Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

mRNA helicases: the tacticians of translational control

Key Points

  • Helicase activity is required for scanning of the 40S ribosomal subunit, in a 5′ to 3′ direction, on the 5′ untranslated region (UTR) of eukaryotic mRNAs that contain secondary structures.

  • The canonical DEAD-box helicase eukaryotic initiation factor 4A (eIF4A; also known as DDX2) is thought to unwind 5′ UTR secondary structures. The weak helicase activity of eIF4A is enhanced when it is a part of the eIF4F complex, which also contains eIF4G and eIF4E. The activity of eIF4A is also enhanced by its modulatory proteins, eIF4B and eIF4H. Major signalling cascades converge to regulate eIF4A activity, mainly through eIF4B.

  • Several members of the DEAD- and DEAH-box family of helicases are required for translation initiation and their function is not redundant with that of eIF4A. These helicases include yeast Ded1, which is proposed to be required for translation initiation of mRNAs with long 5′ UTRs, and mammalian DEAH-box 29 (DHX29), which is thought to promote the ability of the 43S complex to overcome RNA secondary structures.

  • In contrast to other helicases, RNA helicase A (RHA; also known as DHX9) and Vasa (VAS) are target-specific. RHA binds mRNAs that have the post-transcriptional control element (PCE) in their 5′ UTR and unwinds the complex PCE secondary structure. VAS binds mRNAs at the U-rich element of the 3′ UTR and facilitates joining of the 60S ribosome subunit by recruiting eIF5B.

  • Although the sites and mechanisms of action of these helicases seem to be different, their combined action facilitates the process of translation initiation. It is likely that more helicases will be found to be important for translation initiation and, indeed, other helicases are proposed to function in translation initiation (for example, Dhh1 which is homologous to mammalian RCK, and DDX25), but their roles in this process have yet to be studied.

Abstract

The translation initiation step in eukaryotes is highly regulated and rate-limiting. During this process, the 40S ribosomal subunit is usually recruited to the 5′ terminus of the mRNA. It then migrates towards the initiation codon, where it is joined by the 60S ribosomal subunit to form the 80S initiation complex. Secondary structures in the 5′ untranslated region (UTR) can impede binding and movement of the 40S ribosome. The canonical eukaryotic translation initiation factor eIF4A (also known as DDX2), together with its accessory proteins eIF4B and eIF4H, is thought to act as a helicase that unwinds secondary structures in the mRNA 5′ UTR. Growing evidence suggests that other helicases are also important for translation initiation and may promote the scanning processivity of the 40S subunit, synergize with eIF4A to 'melt' secondary structures or facilitate translation of a subset of mRNAs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stepwise process of translation initiation.
Figure 2: Motif structure of DEAD and DEAH helicases.
Figure 3: Translational control by helicases that unwind mRNA secondary structures or modulate the 40S subunit function.
Figure 4: Control of eIF4A activity by signalling cascades.
Figure 5: Translational control by VAS recruitment of eIF5B and the 60S subunit.

Similar content being viewed by others

References

  1. Mathews, M. B., Sonenberg, N. & Hershey, J. W. B. (eds) Translational Control in Biology and Medicine (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2007).

    Google Scholar 

  2. Shine, J. & Dalgarno, L. The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc. Natl Acad. Sci. USA 71, 1342–1346 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Steitz, J. A. & Jakes, K. How ribosomes select initiator regions in mRNA: base pair formation between the 3′ terminus of 16S rRNA and the mRNA during initiation of protein synthesis in Escherichia coli. Proc. Natl Acad. Sci. USA 72, 4734–4738 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Shatkin, A. J. Capping of eucaryotic mRNAs. Cell 9, 645–653 (1976).

    CAS  PubMed  Google Scholar 

  5. Jackson, R. J., Hellen, C. U. & Pestova, T. V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nature Rev. Mol. Cell Biol. 11, 113–127 (2010). A comprehensive and up-to-date review of the process of translation initiation.

    CAS  Google Scholar 

  6. Linder, P. et al. Birth of the D-E-A-D box. Nature 337, 121–122 (1989).

    CAS  PubMed  Google Scholar 

  7. Merrick, W. C. Eukaryotic protein synthesis: still a mystery. J. Biol. Chem. 285, 21197–21201 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pelletier, J. & Sonenberg, N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320–325 (1988).

    CAS  PubMed  Google Scholar 

  9. Rogers, G. W. Jr, Komar, A. A. & Merrick, W. C. eIF4A: the godfather of the DEAD box helicases. Prog. Nucleic Acid Res. Mol. Biol. 72, 307–331 (2002).

    CAS  PubMed  Google Scholar 

  10. Marintchev, A. et al. Topology and regulation of the human eIF4A/4G/4H helicase complex in translation initiation. Cell 136, 447–460 (2009). Reports the topology of the eIF4A–eIF4G–eIF4H helicase complex, which is composed of multiple domain contacts. Shows that eIF4H increases the affinity of eIF4A for ATP by interacting simultaneously with both helicase domains and promoting either the closed, ATP-bound conformation or the open, nucleotide-free conformation.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Benne, R. & Hershey, J. W. Purification and characterization of initiation factor IF-E3 from rabbit reticulocytes. Proc. Natl Acad. Sci. USA 73, 3005–3009 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Trachsel, H., Erni, B., Schreier, M. H. & Staehelin, T. Initiation of mammalian protein synthesis. II. The assembly of the initiation complex with purified initiation factors. J. Mol. Biol. 116, 755–767 (1977).

    CAS  PubMed  Google Scholar 

  13. Benne, R. & Hershey, J. W. The mechanism of action of protein synthesis initiation factors from rabbit reticulocytes. J. Biol. Chem. 253, 3078–3087 (1978).

    CAS  PubMed  Google Scholar 

  14. Peterson, D. T., Safer, B. & Merrick, W. C. Role of eukaryotic initiation factor 5 in the formation of 80S initiation complexes. J. Biol. Chem. 254, 7730–7735 (1979).

    CAS  PubMed  Google Scholar 

  15. Sundkvist, I. C. & Staehelin, T. Structure and function of free 40S ribosome subunits: characterization of initiation factors. J. Mol. Biol. 99, 401–418 (1975).

    CAS  PubMed  Google Scholar 

  16. Jivotovskaya, A. V., Valasek, L., Hinnebusch, A. G. & Nielsen, K. H. Eukaryotic translation initiation factor 3 (eIF3) and eIF2 can promote mRNA binding to 40S subunits independently of eIF4G in yeast. Mol. Cell. Biol. 26, 1355–1372 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. De Gregorio, E., Preiss, T. & Hentze, M. W. Translation driven by an eIF4G core domain in vivo. EMBO J. 18, 4865–4874 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lamphear, B. J., Kirchweger, R., Skern, T. & Rhoads, R. E. Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. Implications for cap-dependent and cap-independent translational initiation. J. Biol. Chem. 270, 21975–21983 (1995).

    CAS  PubMed  Google Scholar 

  19. Methot, N., Pickett, G., Keene, J. D. & Sonenberg, N. In vitro RNA selection identifies RNA ligands that specifically bind to eukaryotic translation initiation factor 4B: the role of the RNA motif. RNA 2, 38–50 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yamamoto, Y. et al. The eukaryotic initiation factor (eIF) 5 HEAT domain mediates multifactor assembly and scanning with distinct interfaces to eIF1, eIF2, eIF3, and eIF4G. Proc. Natl Acad. Sci. USA 102, 16164–16169 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Andreev, D. E., Terenin, I. M., Dunaevsky, Y. E., Dmitriev, S. E. & Shatsky, I. N. A leaderless mRNA can bind to mammalian 80S ribosomes and direct polypeptide synthesis in the absence of translation initiation factors. Mol. Cell. Biol. 26, 3164–3169 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pestova, T. V. & Kolupaeva, V. G. The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev. 16, 2906–2922 (2002). Describes eukaryotic 48S complex formation on defined mRNAs in reactions reconstituted in vitro from fully purified translation components. Shows that the 43S complex can scan along unstructured 5′ UTRs and locate the initiation codon without ATP, eIF4A, eIF4B or eIF4F. Also reports that ribosomal movement on 5′ UTRs containing even weak secondary structures requires ATP and RNA helicases.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Parsyan, A. et al. The helicase protein DHX29 promotes translation initiation, cell proliferation, and tumorigenesis. Proc. Natl Acad. Sci. USA 106, 22217–22222 (2009). Shows that DHX29 down-regulation in vivo leads to impaired translation, resulting in disassembly of polysomes and accumulation of mRNA-free 80S monomers. The authors found that DHX29 depletion also impedes cancer cell growth in culture and xenografts.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. de la Cruz, J., Kressler, D. & Linder, P. Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem. Sci. 24, 192–198 (1999).

    CAS  PubMed  Google Scholar 

  25. Rocak, S. & Linder, P. DEAD-box proteins: the driving forces behind RNA metabolism. Nature Rev. Mol. Cell Biol. 5, 232–241 (2004).

    CAS  Google Scholar 

  26. Cordin, O., Banroques, J., Tanner, N. K. & Linder, P. The DEAD-box protein family of RNA helicases. Gene 367, 17–37 (2006).

    CAS  PubMed  Google Scholar 

  27. Singleton, M. R., Dillingham, M. S. & Wigley, D. B. Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76, 23–50 (2007).

    CAS  PubMed  Google Scholar 

  28. Gorbalenya, A. & Koonin, E. Helicases: amino acid sequence comparisons and structure-function relationship. Curr. Opin. Struc. Biol. 3, 419–429 (1993).

    CAS  Google Scholar 

  29. Sengoku, T., Nureki, O., Nakamura, A., Kobayashi, S. & Yokoyama, S. Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell 125, 287–300 (2006). Describes the structure of the core of D. melanogaster VAS in complex with a single-stranded RNA and an ATP analogue. The mutational analysis indicates that the interdomain interactions couple ATP hydrolysis to RNA unwinding. The authors suggest that VAS induces the targeted modulation of secondary RNA structures and thus differs in its mechanism of action from the canonical translocating helicases.

    CAS  PubMed  Google Scholar 

  30. Tijerina, P., Bhaskaran, H. & Russell, R. Nonspecific binding to structured RNA and preferential unwinding of an exposed helix by the CYT-19 protein, a DEAD-box RNA chaperone. Proc. Natl Acad. Sci. USA 103, 16698–16703 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Caruthers, J. M. & McKay, D. B. Helicase structure and mechanism. Curr. Opin. Struct. Biol. 12, 123–133 (2002).

    CAS  PubMed  Google Scholar 

  32. Jankowsky, E. & Fairman, M. E. RNA helicases — one fold for many functions. Curr. Opin. Struct. Biol. 17, 316–324 (2007).

    CAS  PubMed  Google Scholar 

  33. Yang, Q. & Jankowsky, E. The DEAD-box protein Ded1 unwinds RNA duplexes by a mode distinct from translocating helicases. Nature Struct. Mol. Biol. 13, 981–986 (2006).

    CAS  Google Scholar 

  34. Yang, Q., Del Campo, M., Lambowitz, A. M. & Jankowsky, E. DEAD-box proteins unwind duplexes by local strand separation. Mol. Cell 28, 253–263 (2007).

    CAS  PubMed  Google Scholar 

  35. Liu, F., Putnam, A. & Jankowsky, E. ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding. Proc. Natl Acad. Sci. USA 105, 20209–20214 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, Y. et al. DEAD-box proteins can completely separate an RNA duplex using a single ATP. Proc. Natl Acad. Sci. USA 105, 20203–20208 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rogers, G. W. Jr, Richter, N. J. & Merrick, W. C. Biochemical and kinetic characterization of the RNA helicase activity of eukaryotic initiation factor 4A. J. Biol. Chem. 274, 12236–12244 (1999).

    CAS  PubMed  Google Scholar 

  38. Rozen, F. et al. Bidirectional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F. Mol. Cell. Biol. 10, 1134–1144 (1990). The first study to show directly that eIF4A or eIF4F, in combination with eIF4B, exhibit bidirectional RNA helicase activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Pause, A., Methot, N., Svitkin, Y., Merrick, W. C. & Sonenberg, N. Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation. EMBO J. 13, 1205–1215 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sonenberg, N. Remarks on the mechanism of ribosome binding to eukaryotic mRNAs. Gene Expr. 3, 317–323 (1993).

    CAS  PubMed  Google Scholar 

  41. Ray, B. K. et al. ATP-dependent unwinding of messenger RNA structure by eukaryotic initiation factors. J. Biol. Chem. 260, 7651–7658 (1985).

    CAS  PubMed  Google Scholar 

  42. Grifo, J. A., Abramson, R. D., Satler, C. A. & Merrick, W. C. RNA-stimulated ATPase activity of eukaryotic initiation factors. J. Biol. Chem. 259, 8648–8654 (1984).

    CAS  PubMed  Google Scholar 

  43. Lorsch, J. R. & Herschlag, D. The DEAD box protein eIF4A. 1. A minimal kinetic and thermodynamic framework reveals coupled binding of RNA and nucleotide. Biochemistry 37, 2180–2193 (1998).

    CAS  PubMed  Google Scholar 

  44. Abramson, R. D. et al. The ATP-dependent interaction of eukaryotic initiation factors with mRNA. J. Biol. Chem. 262, 3826–3832 (1987).

    CAS  PubMed  Google Scholar 

  45. Abramson, R. D., Dever, T. E. & Merrick, W. C. Biochemical evidence supporting a mechanism for cap-independent and internal initiation of eukaryotic mRNA. J. Biol. Chem. 263, 6016–6019 (1988).

    CAS  PubMed  Google Scholar 

  46. Pause, A. & Sonenberg, N. Mutational analysis of a DEAD box RNA helicase: the mammalian translation initiation factor eIF-4A. EMBO J. 11, 2643–2654 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Pause, A., Methot, N. & Sonenberg, N. The HRIGRXXR region of the DEAD box RNA helicase eukaryotic translation initiation factor 4A is required for RNA binding and ATP hydrolysis. Mol. Cell. Biol. 13, 6789–6798 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nielsen, P. J. & Trachsel, H. The mouse protein synthesis initiation factor 4A gene family includes two related functional genes which are differentially expressed. EMBO J. 7, 2097–2105 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Shibuya, T., Tange, T. Ø., Sonenberg, N. & Moore, M. J. eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsense-mediated decay. Nature Struct. Mol. Biol. 11, 346–351 (2004).

    CAS  Google Scholar 

  50. Shibuya, T., Tange, T. Ø., Stroupe, M. E. & Moore, M. J. Mutational analysis of human eIF4AIII identifies regions necessary for exon junction complex formation and nonsense-mediated mRNA decay. RNA 12, 360–374 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ferraiuolo, M. A. et al. A nuclear translation-like factor eIF4AIII is recruited to the mRNA during splicing and functions in nonsense-mediated decay. Proc. Natl Acad. Sci. USA 101, 4118–4123 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ballut, L. et al. The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nature Struct. Mol. Biol. 12, 861–869 (2005).

    CAS  Google Scholar 

  53. Li, Q. et al. Eukaryotic translation initiation factor 4AIII (eIF4AIII) is functionally distinct from eIF4AI and eIF4AII. Mol. Cell. Biol. 19, 7336–7346 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Caruthers, J. M., Johnson, E. R. & McKay, D. B. Crystal structure of yeast initiation factor 4A, a DEAD-box RNA helicase. Proc. Natl Acad. Sci. USA 97, 13080–13085 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Oguro, A., Ohtsu, T., Svitkin, Y. V., Sonenberg, N. & Nakamura, Y. RNA aptamers to initiation factor 4A helicase hinder cap-dependent translation by blocking ATP hydrolysis. RNA 9, 394–407 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Imataka, H. & Sonenberg, N. Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A. Mol. Cell. Biol. 17, 6940–6947 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bellsolell, L., Cho-Park, P. F., Poulin, F., Sonenberg, N. & Burley, S. K. Two structurally atypical HEAT domains in the C-terminal portion of human eIF4G support binding to eIF4A and Mnk1. Structure 14, 913–923 (2006).

    CAS  PubMed  Google Scholar 

  58. Korneeva, N. L., Lamphear, B. J., Hennigan, F. L., Merrick, W. C. & Rhoads, R. E. Characterization of the two eIF4A-binding sites on human eIF4G-1. J. Biol. Chem. 276, 2872–2879 (2001).

    CAS  PubMed  Google Scholar 

  59. Oberer, M., Marintchev, A. & Wagner, G. Structural basis for the enhancement of eIF4A helicase activity by eIF4G. Genes Dev. 19, 2212–2223 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lorsch, J. R. & Herschlag, D. The DEAD box protein eIF4A. 2. A cycle of nucleotide and RNA-dependent conformational changes. Biochemistry 37, 2194–2206 (1998).

    CAS  PubMed  Google Scholar 

  61. Svitkin, Y. V. et al. The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5′ secondary structure. RNA 7, 382–394 (2001). Presents evidence that mRNAs containing stable secondary structures in the mRNA 5′ UTR are more susceptible to inhibition by an elF4A dominant-negative mutant. The requirement for eIF4A correlated with the degree of mRNA secondary structure.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Rogers, G. W. Jr, Richter, N. J., Lima, W. F. & Merrick, W. C. Modulation of the helicase activity of eIF4A by eIF4B, eIF4H, and eIF4F. J. Biol. Chem. 276, 30914–30922 (2001).

    CAS  PubMed  Google Scholar 

  63. Richter-Cook, N. J., Dever, T. E., Hensold, J. O. & Merrick, W. C. Purification and characterization of a new eukaryotic protein translation factor EUKARYOTIC INITIATION FACTOR 4H. J. Biol. Chem. 273, 7579–7587 (1998).

    CAS  PubMed  Google Scholar 

  64. Rozovsky, N., Butterworth, A. C. & Moore, M. J. Interactions between eIF4AI and its accessory factors eIF4B and eIF4H. RNA 14, 2136–2148 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Richter, N. J., Rogers, G. W. Jr, Hensold, J. O. & Merrick, W. C. Further biochemical and kinetic characterization of human eukaryotic initiation factor 4H. J. Biol. Chem. 274, 35415–35424 (1999).

    CAS  PubMed  Google Scholar 

  66. Methot, N., Pause, A., Hershey, J. W. & Sonenberg, N. The translation initiation factor eIF-4B contains an RNA-binding region that is distinct and independent from its ribonucleoprotein consensus sequence. Mol. Cell. Biol. 14, 2307–2316 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Naranda, T., Strong, W. B., Menaya, J., Fabbri, B. J. & Hershey, J. W. Two structural domains of initiation factor eIF-4B are involved in binding to RNA. J. Biol. Chem. 269, 14465–14472 (1994).

    CAS  PubMed  Google Scholar 

  68. Lindqvist, L., Imataka, H. & Pelletier, J. Cap-dependent eukaryotic initiation factor-mRNA interactions probed by cross-linking. RNA 14, 960–969 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Spirin, A. S. How does a scanning ribosomal particle move along the 5′-untranslated region of eukaryotic mRNA? Brownian ratchet model. Biochemistry 48, 10688–10692 (2009).

    CAS  PubMed  Google Scholar 

  70. Shahbazian, D. et al. The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. EMBO J. 25, 2781–2791 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Holz, M. K., Ballif, B. A., Gygi, S. P. & Blenis, J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123, 569–580 (2005).

    CAS  PubMed  Google Scholar 

  72. Kroczynska, B. et al. Interferon-dependent engagement of eukaryotic initiation factor 4B via S6 kinase (S6K)- and ribosomal protein S6K-mediated signals. Mol. Cell. Biol. 29, 2865–2875 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. van Gorp, A. G. et al. AGC kinases regulate phosphorylation and activation of eukaryotic translation initiation factor 4B. Oncogene 28, 95–106 (2009).

    CAS  PubMed  Google Scholar 

  74. Yang, H. S. et al. The transformation suppressor Pdcd4 is a novel eukaryotic translation initiation factor 4A binding protein that inhibits translation. Mol. Cell. Biol. 23, 26–37 (2003).

    PubMed  PubMed Central  Google Scholar 

  75. Dorrello, N. V. et al. S6K1- and βTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science 314, 467–471 (2006).

    CAS  PubMed  Google Scholar 

  76. Iost, I., Dreyfus, M. & Linder, P. Ded1p, a DEAD-box protein required for translation initiation in Saccharomyces cerevisiae, is an RNA helicase. J. Biol. Chem. 274, 17677–17683 (1999).

    CAS  PubMed  Google Scholar 

  77. Yang, Q. & Jankowsky, E. ATP- and ADP-dependent modulation of RNA unwinding and strand annealing activities by the DEAD-box protein DED1. Biochemistry 44, 13591–13601 (2005).

    CAS  PubMed  Google Scholar 

  78. Chuang, R. Y., Weaver, P. L., Liu, Z. & Chang, T. H. Requirement of the DEAD-Box protein Ded1p for messenger RNA translation. Science 275, 1468–1471 (1997). Shows that yeast Ded1 helicase is required for translation at the initiation step. The DED1 gene could be functionally replaced by a mouse homologue, PL10, which suggests that the function of Ded1 in translation is evolutionarily conserved.

    CAS  PubMed  Google Scholar 

  79. de la Cruz, J., Iost, I., Kressler, D. & Linder, P. The p20 and Ded1 proteins have antagonistic roles in eIF4E-dependent translation in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 94, 5201–5206 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Marsden, S., Nardelli, M., Linder, P. & McCarthy, J. E. Unwinding single RNA molecules using helicases involved in eukaryotic translation initiation. J. Mol. Biol. 361, 327–335 (2006).

    CAS  PubMed  Google Scholar 

  81. Berthelot, K., Muldoon, M., Rajkowitsch, L., Hughes, J. & McCarthy, J. E. Dynamics and processivity of 40S ribosome scanning on mRNA in yeast. Mol. Microbiol. 51, 987–1001 (2004).

    CAS  PubMed  Google Scholar 

  82. Jamieson, D. J. & Beggs, J. D. A suppressor of yeast spp81/ded1 mutations encodes a very similar putative ATP-dependent RNA helicase. Mol. Microbiol. 5, 805–812 (1991).

    CAS  PubMed  Google Scholar 

  83. Chang, T. C. & Liu, W. S. The molecular evolution of PL10 homologs. BMC Evol. Biol. 10, 127 (2010).

    PubMed  PubMed Central  Google Scholar 

  84. Leroy, P., Alzari, P., Sassoon, D., Wolgemuth, D. & Fellous, M. The protein encoded by a murine male germ cell-specific transcript is a putative ATP-dependent RNA helicase. Cell 57, 549–559 (1989).

    CAS  PubMed  Google Scholar 

  85. Vong, Q. P. et al. Structural characterization and expression studies of Dby and its homologs in the mouse. J. Androl. 27, 653–661 (2006).

    CAS  PubMed  Google Scholar 

  86. Lee, C. S. et al. Human DDX3 functions in translation and interacts with the translation initiation factor eIF3. Nucleic Acids Res. 36, 4708–4718 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lai, M. C., Lee, Y. H. & Tarn, W. Y. The DEAD-box RNA helicase DDX3 associates with export messenger ribonucleoproteins as well as tip-associated protein and participates in translational control. Mol. Biol. Cell 19, 3847–3858 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Shih, J. W., Tsai, T. Y., Chao, C. H. & Wu Lee, Y. H. Candidate tumor suppressor DDX3 RNA helicase specifically represses cap-dependent translation by acting as an eIF4E inhibitory protein. Oncogene 27, 700–714 (2008).

    CAS  PubMed  Google Scholar 

  89. Pisareva, V. P., Pisarev, A. V., Komar, A. A., Hellen, C. U. & Pestova, T. V. Translation initiation on mammalian mRNAs with structured 5′ UTRs requires DExH-box protein DHX29. Cell 135, 1237–1250 (2008). Reports that the canonical set of eukaryotic initiation factors are not sufficient for efficient 48S complex formation on mRNAs with highly structured 5′ UTRs and that this process requires the DEAH-box protein DHX29. DHX29 binds the 40S ribosome and hydrolyses NTPs.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Pestova, T. V., Borukhov, S. I. & Hellen, C. U. Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons. Nature 394, 854–859 (1998).

    CAS  PubMed  Google Scholar 

  91. Stevenson, A. L. & McCarthy, J. E. Found in translation: another RNA helicase function. Mol. Cell 32, 755–756 (2008).

    CAS  PubMed  Google Scholar 

  92. Abaeva, I. S., Marintchev, A., Pisareva, V. P., Hellen, C. U. & Pestova, T. V. Bypassing of stems versus linear base-by-base inspection of mammalian mRNAs during ribosomal scanning. EMBO J. 30, 115–129 (2011).

    CAS  PubMed  Google Scholar 

  93. Anderson, S. F., Schlegel, B. P., Nakajima, T., Wolpin, E. S. & Parvin, J. D. BRCA1 protein is linked to the RNA polymerase II holoenzyme complex via RNA helicase A. Nature Genet. 19, 254–256 (1998).

    CAS  PubMed  Google Scholar 

  94. Nakajima, T. et al. RNA helicase A mediates association of CBP with RNA polymerase II. Cell 90, 1107–1112 (1997).

    CAS  PubMed  Google Scholar 

  95. Gatfield, D. et al. The DExH/D box protein HEL/UAP56 is essential for mRNA nuclear export in Drosophila. Curr. Biol. 11, 1716–1721 (2001).

    CAS  PubMed  Google Scholar 

  96. Kuroda, M. I., Kernan, M. J., Kreber, R., Ganetzky, B. & Baker, B. S. The maleless protein associates with the X chromosome to regulate dosage compensation in Drosophila. Cell 66, 935–947 (1991).

    CAS  PubMed  Google Scholar 

  97. Hartman, T. R. et al. RNA helicase A is necessary for translation of selected messenger RNAs. Nature Struct. Mol. Biol. 13, 509–516 (2006).

    CAS  Google Scholar 

  98. Liu, N., Han, H. & Lasko, P. Vasa promotes Drosophila germline stem cell differentiation by activating mei-P26 translation by directly interacting with a (U)-rich motif in its 3′ UTR. Genes Dev. 23, 2742–2752 (2009). Shows that VAS helicase associates with eIF5B and is required for translation of mei-P26 through specific binding to a U-rich motif in the mei-P26 3′ UTR.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Bolinger, C., Sharma, A., Singh, D., Yu, L. & Boris-Lawrie, K. RNA helicase A modulates translation of HIV-1 and infectivity of progeny virions. Nucleic Acids Res. 38, 1686–1696 (2010).

    CAS  PubMed  Google Scholar 

  100. Short, J. D. & Pfarr, C. M. Translational regulation of the JunD messenger RNA. J. Biol. Chem. 277, 32697–32705 (2002).

    CAS  PubMed  Google Scholar 

  101. Tettweiler, G. & Lasko, P. A new model for translational regulation of specific mRNAs. Trends Biochem. Sci. 31, 607–610 (2006).

    CAS  PubMed  Google Scholar 

  102. Ranji, A., Shkriabai, N., Kvaratskhelia, M., Musier-Forsyth, K. & Boris-Lawrie, K. Features of double-stranded RNA binding domains of RNA helicase A are necessary for selective recognition and translation of complex mRNAs. J. Biol. Chem. 286, 5328–5337 (2011).

    CAS  PubMed  Google Scholar 

  103. Liang, L., Diehl-Jones, W. & Lasko, P. Localization of vasa protein to the Drosophila pole plasm is independent of its RNA-binding and helicase activities. Development 120, 1201–1211 (1994).

    CAS  PubMed  Google Scholar 

  104. Carrera, P. et al. VASA mediates translation through interaction with a Drosophila yIF2 homolog. Mol. Cell 5, 181–187 (2000).

    CAS  PubMed  Google Scholar 

  105. Pestova, T. V. et al. The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature 403, 332–335 (2000).

    CAS  PubMed  Google Scholar 

  106. Styhler, S., Nakamura, A., Swan, A., Suter, B. & Lasko, P. vasa is required for GURKEN accumulation in the oocyte, and is involved in oocyte differentiation and germline cyst development. Development 125, 1569–1578 (1998).

    CAS  PubMed  Google Scholar 

  107. Tomancak, P., Guichet, A., Zavorszky, P. & Ephrussi, A. Oocyte polarity depends on regulation of gurken by Vasa. Development 125, 1723–1732 (1998).

    CAS  PubMed  Google Scholar 

  108. Neumuller, R. A. et al. Mei-P26 regulates microRNAs and cell growth in the Drosophila ovarian stem cell lineage. Nature 454, 241–245 (2008).

    PubMed  PubMed Central  Google Scholar 

  109. Johnstone, O. & Lasko, P. Interaction with eIF5B is essential for Vasa function during development. Development 131, 4167–4178 (2004).

    CAS  PubMed  Google Scholar 

  110. Ostareck, D. H., Ostareck-Lederer, A., Shatsky, I. N. & Hentze, M. W. Lipoxygenase mRNA silencing in erythroid differentiation: the 3′ UTR regulatory complex controls 60S ribosomal subunit joining. Cell 104, 281–290 (2001).

    CAS  PubMed  Google Scholar 

  111. Ceci, M. et al. Release of eIF6 (p27BBP) from the 60S subunit allows 80S ribosome assembly. Nature 426, 579–584 (2003).

    CAS  PubMed  Google Scholar 

  112. Gartmann, M. et al. Mechanism of eIF6-mediated inhibition of ribosomal subunit joining. J. Biol. Chem. 285, 14848–14851 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Tanaka, S. S. et al. The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes Dev. 14, 841–853 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Bouhallier, F. et al. Role of miR-34c microRNA in the late steps of spermatogenesis. RNA 16, 720–731 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Patil, V. S. & Kai, T. Repression of retroelements in Drosophila germline via piRNA pathway by the tudor domain protein tejas. Curr. Biol. 20, 724–730 (2010).

    CAS  PubMed  Google Scholar 

  116. Bolger, T. A., Folkmann, A. W., Tran, E. J. & Wente, S. R. The mRNA export factor Gle1 and inositol hexakisphosphate regulate distinct stages of translation. Cell 134, 624–633 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Gross, T. et al. The DEAD-box RNA helicase Dbp5 functions in translation termination. Science 315, 646–649 (2007).

    CAS  PubMed  Google Scholar 

  118. Coller, J. & Parker, R. General translational repression by activators of mRNA decapping. Cell 122, 875–886 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Fischer, N. & Weis, K. The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1. EMBO J. 21, 2788–2797 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Minshall, N., Kress, M., Weil, D. & Standart, N. Role of p54 RNA helicase activity and its C-terminal domain in translational repression, P-body localization and assembly. Mol. Biol. Cell 20, 2464–2472 (2009).

    PubMed  PubMed Central  Google Scholar 

  121. Swetloff, A. et al. Dcp1-bodies in mouse oocytes. Mol. Biol. Cell 20, 4951–4961 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Tsai-Morris, C. H. et al. Polymorphism of the GRTH/DDX25 gene in normal and infertile Japanese men: a missense mutation associated with loss of GRTH phosphorylation. Mol. Hum. Reprod. 13, 887–892 (2007).

    CAS  PubMed  Google Scholar 

  123. Gutti, R. K., Tsai-Morris, C. H. & Dufau, M. L. Gonadotropin-regulated testicular helicase (DDX25), an essential regulator of spermatogenesis, prevents testicular germ cell apoptosis. J. Biol. Chem. 283, 17055–17064 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Tsai-Morris, C. H., Sheng, Y., Lee, E., Lei, K. J. & Dufau, M. L. Gonadotropin-regulated testicular RNA helicase (GRTH/Ddx25) is essential for spermatid development and completion of spermatogenesis. Proc. Natl Acad. Sci. USA 101, 6373–6378 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Sheng, Y., Tsai-Morris, C. H., Gutti, R., Maeda, Y. & Dufau, M. L. Gonadotropin-regulated testicular RNA helicase (GRTH/Ddx25) is a transport protein involved in gene-specific mRNA export and protein translation during spermatogenesis. J. Biol. Chem. 281, 35048–35056 (2006).

    CAS  PubMed  Google Scholar 

  126. Shahbazian, D. et al. Control of cell survival and proliferation by mammalian eukaryotic initiation factor 4B. Mol. Cell. Biol. 30, 1478–1485 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Sonenberg, N. & Hinnebusch, A. G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731–745 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Raught, B. et al. Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J. 23, 1761–1769 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to our colleagues whose work was not included in this Review owing to space limitations. We thank C. Lister and P. Kirk for technical support, T. Nevarko and M. Kowanda for assisting with the preparation of the manuscript and T. Alain, N. Liu and G. Hernandez for valuable discussions. A. P. is holder of an award from the Fonds de la Recherche en Santé Québec, Canada. This work was supported by grants from the Canadian Institutes of Health Research and the Canadian Cancer Society to N. S., who is a Howard Hughes Medical Institute International Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahum Sonenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Nahum Sonenberg's homepage

Glossary

Shine–Dalgarno sequence

A ribosomal binding site of approximately eight nucleotides in the mRNA of bacteria, located upstream of the initiation codon. Helps to recruit the small ribosomal subunit to the mRNA to initiate protein synthesis.

Initiator tRNA

(Met-tRNAMeti). A tRNA, linked with Met through an aminoacyl group, that is used to initiate protein synthesis. Its anticodon is complementary to the AUG initiation codon. Forms a highly specific ternary complex with eukaryotic translation initiation factor 2 and GTP, and binds to the ribosomal P site.

P site

The site on the 40S ribosomal subunit that accommodates Met-tRNAMeti or the tRNA that is linked to the growing peptide chain.

Translocase

An enzyme that couples ATP hydrolysis to directional movement on single- or double-stranded nucleic acids.

Polysome

A cluster of mRNA-bound, elongating 80S ribosomal complexes. Also known as a polyribosome.

Micro RNA

A small RNA of 21 nucleotides that binds to argonaute proteins and regulates the expression of a large number of mRNAs, with which it is partially complementary in sequence.

Chromatoid body

A large perinuclear ribonucleoprotein particle of germ cells that might organize and control RNA processing.

Piwi-interacting RNA

A small RNA of 30 nucleotides that interacts with argonaute-related piwi proteins. Has been linked to transcriptional gene silencing of retrotransposons and other genetic elements in germ line cells, particularly those involved in spermatogenesis.

Processing body

A distinct cytoplasmic focus in the eukaryotic cell that contains many enzymes involved in mRNA turnover.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parsyan, A., Svitkin, Y., Shahbazian, D. et al. mRNA helicases: the tacticians of translational control. Nat Rev Mol Cell Biol 12, 235–245 (2011). https://doi.org/10.1038/nrm3083

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3083

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing