Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis

Key Points

  • The requirement for locomotion led to the evolution of muscles in all animal phyla.

  • The determination and terminal differentiation of muscle cells is governed by four transcription factors known as myogenic regulatory factors (MRFs): myogenic factor 5 (MYF5), muscle-specific regulatory factor 4 (MRF4), myoblast determination protein (MYOD) and myogenin.

  • Upstream of these are other transcription factors; for example, paired box proteins, T-box transcription factors and sine oculis homeobox (SIX) proteins, which either prepare the stage for MRFs to initiate myogenesis or activate MRFs.

  • Myogenesis is also regulated post-transcriptionally by the action of microRNAs, which are thought to regulate the transcription factors that control myogenesis.

  • Muscles can be remodelled postnatally to switch between fibre types (slow-twitch and fast-twitch) to adapt to specific conditions. The type of neuronal activity acting on a fibre is probably the most important factor determining fibre type.

  • Muscle remodelling can also affect muscle mass; this is regulated by anabolic and catabolic signalling pathways, which induce muscle hypertrophy and muscle atrophy, respectively. Mechanical stress and hormones also feed into these signalling pathways.

  • Some of the factors involved in early muscle development, such as SIX proteins and myogenin, also have roles in postnatal changes of muscle phenotype and mass.

Abstract

Skeletal muscle is the dominant organ system in locomotion and energy metabolism. Postnatal muscle grows and adapts largely by remodelling pre-existing fibres, whereas embryonic muscle grows by the proliferation of myogenic cells. Recently, the genetic hierarchies of the myogenic transcription factors that control vertebrate muscle development — by myoblast proliferation, migration, fusion and functional adaptation into fast-twitch and slow-twitch fibres — have become clearer. The transcriptional mechanisms controlling postnatal hypertrophic growth, remodelling and functional differentiation redeploy myogenic factors in concert with serum response factor (SRF), JUNB and forkhead box protein O3A (FOXO3A). It has also emerged that there is extensive post-transcriptional regulation by microRNAs in development and postnatal remodelling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Striated muscle structure.
Figure 2: Different ways to activate the genetic programme of muscle differentiation.
Figure 3: Regulation of major myogenic pathways by microRNAs.
Figure 4: Control of postnatal muscle transcription and protein turnover.

Similar content being viewed by others

References

  1. Ehler, E. & Gautel, M. The sarcomere and sarcomerogenesis. Adv. Exp. Med. Biol. 642, 1–14 (2008).

    CAS  PubMed  Google Scholar 

  2. Lange, S., Ehler, E. & Gautel, M. From A to Z and back? Multicompartment proteins in the sarcomere. Trends Cell Biol. 16, 11–18 (2006).

    CAS  PubMed  Google Scholar 

  3. Pette, D. & Staron, R. S. Myosin isoforms, muscle fiber types, and transitions. Microsc. Res. Tech. 50, 500–509 (2000).

    CAS  PubMed  Google Scholar 

  4. Schiaffino, S. Fibre types in skeletal muscle: a personal account. Acta. Physiol. (Oxf.) 199, 451–463 (2010). An authoritative review of skeletal muscle phenotypes and the molecular mechanisms controlling muscle fibre types.

    CAS  Google Scholar 

  5. Zammit, P. S. All muscle satellite cells are equal, but are some more equal than others? J. Cell Sci. 121, 2975–2982 (2008).

    CAS  PubMed  Google Scholar 

  6. Ten Broek, R. W., Grefte, S. & Von den Hoff, J. W. Regulatory factors and cell populations involved in skeletal muscle regeneration. J. Cell. Physiol. 224, 7–16 (2010).

    CAS  PubMed  Google Scholar 

  7. Tedesco, F. S., Dellavalle, A., Diaz-Manera, J., Messina, G. & Cossu, G. Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J. Clin. Invest. 120, 11–19 (2010). A timely review on the role of satellite cells in muscle damage repair.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bryson-Richardson, R. J. & Currie, P. D. The genetics of vertebrate myogenesis. Nature Rev. Genet. 9, 632–646 (2008). A comprehensive review of the embryological processes leading to the formation of skeletal muscles.

    CAS  PubMed  Google Scholar 

  9. Buckingham, M. Making muscle in mammals. Trends Genet. 8, 144–149 (1992).

    CAS  PubMed  Google Scholar 

  10. Berkes, C. A. & Tapscott, S. J. MyoD and the transcriptional control of myogenesis. Semin. Cell Dev. Biol. 16, 585–595 (2005).

    CAS  PubMed  Google Scholar 

  11. Kassar-Duchossoy, L. et al. Mrf4 determines skeletal muscle identity in Myf5:MyoD double-mutant mice. Nature 431, 466–471 (2004).

    CAS  PubMed  Google Scholar 

  12. Sato, T., Rocancourt, D., Marques, L., Thorsteinsdottir, S. & Buckingham, M. A Pax3/Dmrt2/Myf5 regulatory cascade functions at the onset of myogenesis. PLoS Genet. 6, e1000897 (2010).

    PubMed  PubMed Central  Google Scholar 

  13. Tajbakhsh, S., Rocancourt, D., Cossu, G. & Buckingham, M. Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 89, 127–138 (1997).

    CAS  PubMed  Google Scholar 

  14. Brunelli, S., Relaix, F., Baesso, S., Buckingham, M. & Cossu, G. β-catenin-independent activation of MyoD in presomitic mesoderm requires PKC and depends on Pax3 transcriptional activity. Dev. Biol. 304, 604–614 (2007).

    CAS  PubMed  Google Scholar 

  15. Maroto, M. et al. Ectopic Pax-3 activates MyoD and Myf-5 expression in embryonic mesoderm and neural tissue. Cell 89, 139–148 (1997).

    CAS  PubMed  Google Scholar 

  16. Mennerich, D. & Braun, T. Activation of myogenesis by the homeobox gene Lbx1 requires cell proliferation. EMBO J. 20, 7174–7183 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mansouri, A., Stoykova, A., Torres, M. & Gruss, P. Dysgenesis of cephalic neural crest derivatives in Pax7-/- mutant mice. Development 122, 831–838 (1996).

    CAS  PubMed  Google Scholar 

  18. Relaix, F., Rocancourt, D., Mansouri, A. & Buckingham, M. A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435, 948–953 (2005). This work defines the major populations of progenitor cells in muscle development.

    CAS  PubMed  Google Scholar 

  19. Lagha, M. et al. Pax3 regulation of FGF signaling affects the progression of embryonic progenitor cells into the myogenic program. Genes Dev. 22, 1828–1837 (2008). The role of PAX3 in the lineage commitment of myogenic progenitor cells in concert with other myogenic factors is described.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. McKinnell, I. W. et al. Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex. Nature Cell Biol. 10, 77–84 (2008).

    CAS  PubMed  Google Scholar 

  21. Daston, G., Lamar, E., Olivier, M. & Goulding, M. Pax-3 is necessary for migration but not differentiation of limb muscle precursors in the mouse. Development 122, 1017–1027 (1996).

    CAS  PubMed  Google Scholar 

  22. Bajard, L. et al. A novel genetic hierarchy functions during hypaxial myogenesis: Pax3 directly activates Myf5 in muscle progenitor cells in the limb. Genes Dev. 20, 2450–2464 (2006). The direct activation of Myf5 by PAX3 in limb muscle cells is described.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Buchberger, A., Freitag, D. & Arnold, H. H. A homeo-paired domain-binding motif directs Myf5 expression in progenitor cells of limb muscle. Development 134, 1171–1180 (2007).

    CAS  PubMed  Google Scholar 

  24. Giordani, J. et al. Six proteins regulate the activation of Myf5 expression in embryonic mouse limbs. Proc. Natl Acad. Sci. USA 104, 11310–11315 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Grifone, R. et al. Six1 and Eya1 expression can reprogram adult muscle from the slow-twitch phenotype into the fast-twitch phenotype. Mol. Cell. Biol. 24, 6253–6267 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Laclef, C. et al. Altered myogenesis in Six1-deficient mice. Development 130, 2239–2252 (2003).

    CAS  PubMed  Google Scholar 

  27. Grifone, R. et al. Six1 and Six4 homeoproteins are required for Pax3 and Mrf expression during myogenesis in the mouse embryo. Development 132, 2235–2249 (2005).

    CAS  PubMed  Google Scholar 

  28. Grifone, R. et al. Eya1 and Eya2 proteins are required for hypaxial somitic myogenesis in the mouse embryo. Dev. Biol. 302, 602–616 (2007).

    CAS  PubMed  Google Scholar 

  29. Penn, B. H., Bergstrom, D. A., Dilworth, F. J., Bengal, E. & Tapscott, S. J. A MyoD-generated feed-forward circuit temporally patterns gene expression during skeletal muscle differentiation. Genes Dev. 18, 2348–2353 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Molkentin, J. D., Black, B. L., Martin, J. F. & Olson, E. N. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83, 1125–1136 (1995).

    CAS  PubMed  Google Scholar 

  31. Lu, J. R. et al. Control of facial muscle development by MyoR and capsulin. Science 298, 2378–2381 (2002). One of the first papers to delineate the transcriptional network that drives head muscle development.

    CAS  PubMed  Google Scholar 

  32. Dong, F. et al. Pitx2 promotes development of splanchnic mesoderm-derived branchiomeric muscle. Development 133, 4891–4899 (2006).

    CAS  PubMed  Google Scholar 

  33. Gage, P. J., Suh, H. & Camper, S. A. Dosage requirement of Pitx2 for development of multiple organs. Development 126, 4643–4651 (1999).

    CAS  PubMed  Google Scholar 

  34. Jerome, L. A. & Papaioannou, V. E. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nature Genet. 27, 286–291 (2001).

    CAS  PubMed  Google Scholar 

  35. Kelly, R. G., Jerome-Majewska, L. A. & Papaioannou, V. E. The del22q11.2 candidate gene Tbx1 regulates branchiomeric myogenesis. Hum. Mol. Genet. 13, 2829–2840 (2004).

    CAS  PubMed  Google Scholar 

  36. Sambasivan, R. et al. Distinct regulatory cascades govern extraocular and pharyngeal arch muscle progenitor cell fates. Dev. Cell 16, 810–821 (2009). This paper addresses the distinct regulatory circuits that determine head muscle fates.

    CAS  PubMed  Google Scholar 

  37. Ying, S. Y., Chang, D. C. & Lin, S. L. The microRNA (miRNA): overview of the RNA genes that modulate gene function. Mol. Biotechnol. 38, 257–268 (2008).

    CAS  PubMed  Google Scholar 

  38. Bushati, N. & Cohen, S. M. microRNA functions. Annu. Rev. Cell Dev. Biol. 23, 175–205 (2007).

    CAS  PubMed  Google Scholar 

  39. Ge, Y. & Chen, J. MicroRNAs in skeletal myogenesis. Cell Cycle 10, 441–448 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen, J. F. et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genet. 38, 228–233 (2006).

    CAS  PubMed  Google Scholar 

  41. Rao, P. K., Kumar, R. M., Farkhondeh, M., Baskerville, S. & Lodish, H. F. Myogenic factors that regulate expression of muscle-specific microRNAs. Proc. Natl Acad. Sci. USA 103, 8721–8726 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sokol, N. S. & Ambros, V. Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev. 19, 2343–2354 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao, Y., Samal, E. & Srivastava, D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436, 214–220 (2005). The identification of upstream regulators and downstream targets of muscle-specific miRNAs.

    CAS  PubMed  Google Scholar 

  44. Liu, N. et al. An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc. Natl Acad. Sci. USA 104, 20844–20849 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sweetman, D. et al. Specific requirements of MRFs for the expression of muscle specific microRNAs, miR-1, miR-206 and miR-133. Dev. Biol. 321, 491–499 (2009).

    Google Scholar 

  46. van Rooij, E. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575–579 (2007).

    CAS  PubMed  Google Scholar 

  47. Boutz, P. L., Chawla, G., Stoilov, P. & Black, D. L. MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev. 21, 71–84 (2007). The regulation of alternative splicing by miRNAs through control of a differential splicing factor.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Taulli, R. et al. The muscle-specific microRNA miR-206 blocks human rhabdomyosarcoma growth in xenotransplanted mice by promoting myogenic differentiation. J. Clin. Invest. 119, 2366–2378 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Williams, A. H. et al. MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 326, 1549–1554 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Crist, C. G. et al. Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc. Natl Acad. Sci. USA 106, 13383–13387 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hirai, H. et al. MyoD regulates apoptosis of myoblasts through microRNA-mediated down-regulation of Pax3. J. Cell Biol. 191, 347–365 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen, J. F. et al. microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J. Cell Biol. 190, 867–879 (2010). The discovery of the role of muscle-specific miRNAs in the control of satellite cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Dey, B. K., Gagan, J. & Dutta, A. miR-206 and -486 induce myoblast differentiation by downregulating Pax7. Mol. Cell. Biol. 31, 203–214 (2011).

    CAS  PubMed  Google Scholar 

  54. Zhao, Y. et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129, 303–317 (2007).

    CAS  PubMed  Google Scholar 

  55. Lim, L. P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005). A seminal paper demonstrating the regulation of multiple targets by miRNAs.

    CAS  PubMed  Google Scholar 

  56. Kleinman, M. E. et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452, 591–597 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Krutzfeldt, J. et al. Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res. 35, 2885–2892 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Bassel-Duby, R. & Olson, E. N. Signaling pathways in skeletal muscle remodeling. Annu. Rev. Biochem. 75, 19–37 (2006).

    CAS  PubMed  Google Scholar 

  59. Schiaffino, S., Sandri, M. & Murgia, M. Activity-dependent signaling pathways controlling muscle diversity and plasticity. Physiology (Bethesda) 22, 269–278 (2007).

    CAS  Google Scholar 

  60. Potthoff, M. J. et al. Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers. J. Clin. Invest. 117, 2459–2467 (2007). The identification of regulatory circuits that are involved in slow-twitch muscle fibre formation.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Li, S. et al. Requirement for serum response factor for skeletal muscle growth and maturation revealed by tissue-specific gene deletion in mice. Proc. Natl Acad. Sci. USA 102, 1082–1087 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Parlakian, A. et al. Targeted inactivation of serum response factor in the developing heart results in myocardial defects and embryonic lethality. Mol. Cell. Biol. 24, 5281–5289 (2004). These two papers identify the essential role of SRF for postnatal muscle growth.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Raffaello, A. et al. JunB transcription factor maintains skeletal muscle mass and promotes hypertrophy. J. Cell Biol. 191, 101–113 (2010). JUNB directly represses the activity of FOXO proteins and thus augments anti-atrophic transcriptional pathways.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Moresi, V. et al. Myogenin and class II HDACs control neurogenic muscle atrophy by inducing E3 ubiquitin ligases. Cell 143, 35–45 (2010). Myogenin is redeployed in postnatal muscle under hierarchical control by HDACs to drive the expression of atrogenes.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Molkentin, J. D. Dichotomy of Ca2+ in the heart: contraction versus intracellular signaling. J. Clin. Invest. 116, 623–626 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Niro, C. et al. Six1 and Six4 gene expression is necessary to activate the fast-type muscle gene program in the mouse primary myotome. Dev. Biol. 338, 168–182 (2010).

    CAS  PubMed  Google Scholar 

  67. Baxendale, S. et al. The B-cell maturation factor Blimp-1 specifies vertebrate slow-twitch muscle fiber identity in response to Hedgehog signaling. Nature Genet. 36, 88–93 (2004). References 66 and 67 identify the major developmental programmes determining future slow- or fast-twitch muscle types.

    CAS  PubMed  Google Scholar 

  68. Hagiwara, N., Yeh, M. & Liu, A. Sox6 is required for normal fiber type differentiation of fetal skeletal muscle in mice. Dev. Dyn. 236, 2062–2076 (2007).

    CAS  PubMed  Google Scholar 

  69. von Hofsten, J. et al. Prdm1- and Sox6-mediated transcriptional repression specifies muscle fibre type in the zebrafish embryo. EMBO Rep. 9, 683–689 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hinits, Y., Osborn, D. P. & Hughes, S. M. Differential requirements for myogenic regulatory factors distinguish medial and lateral somitic, cranial and fin muscle fibre populations. Development 136, 403–414 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kalhovde, J. M. et al. 'Fast' and 'slow' muscle fibres in hindlimb muscles of adult rats regenerate from intrinsically different satellite cells. J. Physiol. 562, 847–857 (2005).

    CAS  PubMed  Google Scholar 

  72. Perez-Ruiz, A., Gnocchi, V. F. & Zammit, P. S. Control of Myf5 activation in adult skeletal myonuclei requires ERK signalling. Cell Signal. 19, 1671–1680 (2007).

    CAS  PubMed  Google Scholar 

  73. Calabria, E. et al. NFAT isoforms control activity-dependent muscle fiber type specification. Proc. Natl Acad. Sci. USA 106, 13335–13340 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Tothova, J. et al. NFATc1 nucleocytoplasmic shuttling is controlled by nerve activity in skeletal muscle. J. Cell Sci. 119, 1604–1611 (2006). Distinct neuronal activity patterns modulate cytoplasmic Ca2+ levels, and thus the activity of the transcription factor NFATC1 by modulating the activity of its activator, calcineurin.

    CAS  PubMed  Google Scholar 

  75. Frey, N. et al. Mice lacking calsarcin-1 are sensitized to calcineurin signaling and show accelerated cardiomyopathy in response to pathological biomechanical stress. Nature Med. 10, 1336–1343 (2004).

    CAS  PubMed  Google Scholar 

  76. Hoshijima, M. Mechanical stress-strain sensors embedded in cardiac cytoskeleton: Z disk, titin, and associated structures. Am. J. Physiol. Heart Circ. Physiol. 290, H1313–H1325 (2006).

    CAS  PubMed  Google Scholar 

  77. Zammit, P. S., Partridge, T. A. & Yablonka-Reuveni, Z. The skeletal muscle satellite cell: the stem cell that came in from the cold. J. Histochem. Cytochem. 54, 1177–1191 (2006).

    CAS  PubMed  Google Scholar 

  78. Sacco, A., Doyonnas, R., Kraft, P., Vitorovic, S. & Blau, H. M. Self-renewal and expansion of single transplanted muscle stem cells. Nature 456, 502–506 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Blaauw, B. et al. Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activation. FASEB J. 23, 3896–3905 (2009).

    CAS  PubMed  Google Scholar 

  80. Sandri, M. et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117, 399–412 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Stitt, T. N. et al. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol. Cell. 14, 395–403 (2004). FOXO proteins are identified as the major transcription factors regulating the expression of MURF atrogenes in atrophy.

    CAS  PubMed  Google Scholar 

  82. Sandri, M. Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda) 23, 160–170 (2008). A comprehensive review of the mechanisms regulating muscle protein turnover and metabolism.

    CAS  Google Scholar 

  83. Willis, M. S., Schisler, J. C., Portbury, A. L. & Patterson, C. Build it up – tear it down: protein quality control in the cardiac sarcomere. Cardiovasc. Res. 81, 439–448 (2009).

    CAS  PubMed  Google Scholar 

  84. Mammucari, C. et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 6, 458–471 (2007).

    CAS  PubMed  Google Scholar 

  85. Zhao, J. et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 6, 472–483 (2007). References 84 and 85 identify a crucial pathway that controls muscle mass and homeostatic regulation through the transcription of autophagy and lysosomal proteins under the control of FOXO proteins.

    CAS  PubMed  Google Scholar 

  86. Li, H. H. et al. Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. J. Clin. Invest. 114, 1058–1071 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Li, H. H. et al. Atrogin-1 inhibits Akt-dependent cardiac hypertrophy in mice via ubiquitin-dependent coactivation of forkhead proteins. J. Clin. Invest. 117, 3211–3223 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Masiero, E. et al. Autophagy is required to maintain muscle mass. Cell Metab. 10, 507–515 (2009). Autophagy is required for the homeostasis of muscle mass and is not per se detrimental, as its inhibition is shown here to lead to a paradoxical loss of muscle mass.

    CAS  PubMed  Google Scholar 

  89. Mourkioti, F. & Rosenthal, N. NF-κB signaling in skeletal muscle: prospects for intervention in muscle diseases. J. Mol. Med. 86, 747–759 (2008).

    CAS  PubMed  Google Scholar 

  90. Mourkioti, F. et al. Targeted ablation of IKK2 improves skeletal muscle strength, maintains mass, and promotes regeneration. J. Clin. Invest. 116, 2945–2954 (2006). Transcription of MURF atrogenes is controlled by NF-κB activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Macpherson, P. C., Wang, X. & Goldman, D. Myogenin regulates denervation-dependent muscle atrophy in mouse soleus muscle. J. Cell. Biochem. 4 Apr 2011 (10.1002/jcb.23136).

  92. Small, E. M. et al. Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486. Proc. Natl Acad. Sci. USA 107, 4218–4223 (2010). miR-486 is transcriptionally controlled by SRF and negatively regulates FOXO protein expression, providing an amplifying feedback loop in hypertrophying muscle.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Elia, L. et al. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation 120, 2377–2385 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Gautel, M. The sarcomeric cytoskeleton: who picks up the strain? Curr. Opin. Cell Biol. 23, 39–46 (2011).

    CAS  PubMed  Google Scholar 

  95. Kruger, M. & Linke, W. A. The giant protein titin: a regulatory node that integrates myocyte signaling pathways. J. Biol. Chem. 21 Jan 2011 (10.1074/jbc.R110.173260).

  96. Boateng, S. Y., Senyo, S. E., Qi, L., Goldspink, P. H. & Russell, B. Myocyte remodelling in response to hypertrophic stimuli requires nucleocytoplasmic shuttling of muscle LIM protein. J. Mol. Cell. Cardiol. 47, 426–435 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Geier, C. et al. Beyond the sarcomere: CSRP3 mutations cause hypertrophic cardiomyopathy. Hum. Mol. Genet. 17, 2753–2765 (2008).

    CAS  PubMed  Google Scholar 

  98. Knoll, R. et al. The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 111, 943–955 (2002).

    CAS  PubMed  Google Scholar 

  99. Qi, L. & Boateng, S. Y. The circadian protein Clock localizes to the sarcomeric Z-disk and is a sensor of myofilament cross-bridge activity in cardiac myocytes. Biochem. Biophys. Res. Commun. 351, 1054–1059 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Andrews, J. L. et al. CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function. Proc. Natl Acad. Sci. USA 107, 19090–19095 (2010). Circadian rhythm, mechanical activity and myogenic transcription regulation are linked in references 99 and 100.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Meder, B. et al. JunB-CBFβ signaling is essential to maintain sarcomeric Z-disc structure and when defective leads to heart failure. J. Cell Sci. 123, 2613–2620 (2010).

    CAS  PubMed  Google Scholar 

  102. Hayashi, C. et al. Multiple molecular interactions implicate the connectin/titin N2A region as a modulating scaffold for p94/calpain 3 activity in skeletal muscle. J. Biol. Chem. 283, 14801–14814 (2008).

    CAS  PubMed  Google Scholar 

  103. Tsukamoto, Y. et al. Arpp/Ankrd2, a member of the muscle ankyrin repeat proteins (MARPs), translocates from the I-band to the nucleus after muscle injury. Histochem. Cell Biol. 129, 55–64 (2008).

    CAS  PubMed  Google Scholar 

  104. Kojic, S. et al. The Ankrd2 protein, a link between the sarcomere and the nucleus in skeletal muscle. J. Mol. Biol. 339, 313–325 (2004).

    CAS  PubMed  Google Scholar 

  105. Lange, S. et al. The kinase domain of titin controls muscle gene expression and protein turnover. Science 308, 1599–1603 (2005). A mechanically modulated pathway acting through the giant protein kinase titin regulates the activity of the atrogenes MURF, SQSTM1 and NBR1, with MURF2 acting as a repressor of SRF activity. Disruption of this titin link leads to human myopathy.

    CAS  PubMed  Google Scholar 

  106. Puchner, E. et al. Mechanoenzymatics of titin kinase. Proc. Natl Acad. Sci. USA 105, 13385–13390 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Ochala, J. et al. Preferential skeletal muscle myosin loss in response to mechanical silencing in a novel rat intensive care unit model: underlying mechanisms. J. Physiol. 589, 2007–2026 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Willis, M. S. et al. Muscle ring finger 1, but not muscle ring finger 2, regulates cardiac hypertrophy in vivo. Circ. Res. 100, 456–459 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Spencer, J. A., Eliazer, S., Ilaria, R. L. Jr, Richardson, J. A. & Olson, E. N. Regulation of microtubule dynamics and myogenic differentiation by MURF, a striated muscle RING-finger protein. J. Cell Biol. 150, 771–784 (2000). Identification of the E3 ubiquitin ligase MURF3 and its dual roles in muscle development and protein degradation, and linkage of these roles to the transcriptional control of SRF.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Gautel, M. The sarcomere and the nucleus: functional links to hypertrophy, atrophy and sarcopenia. Adv. Med. Biol. Exp. 642, 176–191 (2008).

    CAS  Google Scholar 

  111. Komatsu, M. et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131, 1149–1163 (2007).

    CAS  PubMed  Google Scholar 

  112. Pankiv, S. et al. p62/SQSTM1 binds directly to atg8/lc3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145 (2007).

    CAS  PubMed  Google Scholar 

  113. Waters, S., Marchbank, K., Solomon, E., Whitehouse, C. & Gautel, M. Interactions with LC3 and polyubiquitin chains link nbr1 to autophagic protein turnover. FEBS Lett. 583, 1846–1852 (2009).

    CAS  PubMed  Google Scholar 

  114. Kirkin, V. et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 33, 505–516 (2009).

    CAS  PubMed  Google Scholar 

  115. Moscat, J., Diaz-Meco, M. T. & Wooten, M. W. Signal integration and diversification through the p62 scaffold protein. Trends Biochem. Sci. 32, 95–100 (2007).

    CAS  PubMed  Google Scholar 

  116. Gautel, M. Cytoskeletal protein kinases: titin and its relations in strain sensing. Pflugers Arch. 18 Mar 2011 (10.1007/s00424-011-0946–0941).

  117. Adams, V. et al. Induction of MuRF1 is essential for TNF-α-induced loss of muscle function in mice. J. Mol. Biol. 384, 48–59 (2008).

    CAS  PubMed  Google Scholar 

  118. Tisdale, M. J. Mechanisms of cancer cachexia. Physiol. Rev. 89, 381–410 (2009).

    CAS  PubMed  Google Scholar 

  119. Goldspink, G. Changes in muscle mass and phenotype and the expression of autocrine and systemic growth factors by muscle in response to stretch and overload. J. Anat. 194, 323–334 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Vinciguerra, M., Musaro, A. & Rosenthal, N. Regulation of muscle atrophy in aging and disease. Adv. Exp. Med. Biol. 694, 211–233 (2010).

    CAS  PubMed  Google Scholar 

  121. Matsakas, A. & Patel, K. Intracellular signalling pathways regulating the adaptation of skeletal muscle to exercise and nutritional changes. Histol. Histopathol. 24, 209–222 (2009).

    CAS  PubMed  Google Scholar 

  122. Trendelenburg, A. U. et al. Myostatin reduces AKT/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am. J. Physiol. Cell Physiol. 296, C1258–C1270 (2009).

    CAS  PubMed  Google Scholar 

  123. Sartori, R. et al. Smad2 and 3 transcription factors control muscle mass in adulthood. Am. J. Physiol. Cell Physiol. 296, C1248–C1257 (2009).

    CAS  PubMed  Google Scholar 

  124. Morissette, M. R., Cook, S. A., Buranasombati, C., Rosenberg, M. A. & Rosenzweig, A. Myostatin inhibits IGF-I-induced myotube hypertrophy through Akt. Am. J. Physiol. Cell Physiol. 297, C1124–C1132 (2009).

    CAS  PubMed  Google Scholar 

  125. George, I. et al. Myostatin activation in patients with advanced heart failure and after mechanical unloading. Eur. J. Heart Fail. 12, 444–453 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Heineke, J. et al. Genetic deletion of myostatin from the heart prevents skeletal muscle atrophy in heart failure. Circulation 121, 419–425 (2010). The secretion of myostatin by failing hearts is a major factor in heart failure-associated muscle loss.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Sainz, N. et al. Leptin administration favors muscle mass accretion by decreasing FoxO3a and increasing PGC-1α in ob/ob mice. PLoS ONE 4, e6808 (2009).

    PubMed  PubMed Central  Google Scholar 

  128. Chambon, C. et al. Myocytic androgen receptor controls the strength but not the mass of limb muscles. Proc. Natl Acad. Sci. USA 107, 14327–14332 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Shimizu, N. et al. Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle. Cell Metab. 13, 170–182 (2011). AR, a well-known hypertrophic factor, augments in feedback loops the anabolic signals of the IGF1–AKT pathway.

    CAS  PubMed  Google Scholar 

  130. Eddins, M. J. et al. Targeting the ubiquitin E3 ligase MuRF1 to inhibit muscle atrophy. Cell Biochem. Biophys. 30 Mar 2011 (10.1007/s12013-011-9175–9177). Small-molecule inhibitors of the atrogene MURF1 ubiquitin ligase are active in cells and suggest that atrogene inhibition might be a viable route to therapies for muscle loss.

  131. Perera, S., Holt, M. R., Mankoo, B. S. & Gautel, M. Developmental regulation of MURF ubiquitin ligases and autophagy proteins nbr1, p62/SQSTM1 and LC3 during cardiac myofibril assembly and turnover. Dev. Biol. 351, 46–61 (2011). The atrogenes MURF1, MURF2 and MURF3 show tight developmental regulation and are expressed in developing muscle, suggesting that their main function is not simply control of muscle mass loss.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Chen, S. N. et al. TRIM63, encoding MuRF1, is a novel gene for familial hypertrophic cardiomyopathy. Circulation 122 (Suppl.), A21194 (2010).

    Google Scholar 

  133. Kalcheim, C. & Ben-Yair, R. Cell rearrangements during development of the somite and its derivatives. Curr. Opin. Genet. Dev. 15, 371–380 (2005).

    CAS  PubMed  Google Scholar 

  134. Gros, J., Scaal, M. & Marcelle, C. A two-step mechanism for myotome formation in chick. Dev. Cell 6, 875–882 (2004).

    CAS  PubMed  Google Scholar 

  135. Tzahor, E. Heart and craniofacial muscle development: a new developmental theme of distinct myogenic fields. Dev. Biol. 327, 273–279 (2009).

    CAS  PubMed  Google Scholar 

  136. Noden, D. M. The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Dev. Biol. 96, 144–165 (1983).

    CAS  PubMed  Google Scholar 

  137. Rinon, A. et al. Cranial neural crest cells regulate head muscle patterning and differentiation during vertebrate embryogenesis. Development 134, 3065–3075 (2007).

    CAS  PubMed  Google Scholar 

  138. Grenier, J., Teillet, M. A., Grifone, R., Kelly, R. G. & Duprez, D. Relationship between neural crest cells and cranial mesoderm during head muscle development. PLoS ONE 4, e4381 (2009).

    PubMed  PubMed Central  Google Scholar 

  139. Borycki, A. G. & Emerson, C. P., Jr. Multiple tissue interactions and signal transduction pathways control somite myogenesis. Curr. Top. Dev. Biol. 48, 165–224 (2000).

    CAS  PubMed  Google Scholar 

  140. Reshef, R., Maroto, M. & Lassar, A. B. Regulation of dorsal somitic cell fates: BMPs and Noggin control the timing and pattern of myogenic regulator expression. Genes Dev. 12, 290–303 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Borello, U. et al. The Wnt/β-catenin pathway regulates Gli-mediated Myf5 expression during somitogenesis. Development 133, 3723–3732 (2006).

    CAS  PubMed  Google Scholar 

  142. Chen, A. E., Ginty, D. D. & Fan, C. M. Protein kinase A signalling via CREB controls myogenesis induced by Wnt proteins. Nature 433, 317–322 (2005).

    CAS  PubMed  Google Scholar 

  143. Sanger, J. W., Wang, J., Fan, Y., White, J. & Sanger, J. M. Assembly and dynamics of myofibrils. J. Biomed. Biotechnol. 2010, 858606 (2010).

    PubMed  PubMed Central  Google Scholar 

  144. Linke, W. A. & Kruger, M. The giant protein titin as an integrator of myocyte signaling pathways. Physiology (Bethesda) 25, 186–198 (2010).

    CAS  Google Scholar 

  145. Kontrogianni-Konstantopoulos, A., Ackermann, M. A., Bowman, A. L., Yap, S. V. & Bloch, R. J. Muscle giants: molecular scaffolds in sarcomerogenesis. Physiol. Rev. 89, 1217–1267 (2009).

    CAS  PubMed  Google Scholar 

  146. Hinits, Y. & Hughes, S. M. Mef2s are required for thick filament formation in nascent muscle fibres. Development 134, 2511–2519 (2007).

    CAS  PubMed  Google Scholar 

  147. Potthoff, M. J. et al. Regulation of skeletal muscle sarcomere integrity and postnatal muscle function by Mef2c. Mol. Cell Biol. 27, 8143–8151 (2007). References 146 and 147 identify MEF2C as the main transcription factor that directs the formation of mature sarcomeres by driving the expression of myosin and myomesin.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Niu, Z. et al. Serum response factor orchestrates nascent sarcomerogenesis and silences the biomineralization gene program in the heart. Proc. Natl Acad. Sci. USA 105, 17824–17829 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Niu, Z., Li, A., Zhang, S. X. & Schwartz, R. J. Serum response factor micromanaging cardiogenesis. Curr. Opin. Cell Biol. 19, 618–627 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Rios, A. C., & Marcelle C. Head muscles: aliens who came in from the cold? Dev. Cell 16, 779–780 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the contributions that have also advanced the field by those authors whose work we could not cite owing to space constraints. Work in the authors' laboratories was funded by: the UK Medical Research Council; the British Heart Foundation; The Excellence Cluster Cardio-Pulmonary System (ECCPS) of the Justus-Liebig-University, Giessen, Germany, the Goethe University, Frankfurt, Germany and the Max-Planck-Institute for Heart and Lung Research (DFG) Germany; and the University of Giessen and the University of Marburg Lung Center (UGMLC), funded by the government of the state of Hessen, Germany.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Braun or Mathias Gautel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Thomas Braun's homepage

Mathias Gautel's homepage

Glossary

Myofibril

The structural unit of striated muscle fibres, which is formed from longitudinally joined sarcomeres. Several myofibrils form each fibre.

Myoblasts

Embryonic cells that will become a muscle cell or part of a muscle cell.

Paraxial mesoderm

The mesodermal areas that form directly lateral to the neural tube.

Rostrocaudal axis

A description of anatomical location in animals. Rostral (from the latin rostrum meaning beak) refers to the anterior ('nose-end') of the animal and caudal (from the latin caudum meaning tail) refers to the posterior ('tail or feet end').

Somites

Mesodermal structures found on either side of the neural tube in vertebrate embryos that eventually give rise to muscle, skin and vertebrae.

Delamination

A process in embryology in which cells from a single layer separate to form two different layers, or laminae.

Neural crest

A group of embryonic cells that separate from the embryonic neural plate and migrate, giving rise to the spinal and autonomic ganglia, peripheral glia, chromaffin cells, melanocytes and some haematopoietic cells.

Hypaxial muscles

Muscles that usually lie ventral to the vertebrae and are innervated by the ventral ramus of the spinal nerves.

Epaxial muscles

Muscles that usually lie dorsal to the vertebrae (in fish and amphibiae they lie dorsal to the septum). They are innervated by the dorsal ramus of the spinal nerves.

Masseter muscles

A specific subset of branchiomeric muscles that are derived from the first branchial arch and are involved in mastication.

Pharyngeal muscle

A subgroup of head muscles acting on the pharynx to control swallowing.

Antagomirs

Synthetic or genetically engineered oligonucleotides used to silence endogenous microRNAs.

Soleus muscle

A muscle in the calf of the leg that flexes the ankle; in rodents it is predominantly composed of slow-twitch fibres.

Tibialis anterior muscle

A muscle in the front muscle compartment of the lower leg that helps to extend the ankle; in rodents it is predominantly composed of fast-twitch fibres.

Microgravity

Gravity below the 1Gal experienced on Earth; for example, during space flight.

Ubiquitin–proteasome system

A system of selective, ATP-dependent protein degradation, in which target proteins that have been conjugated by ubiquitin are degraded by the 26S proteasome. The ubiquitin conjugation step requires the activity of highly specific ubiquitin ligases.

Autophagy

A catabolic process involving the engulfment of (usually damaged) organelles and long-lived proteins or protein aggregates by double-membrane vesicles (autophagosomes) that fuse with lysosomes to form autolysosomes, in which their contents are degraded by acidic lysosomal hydrolases.

Cachexia

A syndrome of muscle loss that is usually caused by increased catabolic metabolism.

E3 ubiquitin ligases

A group of proteins that mediate the transfer of ubiquitin, often by linking the catalytic activity of an E2 transferase to recognition and binding of the specific substrates.

Sarcopenia

The degenerative loss of skeletal muscle mass and strength associated with ageing and pathological processes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun, T., Gautel, M. Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat Rev Mol Cell Biol 12, 349–361 (2011). https://doi.org/10.1038/nrm3118

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3118

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing