions and the PAR3polarity complex.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Bayly, R. & Axelrod, J. D. Pointing in the right direction: new developments in the field of planar cell polarity. Nature Rev. Genet. 12, 385–391 (2011).

    CAS  PubMed  Google Scholar 

  77. Caddy, J. et al. Epidermal wound repair is regulated by the planar cell polarity signaling pathway. Dev. Cell 19, 138–147 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Devenport, D. & Fuchs, E. Planar polarization in embryonic epidermis orchestrates global asymmetric morphogenesis of hair follicles. Nature Cell Biol. 10, 1257–1268 (2008).

    CAS  PubMed  Google Scholar 

  79. Kubler, M. D., Jordan, P. W., O'Neill, C. H. & Watt, F. M. Changes in the abundance and distribution of actin and associated proteins during terminal differentiation of human epidermal keratinocytes. J. Cell Sci. 100, 153–165 (1991).

    CAS  PubMed  Google Scholar 

  80. Vasioukhin, V., Bauer, C., Yin, M. & Fuchs, E. Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell 100, 209–219 (2000).

    CAS  PubMed  Google Scholar 

  81. McMullan, R. et al. Keratinocyte differentiation is regulated by the Rho and ROCK signaling pathway. Curr. Biol. 13, 2185–2189 (2003).

    CAS  PubMed  Google Scholar 

  82. Liebig, T. et al. RhoE is required for keratinocyte differentiation and stratification. Mol. Biol. Cell 20, 452–463 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Lock, F. E. & Hotchin, N. A. Distinct roles for ROCK1 and ROCK2 in the regulation of keratinocyte differentiation. PLoS ONE 4, e8190 (2009).

    PubMed  PubMed Central  Google Scholar 

  84. Perez-Moreno, M. & Fuchs, E. Catenins: keeping cells from getting their signals crossed. Dev. Cell 11, 601–612 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Beronja, S., Livshits, G., Williams, S. & Fuchs, E. Rapid functional dissection of genetic networks via tissue-specific transduction and RNAi in mouse embryos. Nature Med. 16, 821–827 (2010).

    CAS  PubMed  Google Scholar 

  86. Silvis, M. R. et al. α-Catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1. Sci. Signal. 4, ra33 (2011).

    PubMed  PubMed Central  Google Scholar 

  87. White, F. H. & Gohari, K. Desmosomes in hamster cheek pouch epithelium: their quantitative characterization during epithelial differentiation. J. Cell Sci. 66, 411–429 (1984).

    CAS  PubMed  Google Scholar 

  88. Fuchs, E. Epidermal differentiation and keratin gene expression. J. Cell Sci. 17, 197–208 (1993).

    CAS  Google Scholar 

  89. Green, K. J. & Simpson, C. L. Desmosomes: new perspectives on a classic. J. Invest. Dermatol. 127, 2499–2515 (2007).

    CAS  PubMed  Google Scholar 

  90. Gu, L. H. & Coulombe, P. A. Keratin function in skin epithelia: a broadening palette with surprising shades. Curr. Opin. Cell Biol. 19, 13–23 (2007).

    CAS  PubMed  Google Scholar 

  91. Magin, T. M., Vijayaraj, P. & Leube, R. E. Structural and regulatory functions of keratins. Exp. Cell Res. 313, 2021–2032 (2007).

    CAS  PubMed  Google Scholar 

  92. Garrod, D. & Kimura, T. E. Hyper-adhesion: a new concept in cell–cell adhesion. Biochem. Soc. Trans. 36, 195–201 (2008).

    CAS  PubMed  Google Scholar 

  93. Kimura, T. E., Merritt, A. J. & Garrod, D. R. Calcium-independent desmosomes of keratinocytes are hyper-adhesive. J. Invest. Dermatol. 127, 775–781 (2007).

    CAS  PubMed  Google Scholar 

  94. Getsios, S., Huen, A. C. & Green, K. J. Working out the strength and flexibility of desmosomes. Nature Rev. Mol. Cell Biol. 5, 271–281 (2004).

    CAS  Google Scholar 

  95. Brennan, D. & Mahoney, M. G. Increased expression of Dsg2 in malignant skin carcinomas: a tissue-microarray based study. Cell Adh. Migr. 3, 148–154 (2009).

    PubMed  PubMed Central  Google Scholar 

  96. Mahoney, M. G. et al. Delineation of diversified desmoglein distribution in stratified squamous epithelia: implications in diseases. Exp. Dermatol. 15, 101–109 (2006).

    CAS  PubMed  Google Scholar 

  97. Arnemann, J., Sullivan, K. H., Magee, A. I., King, I. A. & Buxton, R. S. Stratification-related expression of isoforms of the desmosomal cadherins in human epidermis. J. Cell Sci. 104, 741–750 (1993).

    CAS  PubMed  Google Scholar 

  98. King, I. A. et al. Hierarchical expression of desmosomal cadherins during stratified epithelial morphogenesis in the mouse. Differentiation 62, 83–96 (1997).

    CAS  PubMed  Google Scholar 

  99. Cheng, X. & Koch, P. J. In vivo function of desmosomes. J. Dermatol. 31, 171–187 (2004).

    PubMed  Google Scholar 

  100. Garrod, D. & Chidgey, M. Desmosome structure, composition and function. Biochim. Biophys. Acta 1778, 572–587 (2008).

    CAS  PubMed  Google Scholar 

  101. Merritt, A. J. et al. Suprabasal desmoglein 3 expression in the epidermis of transgenic mice results in hyperproliferation and abnormal differentiation. Mol. Cell. Biol. 22, 5846–5858 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Hardman, M. J. et al. Desmosomal cadherin misexpression alters β-catenin stability and epidermal differentiation. Mol. Cell. Biol. 25, 969–978 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Elias, P. M. et al. Desmoglein isoform distribution affects stratum corneum structure and function. J. Cell Biol. 153, 243–249 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Chidgey, M. et al. Mice lacking desmocollin 1 show epidermal fragility accompanied by barrier defects and abnormal differentiation. J. Cell Biol. 155, 821–832 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Kljuic, A. et al. Desmoglein 4 in hair follicle differentiation and epidermal adhesion. Evidence from inherited hypotrichosis and acquired pemphigus vulgaris. Cell 113, 249–260 (2003).

    CAS  PubMed  Google Scholar 

  106. Brennan, D. et al. Suprabasal Dsg2 expression in transgenic mouse skin confers a hyperproliferative and apoptosis-resistant phenotype to keratinocytes. J. Cell Sci. 120, 758–771 (2007).

    CAS  PubMed  Google Scholar 

  107. Getsios, S. et al. Desmoglein 1-dependent suppression of EGFR signaling promotes epidermal differentiation and morphogenesis. J. Cell Biol. 185, 1243–1258 (2009). Demonstrates that DSG1, which was previously well-established as being crucial for adhesion in the epidermal suprabasal layers, also regulates epidermal differentiation through its attenuation of MAPK signalling; this function does not involve DSG1's adhesive ectodomain or binding to the associated armadillo protein PG.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Schweizer, J., Langbein, L., Rogers, M. A. & Winter, H. Hair follicle-specific keratins and their diseases. Exp. Cell Res. 313, 2010–2020 (2007).

    CAS  PubMed  Google Scholar 

  109. Omary, M. B., Coulombe, P. A. & McLean, W. H. Intermediate filament proteins and their associated diseases. N. Engl. J. Med. 351, 2087–2100 (2004).

    CAS  PubMed  Google Scholar 

  110. Szeverenyi, I. et al. The Human Intermediate Filament Database: comprehensive information on a gene family involved in many human diseases. Hum. Mutat. 29, 351–360 (2008).

    CAS  PubMed  Google Scholar 

  111. Wilhelmsen, K. et al. Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin. J. Cell Biol. 171, 799–810 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Luke, Y. et al. Nesprin-2 Giant (NUANCE) maintains nuclear envelope architecture and composition in skin. J. Cell Sci. 121, 1887–1898 (2008).

    PubMed  Google Scholar 

  113. Beil, M. et al. Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells. Nature Cell Biol. 5, 803–811 (2003).

    CAS  PubMed  Google Scholar 

  114. Coulombe, P. A. Wound epithelialization: accelerating the pace of discovery. J. Invest. Dermatol. 121, 219–230 (2003).

    CAS  PubMed  Google Scholar 

  115. Lee, C. H. & Coulombe, P. A. Self-organization of keratin intermediate filaments into cross-linked networks. J. Cell Biol. 186, 409–421 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Reichelt, J. & Magin, T. M. Hyperproliferation, induction of c-Myc and 14-3-3σ, but no cell fragility in keratin-10-null mice. J. Cell Sci. 115, 2639–2650 (2002).

    CAS  PubMed  Google Scholar 

  117. Reichelt, J., Furstenberger, G. & Magin, T. M. Loss of keratin 10 leads to mitogen-activated protein kinase (MAPK) activation, increased keratinocyte turnover, and decreased tumor formation in mice. J. Invest. Dermatol. 123, 973–981 (2004).

    CAS  PubMed  Google Scholar 

  118. Kim, S., Wong, P. & Coulombe, P. A. A keratin cytoskeletal protein regulates protein synthesis and epithelial cell growth. Nature 441, 362–365 (2006). Shows that the wound-induced intermediate filament protein K17 regulates cell growth by associating with the adaptor 14-3-3σ to govern its localization in the cytoplasm, where it stimulates AKT–mTOR signalling and protein synthesis.

    CAS  PubMed  Google Scholar 

  119. Vijayaraj, P. et al. Keratins regulate protein biosynthesis through localization of GLUT1 and -3 upstream of AMP kinase and Raptor. J. Cell Biol. 187, 175–184 (2009). A targeted gene deletion strategy is used to generate transgenic mice that completely lack all keratin intermediate family members, resulting in severe growth retardation and embryonic lethality, which occurs owing to mislocalization of membrane-associated glucose transporter type 1 (GLUT1) and GLUT3 and consequent activation of an energy sensing cascade that represses protein synthesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Kerns, M., DePianto, D., Yamamoto, M. & Coulombe, P. A. Differential modulation of keratin expression by sulforaphane occurs via Nrf2-dependent and -independent pathways in skin epithelia. Mol. Biol. Cell 21, 4068–4075 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Roth, W., Reuter, U., Wohlenberg, C., Bruckner-Tuderman, L. & Magin, T. M. Cytokines as genetic modifiers in K5−/− mice and in human epidermolysis bullosa simplex. Hum. Mutat. 30, 832–841 (2009).

    CAS  PubMed  Google Scholar 

  122. Tong, X. & Coulombe, P. A. Keratin 17 modulates hair follicle cycling in a TNFα-dependent fashion. Genes Dev. 20, 1353–1364 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Depianto, D., Kerns, M. L., Dlugosz, A. A. & Coulombe, P. A. Keratin 17 promotes epithelial proliferation and tumor growth by polarizing the immune response in skin. Nature Genet. 42, 910–914 (2010).

    CAS  PubMed  Google Scholar 

  124. Diercks, G. F., Pas, H. H. & Jonkman, M. F. The ultrastructure of acantholysis in pemphigus vulgaris. Br. J. Dermatol. 160, 460–461 (2009).

    CAS  PubMed  Google Scholar 

  125. Sharma, P., Mao, X. & Payne, A. S. Beyond steric hindrance: the role of adhesion signaling pathways in the pathogenesis of pemphigus. J. Dermatol. Sci. 48, 1–14 (2007).

    CAS  PubMed  Google Scholar 

  126. Braun-Falco, M. Hereditary palmoplantar keratodermas. J. Dtsch Dermatol. Ges. 7, 971–984 (2009).

    PubMed  Google Scholar 

  127. Liovic, M. et al. Severe keratin 5 and 14 mutations induce down-regulation of junction proteins in keratinocytes. Exp. Cell. Res. 315, 2995–3003 (2009).

    CAS  PubMed  Google Scholar 

  128. Lechler, T. & Fuchs, E. Desmoplakin: an unexpected regulator of microtubule organization in the epidermis. J. Cell Biol. 176, 147–154 (2007). Makes the surprising discovery that the desmosomal plaque protein DP not only anchors the intermediate filament cytoskeleton at the plasma membrane, but is also required for a switch in epidermal microtubule organization from centrosome-associated organization (in the basal proliferating layers) to cortical, intercellular junction-associated organization (in the suprabasal layers).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Stehbens, S. J., Akhmanova, A. & Yap, A. S. Microtubules and cadherins: a neglected partnership. Front. Biosci. 14, 3159–3167 (2009).

    CAS  Google Scholar 

  130. Mogensen, M. M., Malik, A., Piel, M., Bouckson-Castaing, V. & Bornens, M. Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein. J. Cell Sci. 113, 3013–3023 (2000).

    CAS  PubMed  Google Scholar 

  131. Hatzfeld, M., Haffner, C., Schulze, K. & Vinzens, U. The function of plakophilin 1 in desmosome assembly and actin filament organization. J. Cell Biol. 149, 209–222 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Godsel, L. M. et al. Plakophilin 2 couples actomyosin remodeling to desmosomal plaque assembly via RhoA. Mol. Biol. Cell 21, 2844–2859 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Waschke, J. et al. Inhibition of Rho A activity causes pemphigus skin blistering. J. Cell Biol. 175, 721–727 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Niessen, C. M. Tight junctions/adherens junctions: basic structure and function. J. Invest. Dermatol. 127, 2525–2532 (2007).

    CAS  PubMed  Google Scholar 

  135. Morita, K. & Miyachi, Y. Tight junctions in the skin. J. Dermatol. Sci. 31, 81–89 (2003).

    PubMed  Google Scholar 

  136. Langbein, L. et al. Tight junctions and compositionally related junctional structures in mammalian stratified epithelia and cell cultures derived therefrom. Eur. J. Cell Biol. 81, 419–435 (2002).

    CAS  PubMed  Google Scholar 

  137. Kirschner, N., Bohner, C., Rachow, S. & Brandner, J. M. Tight junctions: is there a role in dermatology? Arch. Dermatol. Res. 302, 483–493 (2010).

    CAS  PubMed  Google Scholar 

  138. Furuse, M. et al. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J. Cell Biol. 156, 1099–1111 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Hadj-Rabia, S. et al. Claudin-1 gene mutations in neonatal sclerosing cholangitis associated with ichthyosis: a tight junction disease. Gastroenterology 127, 1386–1390 (2004).

    CAS  PubMed  Google Scholar 

  140. Turksen, K. & Troy, T. C. Permeability barrier dysfunction in transgenic mice overexpressing claudin 6. Development 129, 1775–1784 (2002).

    CAS  PubMed  Google Scholar 

  141. Troy, T. C., Arabzadeh, A., Lariviere, N. M., Enikanolaiye, A. & Turksen, K. Dermatitis and aging-related barrier dysfunction in transgenic mice overexpressing an epidermal-targeted claudin 6 tail deletion mutant. PLoS ONE 4, e7814 (2009).

    PubMed  PubMed Central  Google Scholar 

  142. Arabzadeh, A., Troy, T. C. & Turksen, K. Role of the Cldn6 cytoplasmic tail domain in membrane targeting and epidermal differentiation in vivo. Mol. Cell. Biol. 26, 5876–5887 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Clausen, B. E. & Kel, J. M. Langerhans cells: critical regulators of skin immunity? Immunol. Cell Biol. 88, 351–360 (2010).

    CAS  PubMed  Google Scholar 

  144. Kubo, A., Nagao, K., Yokouchi, M., Sasaki, H. & Amagai, M. External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J. Exp. Med. 206, 2937–2946 (2009). Beautiful imaging performed in this study shows how Langerhans cells, which are dendritic cells in the skin, dock with and extend through tight junctions when activated by antigen infiltration of the overlying stratum corneum.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. De Benedetto, A. et al. Tight junction defects in patients with atopic dermatitis. J. Allergy Clin. Immunol. 127, 773–786 (2011).

    CAS  PubMed  Google Scholar 

  146. Kirschner, N. et al. Alteration of tight junction proteins is an early event in psoriasis: putative involvement of proinflammatory cytokines. Am. J. Pathol. 175, 1095–1106 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. McGrath, J. A. & Uitto, J. The filaggrin story: novel insights into skin-barrier function and disease. Trends Mol. Med. 14, 20–27 (2008).

    CAS  PubMed  Google Scholar 

  148. Dale, B. A., Presland, R. B., Lewis, S. P., Underwood, R. A. & Fleckman, P. Transient expression of epidermal filaggrin in cultured cells causes collapse of intermediate filament networks with alteration of cell shape and nuclear integrity. J. Invest. Dermatol. 108, 179–187 (1997).

    CAS  PubMed  Google Scholar 

  149. Palmer, C. N. et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nature Genet. 38, 441–446 (2006). This ground-breaking work identifies loss of function mutations in filaggrin as a major contributor to the development of atopic dermatitis, supporting the idea that this common disorder is primarily caused by disturbed barrier function, and that the associated inflammation is an indirect effect of infiltrating environmental toxins, allergens and pathogens.

    CAS  PubMed  Google Scholar 

  150. Sandilands, A., Sutherland, C., Irvine, A. D. & McLean, W. H. Filaggrin in the frontline: role in skin barrier function and disease. J. Cell Sci. 122, 1285–1294 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Smith, F. J. et al. Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nature Genet. 38, 337–342 (2006).

    CAS  PubMed  Google Scholar 

  152. Fallon, P. G. et al. A homozygous frameshift mutation in the mouse Flg gene facilitates enhanced percutaneous allergen priming. Nature Genet. 41, 602–608 (2009).

    CAS  PubMed  Google Scholar 

  153. Matsui, T. et al. SASPase regulates stratum corneum hydration through profilaggrin-to-filaggrin processing. EMBO Mol. Med. 3, 320–333 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. O'Regan, G. M. & Irvine, A. D. The role of filaggrin in the atopic diathesis. Clin. Exp. Allergy 40, 965–972 (2010).

    CAS  PubMed  Google Scholar 

  155. Brown, S. J. et al. Loss-of-function variants in the filaggrin gene are a significant risk factor for peanut allergy. J. Allergy Clin. Immunol. 127, 661–667 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Eckhart, L. et al. Terminal differentiation of human keratinocytes and stratum corneum formation is associated with caspase-14 activation. J. Invest. Dermatol. 115, 1148–1151 (2000).

    CAS  PubMed  Google Scholar 

  157. Denecker, G., Ovaere, P., Vandenabeele, P. & Declercq, W. Caspase-14 reveals its secrets. J. Cell Biol. 180, 451–458 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Ishida-Yamamoto, A., Igawa, S. & Kishibe, M. Order and disorder in corneocyte adhesion. J. Dermatol. 38, 645–654 (2011).

    PubMed  Google Scholar 

  159. Caubet, C. et al. Degradation of corneodesmosome proteins by two serine proteases of the kallikrein family, SCTE/KLK5/hK5 and SCCE/KLK7/hK7. J. Invest. Dermatol. 122, 1235–1244 (2004).

    CAS  PubMed  Google Scholar 

  160. Descargues, P. et al. Spink5-deficient mice mimic Netherton syndrome through degradation of desmoglein 1 by epidermal protease hyperactivity. Nature Genet. 37, 56–65 (2005).

    CAS  PubMed  Google Scholar 

  161. Matsuki, M. et al. Defective stratum corneum and early neonatal death in mice lacking the gene for transglutaminase 1 (keratinocyte transglutaminase). Proc. Natl Acad. Sci. USA 95, 1044–1049 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Huber, M. et al. Mutations of keratinocyte transglutaminase in lamellar ichthyosis. Science 267, 525–528 (1995).

    CAS  PubMed  Google Scholar 

  163. DiColandrea, T., Karashima, T., Maatta, A. & Watt, F. M. Subcellular distribution of envoplakin and periplakin: insights into their role as precursors of the epidermal cornified envelope. J. Cell Biol. 151, 573–586 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Lundstrom, A., Serre, G., Haftek, M. & Egelrud, T. Evidence for a role of corneodesmosin, a protein which may serve to modify desmosomes during cornification, in stratum corneum cell cohesion and desquamation. Arch. Derm. Res. 286, 369–375 (1994).

    CAS  PubMed  Google Scholar 

  165. Karashima, T. & Watt, F. M. Interaction of periplakin and envoplakin with intermediate filaments. J. Cell Sci. 115, 5027–5037 (2002).

    CAS  PubMed  Google Scholar 

  166. Kalinin, A. E. et al. Co-assembly of envoplakin and periplakin into oligomers and Ca2+-dependent vesicle binding: implications for cornified cell envelope formation in stratified squamous epithelia. J. Biol. Chem. 279, 22773–22780 (2004).

    CAS  PubMed  Google Scholar 

  167. Aho, S. et al. Periplakin gene targeting reveals a constituent of the cornified cell envelope dispensable for normal mouse development. Mol. Cell. Biol. 24, 6410–6418 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Maatta, A., DiColandrea, T., Groot, K. & Watt, F. M. Gene targeting of envoplakin, a cytoskeletal linker protein and precursor of the epidermal cornified envelope. Mol. Cell. Biol. 21, 7047–7053 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Koch, P. J. et al. Lessons from loricrin-deficient mice: compensatory mechanisms maintaining skin barrier function in the absence of a major cornified envelope protein. J. Cell Biol. 151, 389–400 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Djian, P., Easley, K. & Green, H. Targeted ablation of the murine involucrin gene. J. Cell Biol. 151, 381–388 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Sevilla, L. M. et al. Mice deficient in involucrin, envoplakin, and periplakin have a defective epidermal barrier. J. Cell Biol. 179, 1599–1612 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Sugiura, H. et al. Large-scale DNA microarray analysis of atopic skin lesions shows overexpression of an epidermal differentiation gene cluster in the alternative pathway and lack of protective gene expression in the cornified envelope. Br. J. Dermatol. 152, 146–149 (2005).

    CAS  PubMed  Google Scholar 

  173. Guttman-Yassky, E. et al. Broad defects in epidermal cornification in atopic dermatitis identified through genomic analysis. J. Allergy Clin. Immunol. 124, 1235–1244 (2009).

    CAS  PubMed  Google Scholar 

  174. Chavanas, S. et al. Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nature Genet. 25, 141–142 (2000).

    CAS  PubMed  Google Scholar 

  175. Jonca, N. et al. Corneodesmosin, a component of epidermal corneocyte desmosomes, displays homophilic adhesive properties. J. Biol. Chem. 277, 5024–5029 (2002).

    CAS  PubMed  Google Scholar 

  176. Simon, M. et al. Refined characterization of corneodesmosin proteolysis during terminal differentiation of human epidermis and its relationship to desquamation. J. Biol. Chem. 276, 20292–20299 (2001).

    CAS  PubMed  Google Scholar 

  177. Leclerc, E. A. et al. Corneodesmosin gene ablation induces lethal skin-barrier disruption and hair-follicle degeneration related to desmosome dysfunction. J. Cell Sci. 122, 2699–2709 (2009).

    CAS  PubMed  Google Scholar 

  178. Oji, V. et al. Loss of corneodesmosin leads to severe skin barrier defect, pruritus, and atopy: unraveling the peeling skin disease. Am. J. Hum. Genet. 87, 274–281 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Levy-Nissenbaum, E. et al. Hypotrichosis simplex of the scalp is associated with nonsense mutations in CDSN encoding corneodesmosin. Nature Genet. 34, 151–153 (2003).

    CAS  PubMed  Google Scholar 

  180. Janmey, P. A. & McCulloch, C. A. Cell mechanics: integrating cell responses to mechanical stimuli. Annu. Rev. Biomed. Eng. 9, 1–34 (2007).

    CAS  PubMed  Google Scholar 

  181. Ingber, D. E. Tensegrity II. How structural networks influence cellular information processing networks. J. Cell Sci. 116, 1397–1408 (2003).

    CAS  PubMed  Google Scholar 

  182. Cavallaro, U. & Dejana, E. Adhesion molecule signalling: not always a sticky business. Nature Rev. Mol. Cell. Biol. 12, 189–197 (2011).

    CAS  Google Scholar 

  183. Bass-Zubek, A. E., Godsel, L. M., Delmar, M. & Green, K. J. Plakophilins: multifunctional scaffolds for adhesion and signaling. Curr. Opin. Cell Biol. 21, 708–716 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Wolf, A. et al. Plakophilin 1 stimulates translation by promoting eIF4A1 activity. J. Cell Biol. 188, 463–471 (2010). Highlights the emerging importance of adhesion-independent roles for the 'junctional' armadillo proteins, in this case showing that the desmosomal protein PKP1 binds to eukaryotic initiation factor 4A (eIF4A) to increase translational activity of the eIF4A complex.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Bissell, M. J. & Barcellos-Hoff, M. H. The influence of extracellular matrix on gene expression: is structure the message? J. Cell Sci. 8, 327–343 (1987).

    CAS  Google Scholar 

  187. Ingber, D. E. Tensegrity: the architectural basis of cellular mechanotransduction. Annu. Rev. Physiol. 59, 575–599 (1997).

    CAS  PubMed  Google Scholar 

  188. Nie, Z., Merritt, A., Rouhi-Parkouhi, M., Tabernero, L. & Garrod, D. Membrane-impermeable cross-linking provides evidence for homophilic, isoform-specific binding of desmosomal cadherins in epithelial cells. J. Biol. Chem. 286, 2143–2154 (2011).

    CAS  PubMed  Google Scholar 

  189. Chitaev, N. A. & Troyanovsky, S. M. Direct Ca2+-dependent heterophilic interaction between desmosomal cadherins, desmoglein and desmocollin, contributes to cell-cell adhesion. J. Cell Biol. 138, 193–201 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Spindler, V. et al. Desmocollin 3-mediated binding is crucial for keratinocyte cohesion and is impaired in pemphigus. J. Biol. Chem. 284, 30556–30564 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Hobbs, R. P. & Green, K. J. Desmoplakin regulates desmosome hyperadhesion. J. Invest. Dermatol. (in the press).

Download references

Acknowledgements

The authors would like to thank M. Amagai, J. Jones, T. Lechler and T. Magin for critical reading of the manuscript and/or advice on figures. We also apologize to our colleagues whose work we were unable to include owing to space limitations. The authors are supported by US National Institutes of Health grants AR043380, AR041836 and CA122151, the Leducq Foundation and the J.L. Mayberry Endowment to K.J.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen J. Green.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Glossary

Organotypic

An in vitro reconstituted model of a tissue grown from cultured cellular elements.

Filopodia

Thin, transient actin protrusions that extend out from the cell surface and are formed by the elongation of bundled actin filaments in their cores.

Endocytic sites

Sites of endocytosis, which is the internalization and transport of extracellular material and plasma membrane proteins from the cell surface to intracellular organelles known as endosomes.

Transglutaminases

(TGases). A family of enzymes that can catalyse covalent bond formation between a glutamine on a peptide and a free amine group.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simpson, C., Patel, D. & Green, K. Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. Nat Rev Mol Cell Biol 12, 565–580 (2011). https://doi.org/10.1038/nrm3175

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3175

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing