Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The p53 family: guardians of maternal reproduction

Abstract

The p53 family of proteins consists of p53, p63 and p73, which are transcription factors that affect both cancer and development. It is now emerging that these proteins also regulate maternal reproduction. Whereas p63 is important for maturation of the egg, p73 ensures normal mitosis in the developing blastocyst. p53 subsequently regulates implantation of the embryo through transcriptional control of leukaemia inhibitory factor. Elucidating the cell biological basis of how these factors regulate female fertility may lead to new approaches to the control of human maternal reproduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 'La famiglia' of p53, p63 and p73.
Figure 2: p53, p63 and p73 regulate distinct steps of maternal reproduction.
Figure 3: The p53 family regulates distinct molecular processes that are important for female fertility.
Figure 4: Intrinsic and systemic roles of p73 during evolution.

Similar content being viewed by others

References

  1. Wade, M., Wang, Y. V. & Wahl, G. M. The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol. 20, 299–309 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Feng, Z. & Levine, A. J. The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends Cell Biol. 20, 427–434 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Melino, G. Journal club. A cancer biologist weighs up p53, metabolism and cancer. Nature 466, 905 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Dötsch, V., Bernassola, F., Coutandin, D., Candi, E. & Melino, G. p63 and p73, the ancestors of p53. Cold Spring Harb. Perspect. Biol. 2, a004887 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vousden, K. H. & Lane, D. P. p53 in health and disease. Nature Rev. Mol. Cell Biol. 8, 275–283 (2007).

    Article  CAS  Google Scholar 

  6. Riley, T., Sontag, E., Chen, P. & Levine, A. Transciptional control of human p53-regulated genes. Nature Rev. Mol. Cell Biol. 9, 402–412 (2008).

    Article  CAS  Google Scholar 

  7. Flores, E. R. et al. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416, 560–564 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Tomasini, R. et al. TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev. 22, 2677–2691 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wilhelm, M. T. et al. Isoform-specific p73 knockout mice reveal a novel role for ΔNp73 in the DNA damage response pathway. Genes Dev. 24, 549–560 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang, A., Kaghad, M., Caput, D. & McKeon, F. On the shoulders of giants: p63, p73 and the rise of p53. Trends Genet. 18, 90–95 (2002).

    Article  PubMed  Google Scholar 

  11. Scoumanne, A., Harms, K. L. & Chen, X. Structural basis for gene activation by p53 family members. Cancer Biol. Ther. 4, 1178–1185 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Stehmeier, P. & Muller, S. Regulation of p53 family members by the ubiquitin-like SUMO system. DNA Repair (Amst.) 8, 491–498 (2009).

    Article  CAS  Google Scholar 

  13. Tomasini, R., Mak, T. W. & Melino, G. The impact of p53 and p73 on aneuploidy and cancer. Trends Cell Biol. 18, 244–252 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Senoo, M., Pinto, F., Crum, C. P. & McKeon, F. p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell 129, 523–536 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Candi, E. et al. DNp63 regulates thymic development through enhanced expression of FgfR2 and Jag2. Proc. Natl Acad. Sci. USA. 104, 11999–12004 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Finlan, L. E. & Hupp, T. R. p63: the phantom of the tumor suppressor. Cell Cycle 6, 1062–1071 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Liu, Y. et al. p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell 4, 37–48 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Komarova, E. A. et al. p53 is a suppressor of inflammatory response in mice. FASEB J. 19, 1030–1032 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Cano, C. E. et al. Tumor protein 53-induced nuclear protein 1 is a major mediator of p53 antioxidant function. Cancer Res. 69, 219–226 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Scrable, H., Medrano, S. & Ungewitter, E. Running on empty: how p53 controls INS/IGF signaling and affects life span. Exp. Gerontol. 44, 93–100 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Belyi, V. et al. The origins and evolution of the p53 family of genes. Cold Spring Harb. Perspect. Biol. 2, a001198 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Belyi, V. & Levine, A. J. One billion years of p53/p63/p73 evolution. Proc. Natl Acad. Sci. USA. 106, 17609–17610 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Mills, A. A. et al. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398, 708–713 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Yang, A. et al. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 404, 99–103 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Su, X. et al. TAp63 prevents premature aging by promoting adult stem cell maintenance. Cell Stem Cell 5, 64–75 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Suh, E. K. et al. p63 protects the female germ line during meiotic arrest. Nature 444, 624–628 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Gonfloni, S. et al. Inhibition of the c-Abl–TAp63 pathway protects mouse oocytes from chemotherapy-induced death. Nature Med. 15, 1179–1185 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Hu, W., Feng, Z., Teresky, A. K. & Levine, A. J. p53 regulates maternal reproduction through LIF. Nature 450, 721–724 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Livera, G. et al. p63 null mutation protects mouse oocytes from radio-induced apoptosis. Reproduction 135, 3–12 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Woodruff, T. K. Preserving fertility during cancer treatment. Nature Med. 15, 1124–1125 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Li, X. C., Varringer, B. C. & Barbash, D. A. The pachitene checkpoint and its relationship to evolutionary patterns of polyploidization and hybrid sterility. Heredity 102, 24–30 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Haldane, J. B. S. Sex ratio and unisexual sterility in hybrid animals. J. Genetics 12, 101–109 (1922).

    Article  Google Scholar 

  34. Linzer, D. I. H. & Levine, A. J. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17, 43–52 (1979).

    Article  CAS  PubMed  Google Scholar 

  35. Lane, D. & Crawford, L. V. T-antigen is bound to a host protein in SV40-transformed cells. Nature 278, 261–263 (1979).

    Article  CAS  PubMed  Google Scholar 

  36. Deleo, A. B. et al. Detection of a transformed-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc. Natl Acad. Sci. USA. 76, 2420–2424 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Finlay, C. A., Hinds, P. W. & Levine, A. J. The p53 proto-oncogene can act as a suppressor of transformation. Cell 57, 1083–1093 (1989).

    Article  CAS  PubMed  Google Scholar 

  38. Le Beau, M. M., Westbrook, C. A., Diaz, M. O., Rowley, J. D. & Oren, M. Translocation of the p53 gene in t(15;17) in acute promyelocytic leukaemia. Nature 316, 826–828 (1985).

    Article  CAS  PubMed  Google Scholar 

  39. Chen, P. L., Chen, Y. L., Bookstein, R. & Lee, W. H. Genetic mechanisms of tumor suppression by the human p53 gene. Science 250, 1576–1580 (1990).

    Article  CAS  PubMed  Google Scholar 

  40. Hu, W., Feng, Z., Atwal, G. S. & Levine A. J. p53: a new player in reproduction. Cell Cycle 7, 848–852 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Hu, W. (2010). The role of p53 gene family in reproduction. Cold Spring Harb. Perspect. Biol. 1, a001073 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tomasini, R. et al. TAp73 regulates the spindle assembly checkpoint by modulating BubR1 activity. Proc. Natl Acad. Sci. USA. 106, 797–802 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baker, D. J. et al. BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nature Genet. 36, 744–749 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Leland, S. et al. Heterozygosity for a Bub1 mutation causes female-specific germ cell aneuploidy in mice. Proc. Natl Acad. Sci. USA. 106, 12776–12781 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shuda, K., Schindler, K., Ma, J., Schultz, R. M. & Donovan, P. J. Aurora kinase B modulates chromosome alignment in mouse oocytes. Mol. Reprod. Dev. 76, 1094–1105 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Van der Hoek, K. H. et al. Intrabursal injection of clodronate liposomes causes macrophage depletion and inhibits ovulation in the mouse ovary. Biol. Reprod. 62, 1059–1066 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Wu, R., Van Der Hoek, K. H., Ryan, N. K., Norman, R. J. & Robker, R. L. Macrophage contributions to ovarian function. Hum. Reprod. Update 10, 119–133 (2004).

    Article  PubMed  Google Scholar 

  48. Kay, C., Jeyendran, R. S. & Coulam, C. B. p53 tumour suppressor gene polymorphism is associated with recurrent implantation failure. Reprod. Biomed. Online 13, 492–496 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Kang, H.-J. et al. Single nucleotide polymorphisms in the p53 pathway regulate fertility in humans. Proc. Natl Acad. Sci. USA. 106, 9761–9766 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sucheston, L. et al. Natural selection and functional genetic variation in the p53 pathway. Hum. Mol. Genet. 25 Jan 2011 (doi:10.1093/hmg/ddr028).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Deutsch, G. B. et al. DNA damage in oocytes induces a switch of the quality control factor TAp63a from dimer to tetramer. Cell 144, 566–576 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang, A. et al. p63, a p53 homolog at 3q27–29, encodes multiple products with transactivating, death-inducing, and dominant-hegative activities. Mol. Cell 2, 305–316 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Kaghad, M. et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90, 809–819 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Stiewe, T. The p53 family in differentiation and tumorigenesis. Nature Rev. Cancer 7, 165–168 (2007).

    Article  CAS  Google Scholar 

  55. Sayan, A. E. et al. p73 and caspase-cleaved p73 fragments localize to mitochondria and augment TRAIL-induced apoptosis. Oncogene 27, 4363–4372 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Sayan, B. S., Sayan, A. E., Knight, R. A., Melino, G. & Cohen G. H. p53 is cleaved by caspases generating fragments localizing to mitochondria. J. Biol. Chem. 281, 13566–13573 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Yang, A. & McKeon, F. p63 and p73: p53 mimics, menaces and more. Nature Rev. Mol. Cell Biol. 1, 199–207 (2000).

    Article  CAS  Google Scholar 

  58. Stewart, C. L. et al. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 359, 76–79 (1992).

    Article  CAS  PubMed  Google Scholar 

  59. Pehar, M. et al. Altered longevity-assurance activity of p53:p44 in the mouse causes memory loss, neurodegeneration and premature death. Aging Cell 9, 174–190 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Fujita, K. et al. p53 isoforms Δ133p53 and p53β are endogenous regulators of replicative cellular senescence. Nature Cell Biol. 11, 1135–1142 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Rohaly, G., Korf, K., Dehde, S. & Dornreiter, I. Simian virus 40 activates ATR-Δp53 signalling to override cell cycle and DNA replication control. J. Virol. 84, 10727–10747 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Medawar, A. et al. ΔNp63 is essential for epidermal commitment of embryonic stem cells. PLoS ONE 3, e3341 (2008).

    Article  Google Scholar 

  63. Candi, E. et al. TAp63 and DNp63 in cancer and epidermal development. Cell Cycle 6, 274–285 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Fabre, S. et al. Regulation of ovulation rate in mammals: contribution of sheep genetic models. Reprod. Biol. Endocrinol. 4, 20 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Jagarlamudi, K. et al. Oocyte-specific deletion of Pten in mice reveals a stage-specific function of PTEN/PI3K signaling in oocytes in controlling follicular activation. PLoS ONE 4, e6186 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Reddy, P. et al. PDK1 signaling in oocytes controls reproductive aging and lifespan by manipulating the survival of primordial follicles. Hum. Mol. Genet. 18, 2813–2824 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Rajkovic, A., Pangas, S. A., Ballow, M., Suzumori, N. & Matzuk, M. M. NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science 305, 1157–1159 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Walters, K. A. et al. Female mice haploinsufficient for an inactivated androgen receptor (AR) exhibit age-dependent defects that resemble the AR null phenotype of dysfunctional late follicle development, ovulation, and fertility. Endocrinol. 148, 3674–3684 (2007).

    Article  CAS  Google Scholar 

  69. Adhikari, D. et al. Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles. Hum. Mol. Genet. 19, 397–410 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Brown, C. et al. Subfertility caused by altered follicular development and oocyte growth in female mice lacking PKBα/Akt1. Biol. Reprod. 82, 246–256 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. A. Knight for helpful discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerry Melino.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levine, A., Tomasini, R., McKeon, F. et al. The p53 family: guardians of maternal reproduction. Nat Rev Mol Cell Biol 12, 259–265 (2011). https://doi.org/10.1038/nrm3086

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3086

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing