Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

DNA damage response in adult stem cells: pathways and consequences

Abstract

In contrast to postmitotic or short-lived somatic cells, tissue-specific stem cells must persist and function throughout life to ensure tissue homeostasis and repair. The enormous functional demands and longevity of stem cells raises the possibility that stem cells might be uniquely equipped to maintain genomic integrity in ways different than somatic cells. Indeed, evidence suggests that stem cell compartments possess unique properties that combine to either limit or, in some instances, accelerate DNA damage accrual.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DSB repair during the cell cycle.
Figure 2: Impact of DNA damage on SCs.

Similar content being viewed by others

References

  1. Hoeijmakers, J. H. DNA damage, aging, and cancer. N. Engl. J. Med. 361, 1475–1485 (2009).

    Article  CAS  Google Scholar 

  2. Harper, J. W. & Elledge, S. J. The DNA damage response: ten years after. Mol. Cell 28, 739–745 (2007).

    Article  CAS  Google Scholar 

  3. Ciccia, A. & Elledge, S. J. The DNA damage response: making it safe to play with knives. Mol. Cell 40, 179–204 (2010).

    Article  CAS  Google Scholar 

  4. Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).

    Article  CAS  Google Scholar 

  5. Rossi, D. J., Jamieson, C. H. & Weissman, I. L. Stems cells and the pathways to aging and cancer. Cell 132, 681–696 (2008).

    Article  CAS  Google Scholar 

  6. Rossi, D. J. et al. Hematopoietic stem cell quiescence attenuates DNA damage response and permits DNA damage accumulation during aging. Cell Cycle 6, 2371–2376 (2007).

    Article  CAS  Google Scholar 

  7. Fuchs, E. The tortoise and the hair: slow-cycling cells in the stem cell race. Cell 137, 811–819 (2009).

    Article  CAS  Google Scholar 

  8. Kim, J. S. et al. Independent and sequential recruitment of NHEJ and HR factors to DNA damage sites in mammalian cells. J. Cell Biol. 170, 341–347 (2005).

    Article  CAS  Google Scholar 

  9. Delacote, F. & Lopez, B. S. Importance of the cell cycle phase for the choice of the appropriate DSB repair pathway, for genome stability maintenance: the trans-S double-strand break repair model. Cell Cycle 7, 33–38 (2008).

    Article  CAS  Google Scholar 

  10. Dasika, G. K. et al. DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis. Oncogene 18, 7883–7899 (1999).

    Article  CAS  Google Scholar 

  11. Mao, Z., Bozzella, M., Seluanov, A. & Gorbunova, V. Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair (Amst.) 7, 1765–1771 (2008).

    Article  CAS  Google Scholar 

  12. Rossi, D. J. et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447, 725–729 (2007).

    Article  CAS  Google Scholar 

  13. Mohrin, M. et al. Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell 7, 174–185 (2010).

    Article  CAS  Google Scholar 

  14. Nijnik, A. et al. DNA repair is limiting for haematopoietic stem cells during ageing. Nature 447, 686–690 (2007).

    Article  CAS  Google Scholar 

  15. Rehman, J. Empowering self-renewal and differentiation: the role of mitochondria in stem cells. J. Mol. Med. 88, 981–986 (2010).

    Article  Google Scholar 

  16. Facucho-Oliveira, J. M. & St. John, J. C. The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev. 5, 140–158 (2009).

    Article  CAS  Google Scholar 

  17. Naka, K., Muraguchi, T., Hoshii, T. & Hirao, A. Regulation of reactive oxygen species and genomic stability in hematopoietic stem cells. Antioxid. Redox Signal. 10, 1883–1894 (2008).

    Article  CAS  Google Scholar 

  18. Yalcin, S. et al. Foxo3 is essential for the regulation of ataxia telangiectasia mutated and oxidative stress-mediated homeostasis of hematopoietic stem cells. J. Biol. Chem. 283, 25692–25705 (2008).

    Article  CAS  Google Scholar 

  19. Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325–339 (2007).

    Article  CAS  Google Scholar 

  20. Miyamoto, K. et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1, 101–112 (2007).

    Article  CAS  Google Scholar 

  21. Ito, K. et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431, 997–1002 (2004).

    Article  CAS  Google Scholar 

  22. Ito, K. et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nature Med. 12, 446–451 (2006).

    Article  CAS  Google Scholar 

  23. Takubo, K. et al. Stem cell defects in ATM-deficient undifferentiated spermatogonia through DNA damage-induced cell-cycle arrest. Cell Stem Cell 2, 170–182 (2008).

    Article  CAS  Google Scholar 

  24. Grinstein, E. & Mahotka, C. Stem cell divisions controlled by the proto-oncogene BMI-1. J. Stem Cells 4, 141–146 (2009).

    PubMed  Google Scholar 

  25. Liu, J. et al. Bmi1 regulates mitochondrial function and the DNA damage response pathway. Nature 459, 387–392 (2009).

    Article  CAS  Google Scholar 

  26. Facchino, S., Abdouh, M., Chatoo, W. & Bernier, G. BMI1 confers radioresistance to normal and cancerous neural stem cells through recruitment of the DNA damage response machinery. J. Neurosci. 30, 10096–10111 (2010).

    Article  CAS  Google Scholar 

  27. Mohyeldin, A., Garzon-Muvdi, T. & Quinones-Hinojosa, A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7, 150–161 (2010).

    Article  CAS  Google Scholar 

  28. Owusu-Ansah, E. & Banerjee, U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461, 537–541 (2009).

    Article  CAS  Google Scholar 

  29. Le Belle, J. E. et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 8, 59–71 (2011).

    Article  CAS  Google Scholar 

  30. Diehn, M. et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458, 780–783 (2009).

    Article  CAS  Google Scholar 

  31. Sotiropoulou, P. A. et al. Bcl-2 and accelerated DNA repair mediates resistance of hair follicle bulge stem cells to DNA-damage-induced cell death. Nature Cell Biol. 12, 572–582 (2010).

    Article  CAS  Google Scholar 

  32. Araki, R. et al. Nonsense mutation at Tyr-4046 in the DNA-dependent protein kinase catalytic subunit of severe combined immune deficiency mice. Proc. Natl Acad. Sci. USA 94, 2438–2443 (1997).

    Article  CAS  Google Scholar 

  33. Seita, J., Rossi, D. J. & Weissman, I. L. Differential DNA damage response in stem and progenitor cells. Cell Stem Cell 7, 145–147 (2010).

    Article  CAS  Google Scholar 

  34. Kemp, C. J., Vo, K. & Gurley, K. E. Resistance to skin tumorigenesis in DNAPK-deficient SCID mice is not due to immunodeficiency but results from hypersensitivity to TPA-induced apoptosis. Carcinogenesis 20, 2051–2056 (1999).

    Article  CAS  Google Scholar 

  35. Marusyk, A., Porter, C. C., Zaberezhnyy, V. & DeGregori, J. Irradiation selects for p53-deficient hematopoietic progenitors. PLoS Biol. 8, e1000324 (2010).

    Article  Google Scholar 

  36. Bondar, T. & Medzhitov, R. p53-mediated hematopoietic stem and progenitor cell competition. Cell Stem Cell 6, 309–322 (2010).

    Article  CAS  Google Scholar 

  37. Botchkarev, V. A. et al. p53 is essential for chemotherapy-induced hair loss. Cancer Res. 60, 5002–5006 (2000).

    CAS  PubMed  Google Scholar 

  38. Song, S. & Lambert, P. F. Different responses of epidermal and hair follicular cells to radiation correlate with distinct patterns of p53 and p21 induction. Am. J. Pathol. 155, 1121–1127 (1999).

    Article  CAS  Google Scholar 

  39. Moore, N. & Lyle, S. Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance. J. Oncol. 2011, 396076 (2011).

    Article  Google Scholar 

  40. Gudkov, A. V. & Komarova, E. A. The role of p53 in determining sensitivity to radiotherapy. Nature Rev. Cancer 3, 117–129 (2003).

    Article  CAS  Google Scholar 

  41. Mendrysa, S. M. et al. mdm2 is critical for inhibition of p53 during lymphopoiesis and the response to ionizing irradiation. Mol. Cell. Biol. 23, 462–472 (2003).

    Article  CAS  Google Scholar 

  42. Campbell, C. J. et al. The human stem cell hierarchy is defined by a functional dependence on Mcl-1 for self-renewal capacity. Blood 116, 1433–1442 (2010).

    Article  CAS  Google Scholar 

  43. Blanpain, C., Mohrin, M., Sotiropoulou, P. A. & Passegue, E. DNA-damage response in tissue-specific and cancer stem cells. Cell Stem Cell 8, 16–29 (2011).

    Article  CAS  Google Scholar 

  44. Merritt, A. J. et al. The role of p53 in spontaneous and radiation-induced apoptosis in the gastrointestinal tract of normal and p53-deficient mice. Cancer Res. 54, 614–617 (1994).

    CAS  PubMed  Google Scholar 

  45. Merritt, A. J. et al. Differential expression of bcl-2 in intestinal epithelia. Correlation with attenuation of apoptosis in colonic crypts and the incidence of colonic neoplasia. J. Cell Sci. 108, 2261–2271 (1995).

    CAS  PubMed  Google Scholar 

  46. Inomata, K. et al. Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation. Cell 137, 1088–1099 (2009).

    Article  CAS  Google Scholar 

  47. Su, X. et al. TAp63 prevents premature aging by promoting adult stem cell maintenance. Cell Stem Cell 5, 64–75 (2009).

    Article  CAS  Google Scholar 

  48. Castilho, R. M., Squarize, C. H., Chodosh, L. A., Williams, B. O. & Gutkind, J. S. mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging. Cell Stem Cell 5, 279–289 (2009).

    Article  CAS  Google Scholar 

  49. Lieber, M. R. & Wilson, T. E. SnapShot: nonhomologous DNA end joining (NHEJ). Cell 142, 496–496.e1 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

C.B. is a researcher of the Fonds National de la Recherché Scientifique and is supported by grants from the European Research Council, the Wallonia Region, Fondation contre le Cancer and the EMBO Young Investigator Programme.D.J.R. is supported by grants from the US National Institutes of Health and the US National Institutes of Aging (grant no. AG029760-01). The authors thank I. Beerman for critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derrick J. Rossi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Derrick J. Rossi's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandal, P., Blanpain, C. & Rossi, D. DNA damage response in adult stem cells: pathways and consequences. Nat Rev Mol Cell Biol 12, 198–202 (2011). https://doi.org/10.1038/nrm3060

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3060

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer