Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Role of GW182 proteins and PABPC1 in the miRNA pathway: a sense of déjà vu

Abstract

GW182 proteins have emerged as key components of microRNA (miRNA) silencing complexes in animals. Although the precise molecular function of GW182 proteins is not fully understood, new findings indicate that they act as poly(A)-binding protein (PABP)-interacting proteins (PAIPs) that promote gene silencing, at least in part, by interfering with cytoplasmic PABP1 (PABPC1) function during translation and mRNA stabilization. This recent discovery paves the way for future studies of miRNA silencing mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A mechanistic model of miRNA-mediated gene silencing in animals.
Figure 2: GW182 protein family.
Figure 3: GW182–PABPC1 interaction.

Similar content being viewed by others

References

  1. Eulalio, A., Huntzinger, E. & Izaurralde, E. Getting to the root of miRNA-mediated gene silencing. Cell 132, 9–14 (2008).

    Article  CAS  Google Scholar 

  2. Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Rev. Genet. 9, 102–114 (2008).

    Article  CAS  Google Scholar 

  3. Carthew, R. W. & Sontheimer, E. J. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655 (2009).

    Article  CAS  Google Scholar 

  4. Wakiyama, M., Takimoto, K., Ohara, O. & Yokoyama, S. Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev. 21, 1857–1862 (2007).

    Article  CAS  Google Scholar 

  5. Zdanowicz, A. et al. Drosophila miR2 primarily targets the m7GpppN cap structure for translational repression. Mol. Cell 35, 881–888 (2009).

    Article  CAS  Google Scholar 

  6. Fabian, M. R. et al. Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol. Cell 35, 868–880 (2009).

    Article  CAS  Google Scholar 

  7. Eystathioy, T. et al. A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles. Mol. Biol. Cell 13, 1338–1351 (2002).

    Article  CAS  Google Scholar 

  8. Eystathioy, T. et al. The GW182 protein colocalizes with mRNA degradation associated proteins hDcp1 and hLSm4 in cytoplasmic GW-bodies. RNA 9, 1171–1173 (2003).

    Article  CAS  Google Scholar 

  9. Ding, L., Spencer, A., Morita, K. & Han, M. The developmental timing regulator AIN-1 interacts with miRISCs and may target the Argonaute protein ALG-1 to cytoplasmic P bodies in C. elegans. Mol. Cell 19, 437–447 (2005).

    Article  CAS  Google Scholar 

  10. Jakymiw, A. et al. Disruption of GW bodies impairs mammalian RNA interference. Nature Cell Biol. 7, 1267–1274 (2005).

    Article  Google Scholar 

  11. Liu, J. et al. A role for the P-body component GW182 in microRNA function. Nature Cell Biol. 7, 1261–1266 (2005).

    Article  Google Scholar 

  12. Meister, G. et al. Identification of novel Argonaute-associated proteins. Curr. Biol. 15, 2149–2155 (2005).

    Article  CAS  Google Scholar 

  13. Rehwinkel, J., Behm-Ansmant, I., Gatfield, D. & Izaurralde, E. A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA 11, 1640–1647 (2005).

    Article  CAS  Google Scholar 

  14. Behm-Ansmant, I. et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 20, 1885–1898 (2006).

    Article  CAS  Google Scholar 

  15. Ding, L. & Han, M. GW182 family proteins are crucial for microRNA-mediated gene silencing. Trends Cell Biol. 17, 411–416 (2007).

    Article  CAS  Google Scholar 

  16. Eulalio, A., Tritschler, F. & Izaurralde, E. The GW182 protein family in animal cells: new insights into domains required for miRNA-mediated gene silencing. RNA 15, 1433–1442 (2009).

    Article  CAS  Google Scholar 

  17. Zhang, L. et al. Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2. Mol. Cell 28, 598–613 (2007).

    Article  CAS  Google Scholar 

  18. Ding, X. C. & Grosshans, H. Repression of C. elegans microRNA targets at the initiation level of translation requires GW182 proteins. EMBO J. 28, 213–222 (2009).

    Article  CAS  Google Scholar 

  19. Eulalio, A., Huntzinger, E. & Izaurralde, E. GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nature Struct. Mol. Biol. 15, 346–353 (2008).

    Article  CAS  Google Scholar 

  20. Eulalio, A., Helms, S., Fritzsch, C., Fauser, M. & Izaurralde, E. A C-terminal silencing domain in GW182 is essential for miRNA function. RNA 15, 1067–1077 (2009).

    Article  CAS  Google Scholar 

  21. Chekulaeva, M., Filipowicz, W. & Parker, R. Multiple independent domains of dGW182 function in miRNA-mediated repression in Drosophila. RNA 15, 794–803 (2009).

    Article  CAS  Google Scholar 

  22. Chu, C. Y. & Rana, T. M. Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol. 4, e210 (2006).

    Article  Google Scholar 

  23. Landthaler, M. et al. Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. RNA 14, 2580–2596 (2008).

    Article  CAS  Google Scholar 

  24. Zipprich, J. T., Bhattacharyya, S., Mathys, H. & Filipowicz, W. Importance of the C-terminal domain of the human GW182 protein TNRC6C for translational repression. RNA 15, 781–793 (2009).

    Article  CAS  Google Scholar 

  25. Li, S. et al. Identification of GW182 and its novel isoform TNGW1 as translational repressors in Ago2-mediated silencing. J. Cell Sci. 121, 4134–4144 (2008).

    Article  CAS  Google Scholar 

  26. Lazzaretti, D., Tournier, I. & Izaurralde, E. The C-terminal domains of human TNRC6A, B and C silence bound transcripts independently of the Argonaute proteins. RNA 15, 1059–1066 (2009).

    Article  CAS  Google Scholar 

  27. Eulalio, A. et al. The RRM domain in GW182 proteins contributes to miRNA-mediated gene silencing. Nucleic Acids Res. 37, 2974–2983 (2009).

    Article  CAS  Google Scholar 

  28. Till, S. et al. A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain. Nature Struct. Mol. Biol. 14, 897–903 (2007).

    Article  CAS  Google Scholar 

  29. El-Shami, M. et al. Reiterated WG/GW motifs form functionally and evolutionarily conserved Argonaute-binding platforms in RNAi-related components. Genes Dev. 21, 2539–2544 (2007).

    Article  CAS  Google Scholar 

  30. Takimoto, K., Wakiyama, M. & Yokoyama, S. Mammalian GW182 contains multiple Argonaute binding sites and functions in microRNA-mediated translational repression. RNA 15, 1078–1089 (2009).

    Article  CAS  Google Scholar 

  31. Bies-Etheve, N. et al. RNA-directed DNA methylation requires an AGO4-interacting member of the SPT5 elongation factor family. EMBO Rep. 10, 649–654 (2009).

    Article  CAS  Google Scholar 

  32. Partridge, J. F. et al. Functional separation of the requirements for establishment and maintenance of centromeric heterochromatin. Mol. Cell 26, 593–602 (2007).

    Article  CAS  Google Scholar 

  33. Zekri, L., Huntzinger, E., Heimstädt, S. & Izaurralde, E. The silencing domain of GW182 interacts with PABPC1 to promote translational repression and degradation of microRNA targets and is required for target release. Mol. Cell. Biol. 29, 6220–6231 (2009).

    Article  CAS  Google Scholar 

  34. Jinek, M., Fabian, M. R., Coyle, S. M., Sonenberg, N. & Doudna, J. A. Structural insights into the human GW182–PABC interaction in microRNA-mediated deadenylation. Nature Struct. Mol. Biol. 17, 238–240 (2010).

    Article  CAS  Google Scholar 

  35. Kozlov, G., Safaee, N., Rosenauer, A & Gehring, K. Structural basis of binding of P-body associated protein GW182 and Ataxin-2 by the MLLE domain of poly(A)-binding protein. J. Biol. Chem. 24 Feb 2010 (doi:10.1074/jbc.M109.089540).

  36. Khaleghpour K. et al. Dual interactions of the translational repressor Paip2 with poly(A) binding protein. Mol. Cell. Biol. 21, 5200–5213 (2001).

    Article  CAS  Google Scholar 

  37. Kozlov G. et al. Structural basis of ligand recognition by PABC, a highly specific peptide-binding domain found in poly(A)-binding protein and a HECT ubiquitin ligase. EMBO J. 23, 272–281 (2004).

    Article  CAS  Google Scholar 

  38. Derry, M. C., Yanagiya, A., Martineau, Y. & Sonenberg, N. Regulation of poly(A)-binding protein through PABP-interacting proteins. Cold Spring Harb. Symp. Quant. Biol. 71, 537–543 (2006).

    Article  CAS  Google Scholar 

  39. Kozlov, G., Ménade, M., Rosenauer, A., Nguyen, L., Gehring, K. Molecular determinants of PAM2 recognition by the MLLE domain of poly(A)-binding protein. J. Mol. Biol. 397, 397–407 (2010).

    Article  CAS  Google Scholar 

  40. Imataka, H., Gradi, A. & Sonenberg, N. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J. 17, 7480–7489 (1998).

    Article  CAS  Google Scholar 

  41. Jackson, R. J., Hellen, C. U. & Pestova, T. V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nature Rev. Mol. Cell Biol. 11, 113–127 (2010).

    Article  CAS  Google Scholar 

  42. Ezzeddine N. et al. Human TOB, an antiproliferative transcription factor, is a poly(A)-binding protein-dependent positive regulator of cytoplasmic mRNA deadenylation. Mol. Cell. Biol. 27, 7791–7801 (2007).

    Article  CAS  Google Scholar 

  43. Walters, R. W., Bradrick, S. S. & Gromeier, M. Poly(A)-binding protein modulates mRNA susceptibility to cap-dependent miRNA-mediated repression. RNA 16, 239–250 (2010).

    Article  CAS  Google Scholar 

  44. Eulalio, A. et al. 2007. Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev. 21, 2558–2570 (2007).

    Article  CAS  Google Scholar 

  45. Eulalio, A. et al. Deadenylation is a widespread effect of miRNA regulation. RNA 15, 21–32 (2009).

    Article  CAS  Google Scholar 

  46. Wu, L., Fan J. & Belasco, J. G. MicroRNAs direct rapid deadenylation of mRNA. Proc. Natl Acad. Sci. USA 103, 4034–4039 (2006).

    Article  CAS  Google Scholar 

  47. Karim, M. M. et al. A mechanism of translational repression by competition of Paip2 with eIF4G for poly(A) binding protein (PABP) binding. Proc. Natl Acad. Sci. USA 103, 9494–9499 (2006).

    Article  CAS  Google Scholar 

  48. Zeng, Y., Sankala, H., Zhang, X. & Graves, P. R. Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies. Biochem. J. 413, 429–436 (2008).

    Article  CAS  Google Scholar 

  49. Yoshida M. et al. Poly(A) binding protein (PABP) homeostasis is mediated by the stability of its inhibitor, Paip2. EMBO J. 25, 1934–1944 (2006).

    Article  CAS  Google Scholar 

  50. Eulalio, A., Behm-Ansmant, I. & Izaurralde, E. P bodies: at the crossroads of post-transcriptional pathways. Nature Rev. Mol. Cell Biol. 8, 9–22 (2007).

    Article  CAS  Google Scholar 

  51. Eulalio, A., Behm-Ansmant, I., Schweizer, D. & Izaurralde, E. P-body formation is a consequence, not the cause of RNA-mediated gene silencing. Mol. Cell. Biol. 27, 3970–3981 (2007).

    Article  CAS  Google Scholar 

  52. Albrecht, M. & Lengauer, T. Survey on the PABC recognition motif PAM2. Biochem. Biophys. Res. Commun. 316, 129–138 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research from this laboratory is supported by the Max Planck Society, grants from the Deutsche Forschungsgemeinschaft (DFG, FOR855 and the Gottfried Wilhelm Leibniz Program awarded to E.I.) and the Sixth Framework Programme of the European Commission through the SIROCCO integrated project LSHG-CT-2006-037,900.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Izaurralde.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Protein Data Bank

2X04

3KUS

FURTHER INFORMATION

Elisa izaurralde's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tritschler, F., Huntzinger, E. & Izaurralde, E. Role of GW182 proteins and PABPC1 in the miRNA pathway: a sense of déjà vu. Nat Rev Mol Cell Biol 11, 379–384 (2010). https://doi.org/10.1038/nrm2885

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2885

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing