Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Physiological functions of the HECT family of ubiquitin ligases

Key Points

  • Ubiquitylation, or tagging proteins with ubiquitin, is a post-translational modification that targets proteins for degradation by the 26S proteasome or to other cellular fates, such as altered subcellular localization.

  • The ubiquitylation reaction is carried out by E1, E2 and E3 enzymes. The E3 enzyme (a ubiquitin ligase) is responsible for substrate recognition. Most E3 enzymes belong either to the RING or the HECT superfamilies. Whereas RING E3 ubiquitin ligases act as scaffolds to bring the E2 enzyme near the substrates and facilitate the transfer of ubiquitin to the substrate, HECT E3 enzymes can directly transfer ubiquitin to the substrate.

  • HECT-containing proteins are often regulated by intramolecular interactions or interactions with accessory proteins, and can recognize their substrates either directly or with the help of adaptor proteins.

  • The HECT superfamily include members of the neuronal precursor cell expressed developmentally downregulated 4 (Nedd4) family, the HERC family and others, including E6-associated protein (E6AP), EDD and HUWE1.

  • Recent advances in genetic studies of human diseases and in knockout animals have identified the crucial role of HECT proteins in the regulation of mammalian physiology and pathology.

  • Loss or gain of function of HECT proteins result in animal diseases, including aberrant cellular and animal growth, cancer, neurological diseases, hypertension, immunological disorders such as autoimmunity, and aberrant response to viral infection.

Abstract

The ubiquitylation of proteins is carried out by E1, E2 and E3 (ubiquitin ligase) enzymes, and targets them for degradation or for other cellular fates. The HECT enzymes, including Nedd4 family members, are a major group of E3 enzymes that dictate the specificity of ubiquitylation. In addition to ubiquitylating proteins for degradation by the 26S proteasome, HECT E3 enzymes regulate the trafficking of many receptors, channels, transporters and viral proteins. The physiological functions of the yeast HECT E3 ligase Rsp5 are the best known, but the functions of HECT E3 enyzmes in metazoans are now becoming clearer from in vivo studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mammalian HECT E3 ligases.
Figure 2: The structure of the HECT domain.
Figure 3: Regulation of substrates by the Nedd4 family and other HECT E3s.
Figure 4: Modes of regulation of HECT E3 ligases.
Figure 5: Spatial regulation of Smf1 ubiquitylation by adaptor proteins.

Similar content being viewed by others

References

  1. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Hicke, L. & Dunn, R. Regulation of membrane protein transport by ubiquitin and ubiquitin–binding proteins. Annu. Rev. Cell Dev. Biol. 19, 141–172 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Xu, P. et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137, 133–145 (2009).

    Google Scholar 

  4. Li, W. et al. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PLoS ONE 3, e1487 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huibregtse, J. M., Scheffner, M., Beaudenon, S. & Howley, P. M. A family of proteins structurally and functionally related to the E6-AP ubiquitin–protein ligase. Proc. Natl Acad. Sci. USA 92, 2563–2567 (1995). The first identification of the HECT family of E3 ligases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kumar, S., Tomooka, Y. & Noda, M. Identification of a set of genes with developmentally down-regulated expression in the mouse brain. Biochem. Biophys. Res. Commun. 185, 1155–1161 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Plant, P. J. et al. Apical membrane targeting of Nedd4 is mediated by an association of its C2 domain with annexin XIIIb. J. Cell Biol. 149, 1473–1484 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dunn, R., Klos, D. A., Adler, A. S. & Hicke, L. The C2 domain of the Rsp5 ubiquitin ligase binds membrane phosphoinositides and directs ubiquitination of endosomal cargo. J. Cell Biol. 165, 135–144 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morrione, A. et al. mGrb10 interacts with Nedd4. J. Biol. Chem. 274, 24094–24099 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Wiesner, S. et al. Autoinhibition of the HECT-type ubiquitin ligase Smurf2 through its C2 domain. Cell 130, 651–662 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Staub, O. et al. WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle's syndrome. EMBO J. 15, 2371–2380 (1996). Describes the discovery of the first substrate for a mammalian Nedd4 family member.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kanelis, V., Rotin, D. & Forman-Kay, J. D. Solution structure of a Nedd4 WW domain–ENaC peptide complex. Nature Struct. Biol. 8, 407–412 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Garcia-Gonzalo, F. R. & Rosa, J. L. The HERC proteins: functional and evolutionary insights. Cell. Mol. Life Sci. 62, 1826–1838 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Renault, L., Kuhlmann, J., Henkel, A. & Wittinghofer, A. Structural basis for guanine nucleotide exchange on Ran by the regulator of chromosome condensation (RCC1). Cell 105, 245–255 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Huang, L. et al. Structure of an E6AP–UbcH7 complex: insights into ubiquitination by the E2–E3 enzyme cascade. Science 286, 1321–1326 (1999). Deciphers the first structure of a HECT domain.

    Article  CAS  PubMed  Google Scholar 

  16. Verdecia, M. A. et al. Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. Mol. Cell 11, 249–259 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Ogunjimi, A. A. et al. Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain. Mol. Cell 19, 297–308 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, M. & Pickart, C. M. Different HECT domain ubiquitin ligases employ distinct mechanisms of polyubiquitin chain synthesis. EMBO J. 24, 4324–4333 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, M., Cheng, D., Peng, J. & Pickart, C. M. Molecular determinants of polyubiquitin linkage selection by an HECT ubiquitin ligase. EMBO J. 25, 1710–1719 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fisk, H. A. & Yaffe, M. P. A role for ubiquitination in mitochondrial inheritance in Saccharomyces cerevisiae. J. Cell Biol. 145, 1199–1208 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huibregtse, J. M., Yang, J. C. & Beaudenon, S. L. The large subunit of RNA polymerase II is a substrate of the Rsp5 ubiquitin–protein ligase. Proc. Natl Acad. Sci. USA 94, 3656–3661 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Somesh, B. P. et al. Communication between distant sites in RNA polymerase II through ubiquitylation factors and the polymerase CTD. Cell 129, 57–68 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Dupre, S., Urban-Grimal, D. & Haguenauer-Tsapis, R. Ubiquitin and endocytic internalization in yeast and animal cells. Biochim. Biophys. Acta 1695, 89–111 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Belgareh-Touze, N. et al. Versatile role of the yeast ubiquitin ligase Rsp5p in intracellular trafficking. Biochem. Soc. Trans. 36, 791–796 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Helliwell, S. B., Losko, S. & Kaiser, C. A. Components of a ubiquitin ligase complex specify polyubiquitination and intracellular trafficking of the general amino acid permease. J. Cell Biol. 153, 649–662 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Galan, J. M. & Haguenauer-Tsapis, R. Ubiquitin Lys63 is involved in ubiquitination of a yeast plasma membrane protein. EMBO J. 16, 5847–5854 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shih, S. C., Sloper-Mould, K. E. & Hicke, L. Monoubiquitin carries a novel internalization signal that is appended to activated receptors. EMBO J. 19, 187–198 (2000). Shows, for the first time, that monoubiquitylation serves as an endocytic signal.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nefsky, B. & Beach, D. Pub1 acts as an E6-AP-like protein ubiquitin ligase in the degradation of cdc25. EMBO J. 15, 1301–1312 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang, K. et al. A HECT domain ubiquitin ligase closely related to the mammalian protein WWP1 is essential for Caenorhabditis elegans embryogenesis. Gene 252, 137–145 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Astin, J. W., O'Neil, N. J. & Kuwabara, P. E. Nucleotide excision repair and the degradation of RNA pol II by the Caenorhabditis elegans XPA and Rsp5 orthologues, RAD-3 and WWP-1. DNA Repair (Amst.) 7, 267–280 (2008).

    Article  CAS  Google Scholar 

  31. Shaye, D. D. & Greenwald, I. LIN-12/Notch trafficking and regulation of DSL ligand activity during vulval induction in Caenorhabditis elegans. Development 132, 5081–5092 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Ing, B. et al. Regulation of Commissureless by the ubiquitin ligase DNedd4 is required for neuromuscular synaptogenesis in Drosophila melanogaster. Mol. Cell. Biol. 27, 481–496 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Sakata, T. et al. Drosophila Nedd4 regulates endocytosis of notch and suppresses its ligand-independent activation. Curr. Biol. 14, 2228–2236 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Wilkin, M. B. et al. Regulation of notch endosomal sorting and signaling by Drosophila Nedd4 family proteins. Curr. Biol. 14, 2237–2244 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Podos, S. D., Hanson, K. K., Wang, Y. C. & Ferguson, E. L. The DSmurf ubiquitin–protein ligase restricts BMP signaling spatially and temporally during Drosophila embryogenesis. Dev. Cell 1, 567–578 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Liang, Y. Y. et al. dSmurf selectively degrades decapentaplegic-activated MAD, and its overexpression disrupts imaginal disc development. J. Biol. Chem. 278, 26307–26310 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Cao, X. R. et al. Nedd4 controls animal growth by regulating IGF-1 signaling. Sci. Signal. 1, ra5 (2008). Identifies NEDD4 as a positive growth regulator of mammalian cells and tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fouladkou, F. et al. The ubiquitin ligase Nedd4–1 is dispensable for the regulation of PTEN stability and localization. Proc. Natl Acad. Sci. USA 105, 8585–8590 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Massague, J. & Gomis, R. R. The logic of TGFβ signaling. FEBS Lett. 580, 2811–2820 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Zhu, H., Kavsak, P., Abdollah, S., Wrana, J. L. & Thomsen, G. H. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 400, 687–693 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Yamashita, M. et al. Ubiquitin ligase Smurf1 controls osteoblast activity and bone homeostasis by targeting MEKK2 for degradation. Cell 121, 101–113 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ozdamar, B. et al. Regulation of the polarity protein Par6 by TGFβ receptors controls epithelial cell plasticity. Science 307, 1603–1609 (2005). Describes the important role of SMURF1 in the degradation of RhoA and the regulation of the epithelial-to-mesenchymal transition.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, Y., Chang, C., Gehling, D. J., Hemmati-Brivanlou, A. & Derynck, R. Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc. Natl Acad. Sci. USA 98, 974–979 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin, X., Liang, M. & Feng, X. H. Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-β signaling. J. Biol. Chem. 275, 36818–36822 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Kavsak, P. et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGFβ receptor for degradation. Mol. Cell 6, 1365–1375 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Bonni, S. et al. TGF-β induces assembly of a Smad2–Smurf2 ubiquitin ligase complex that targets SnoN for degradation. Nature Cell Biol. 3, 587–595 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Gao, M. et al. Jun turnover is controlled through JNK-dependent phosphorylation of the E3 ligase Itch. Science 306, 271–275 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Chang, L. et al. The E3 ubiquitin ligase Itch couples JNK activation to TNFα-induced cell death by inducing c-FLIPL turnover. Cell 124, 601–613 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Rossi, M. et al. The ubiquitin–protein ligase Itch regulates p73 stability. EMBO J. 24, 836–848 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rossi, M. et al. The E3 ubiquitin ligase Itch controls the protein stability of p63. Proc. Natl Acad. Sci. USA 103, 12753–12758 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kamynina, E., Debonneville, C., Bens, M., Vandewalle, A. & Staub, O. A novel mouse Nedd4 protein suppresses the activity of the epithelial Na+ channel. FASEB J. 15, 204–214 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Harvey, K. F., Dinudom, A., Cook, D. I. & Kumar, S. The Nedd4-like protein KIAA0439 is a potential regulator of the epithelial sodium channel. J. Biol. Chem. 276, 8597–8601 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Lu, C., Pribanic, S., Debonneville, A., Jiang, C. & Rotin, D. The PY motif of ENaC, mutated in Liddle syndrome, regulates channel internalization, sorting and mobilization from subapical pool. Traffic 8, 1246–1264 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Pak, Y., Glowacka, W. K., Bruce, M. C., Pham, N. & Rotin, D. Transport of LAPTM5 to lysosomes requires association with the ubiquitin ligase Nedd4, but not LAPTM5 ubiquitination. J. Cell Biol. 175, 631–645 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Saksena, S., Sun, J., Chu, T. & Emr, S. D. ESCRTing proteins in the endocytic pathway. Trends Biochem. Sci. 32, 561–573 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Morita, E. & Sundquist, W. I. Retrovirus budding. Annu. Rev. Cell Dev. Biol. 20, 395–425 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Okumura, A., Pitha, P. M. & Harty, R. N. ISG15 inhibits Ebola VP40 VLP budding in an L-domain-dependent manner by blocking Nedd4 ligase activity. Proc. Natl Acad. Sci. USA 105, 3974–3979 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Malakhova, O. A. & Zhang, D. E. ISG15 inhibits Nedd4 ubiquitin E3 activity and enhances the innate antiviral response. J. Biol. Chem. 283, 8783–8787 (2008). References 57 and 58 provide the first demonstration of inhibition of HECT ligase by a ubiquitin-like protein.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, X. et al. NEDD4–1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 128, 129–139 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Trotman, L. C. et al. Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell 128, 141–156 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang, B. et al. Nedd4 augments the adaptive immune response by promoting ubiquitin-mediated degradation of Cbl-b in activated T cells. Nature Immunol. 9, 1356–1363 (2008).

    Article  CAS  Google Scholar 

  62. Perry, W. L. et al. The itchy locus encodes a novel ubiquitin protein ligase that is disrupted in a18H mice. Nature Genet. 18, 143–146 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Fang, D. et al. Dysregulation of T lymphocyte function in itchy mice: a role for Itch in TH2 differentiation. Nature Immunol. 3, 281–287 (2002). Reference 62 and 63 found that loss of the HECT E3 ligase ITCH causes immune defects.

    Article  CAS  Google Scholar 

  64. Venuprasad, K. et al. Convergence of Itch-induced ubiquitination with MEKK1–JNK signaling in Th2 tolerance and airway inflammation. J. Clin. Invest. 116, 1117–1126 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Heissmeyer, V. et al. Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. Nature Immunol. 5, 255–265 (2004).

    Article  CAS  Google Scholar 

  66. Chen, C. et al. Ubiquitin E3 ligase WWP1 as an oncogenic factor in human prostate cancer. Oncogene 26, 2386–2394 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Chen, C., Zhou, Z., Ross, J. S., Zhou, W. & Dong, J. T. The amplified WWP1 gene is a potential molecular target in breast cancer. Int. J. Cancer 121, 80–87 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Chen, C. et al. Human Kruppel-like factor 5 is a target of the E3 ubiquitin ligase WWP1 for proteolysis in epithelial cells. J. Biol. Chem. 280, 41553–41561 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Laine, A. & Ronai, Z. Regulation of p53 localization and transcription by the HECT domain E3 ligase WWP1. Oncogene 26, 1477–1483 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Foot, N. J. et al. Regulation of the divalent metal ion transporter DMT1 and iron homeostasis by a ubiquitin-dependent mechanism involving Ndfips and WWP2. Blood 112, 4268–4275 (2008). Provides an example of how specific mammalian adaptor proteins can mediate the regulation of a substrate by a HECT E3.

    Article  CAS  PubMed  Google Scholar 

  71. Lifton, R. P., Gharavi, A. G. & Geller, D. S. Molecular mechanisms of human hypertension. Cell 104, 545–556 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Shi, P. P. et al. Salt-sensitive hypertension and cardiac hypertrophy in mice deficient in the ubiquitin ligase Nedd4–2. Am. J. Physiol. Renal Physiol. 295, F462–F470 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pradervand, S. et al. A mouse model for Liddle's syndrome. J. Am. Soc. Nephrol. 10, 2527–2533 (1999).

    CAS  PubMed  Google Scholar 

  74. Miyazaki, K. et al. A novel HECT-type E3 ubiquitin ligase, NEDL2, stabilizes p73 and enhances its transcriptional activity. Biochem. Biophys. Res. Commun. 308, 106–113 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Li, Y. et al. A novel HECT-type E3 ubiquitin protein ligase NEDL1 enhances the p53-mediated apoptotic cell death in its catalytic activity-independent manner. Oncogene 27, 3700–3709 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Miyazaki, K. et al. NEDL1, a novel ubiquitin–protein isopeptide ligase for dishevelled-1, targets mutant superoxide dismutase-1. J. Biol. Chem. 279, 11327–11335 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Garcia-Gonzalo, F. R., Bartrons, R., Ventura, F. & Rosa, J. L. Requirement of phosphatidylinositol-4,5-bisphosphate for HERC1-mediated guanine nucleotide release from ARF proteins. FEBS Lett. 579, 343–348 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Chong-Kopera, H. et al. TSC1 stabilizes TSC2 by inhibiting the interaction between TSC2 and the HERC1 ubiquitin ligase. J. Biol. Chem. 281, 8313–8316 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Lehman, A. L. et al. A very large protein with diverse functional motifs is deficient in rjs (runty, jerky, sterile) mice. Proc. Natl Acad. Sci. USA 95, 9436–9441 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sturm, R. A. et al. A single SNP in an evolutionary conserved region within intron 86 of the HERC2 gene determines human blue-brown eye color. Am. J. Hum. Genet. 82, 424–431 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Eiberg, H. et al. Blue eye color in humans may be caused by a perfectly associated founder mutation in a regulatory element located within the HERC2 gene inhibiting OCA2 expression. Hum. Genet. 123, 177–187 (2008). References 80 and 81 were the first to implicate HERC2 in the determination of eye colour.

    Article  CAS  PubMed  Google Scholar 

  82. Hochrainer, K., Kroismayr, R., Baranyi, U., Binder, B. R. & Lipp, J. Highly homologous HERC proteins localize to endosomes and exhibit specific interactions with hPLIC and Nm23B. Cell. Mol. Life Sci. 65, 2105–2117 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Cruz, C., Ventura, F., Bartrons, R. & Rosa, J. L. HERC3 binding to and regulation by ubiquitin. FEBS Lett. 488, 74–80 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Rodriguez, C. I. & Stewart, C. L. Disruption of the ubiquitin ligase HERC4 causes defects in spermatozoon maturation and impaired fertility. Dev. Biol. 312, 501–508 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Kroismayr, R. et al. HERC5, a HECT E3 ubiquitin ligase tightly regulated in LPS activated endothelial cells. J. Cell Sci. 117, 4749–4756 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Dastur, A., Beaudenon, S., Kelley, M., Krug, R. M. & Huibregtse, J. M. Herc5, an interferon-induced HECT E3 enzyme, is required for conjugation of ISG15 in human cells. J. Biol. Chem. 281, 4334–4338 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Wong, J. J., Pung, Y. F., Sze, N. S. & Chin, K. C. HERC5 is an IFN-induced HECT-type E3 protein ligase that mediates type I IFN-induced ISGylation of protein targets. Proc. Natl Acad. Sci. USA 103, 10735–10740 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yoshida, M. et al. Poly(A) binding protein (PABP) homeostasis is mediated by the stability of its inhibitor, Paip2. EMBO J. 25, 1934–1944 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Henderson, M. J. et al. EDD mediates DNA damage-induced activation of CHK2. J. Biol. Chem. 281, 39990–40000 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Ohshima, R. et al. Putative tumor suppressor EDD interacts with and up-regulates APC. Genes Cells 12, 1339–1345 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Saunders, D. N. et al. Edd, the murine hyperplastic disc gene, is essential for yolk sac vascularization and chorioallantoic fusion. Mol. Cell. Biol. 24, 7225–7234 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen, D. et al. ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 121, 1071–1083 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Zhong, Q., Gao, W., Du, F. & Wang, X. Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 121, 1085–1095 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Adhikary, S. et al. The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation. Cell 123, 409–421 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Zhao, X. et al. The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein. Nature Cell Biol. 10, 643–653 (2008). This important work identified NMYC as the substrate for HUWE1 and thus the control of HUWE1 in neuronal differentiation.

    Article  CAS  PubMed  Google Scholar 

  96. Herold, S. et al. Miz1 and HectH9 regulate the stability of the checkpoint protein, TopBP1. EMBO J. 27, 2851–2861 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Scheffner, M. & Staub, O. HECT E3s and human disease. BMC Biochem. 8, S6 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Froyen, G. et al. Submicroscopic duplications of the hydroxysteroid dehydrogenase HSD17B10 and the E3 ubiquitin ligase HUWE1 are associated with mental retardation. Am. J. Hum. Genet. 82, 432–443 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Vu, T. H. & Hoffman, A. R. Imprinting of the Angelman syndrome gene, UBE3A, is restricted to brain. Nature Genet. 17, 12–13 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Rougeulle, C., Glatt, H. & Lalande, M. The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain. Nature Genet. 17, 14–15 (1997). References 99 and 100 identified E6AP as an imprinted gene and found that mutations in the E6AP gene cause Angelman syndrome, a neurodevelopmental disorder.

    Article  CAS  PubMed  Google Scholar 

  101. Kishino, T., Lalande, M. & Wagstaff, J. UBE3A/E6-AP mutations cause Angelman syndrome. Nature Genet. 15, 70–73 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Jiang, Y. H. et al. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 21, 799–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Colas, D., Wagstaff, J., Fort, P., Salvert, D. & Sarda, N. Sleep disturbances in Ube3a maternal-deficient mice modeling Angelman syndrome. Neurobiol. Dis. 20, 471–478 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Wu, Y. et al. A Drosophila model for Angelman syndrome. Proc. Natl Acad. Sci. USA 105, 12399–12404 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Scheffner, M., Huibregtse, J. M., Vierstra, R. D. & Howley, P. M. The HPV-16 E6 and E6-AP complex functions as a ubiquitin–protein ligase in the ubiquitination of p53. Cell 75, 495–505 (1993). This seminal work identified E6AP as the E3 ligase for the tumour suppressor p53 in HPV-infected cells. Such an infection can lead to cervical cancer.

    Article  CAS  PubMed  Google Scholar 

  106. Martin, P., Martin, A. & Shearn, A. Studies of l(3)c43hs1 a polyphasic, temperature-sensitive mutant of Drosophila melanogaster with a variety of imaginal disc defects. Dev. Biol. 55, 213–232 (1977).

    Article  CAS  PubMed  Google Scholar 

  107. Lee, J. D., Amanai, K., Shearn, A. & Treisman, J. E. The ubiquitin ligase Hyperplastic discs negatively regulates hedgehog and decapentaplegic expression by independent mechanisms. Development 129, 5697–5706 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Clancy, J. L. et al. EDD, the human orthologue of the hyperplastic discs tumour suppressor gene, is amplified and overexpressed in cancer. Oncogene 22, 5070–5081 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Fuja, T. J., Lin, F., Osann, K. E. & Bryant, P. J. Somatic mutations and altered expression of the candidate tumor suppressors CSNK1 ε, DLG1, and EDD/hHYD in mammary ductal carcinoma. Cancer Res. 64, 942–951 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Anglesio, M. S. et al. Differential expression of a novel ankyrin containing E3 ubiquitin–protein ligase, Hace1, in sporadic Wilms' tumor versus normal kidney. Hum. Mol. Genet. 13, 2061–2074 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Hibi, K. et al. Aberrant methylation of the HACE1 gene is frequently detected in advanced colorectal cancer. Anticancer Res. 28, 1581–1584 (2008).

    CAS  PubMed  Google Scholar 

  112. Zhang, L. et al. The E3 ligase HACE1 is a critical chromosome 6q21 tumor suppressor involved in multiple cancers. Nature Med. 13, 1060–1069 (2007). Provides direct in vivo evidence using knockout mice for the function of HACE1 as a tumour suppressor.

    Article  CAS  PubMed  Google Scholar 

  113. Zohn, I. E., Anderson, K. V. & Niswander, L. The Hectd1 ubiquitin ligase is required for development of the head mesenchyme and neural tube closure. Dev. Biol. 306, 208–221 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Crosas, B. et al. Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell 127, 1401–1413 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Brooks, W. S. et al. G2E3 is a dual function ubiquitin ligase required for early embryonic development. J. Biol. Chem. 283, 22304–22315 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Debonneville, C. et al. Phosphorylation of Nedd4–2 by Sgk1 regulates epithelial Na+ channel cell surface expression. EMBO J. 20, 7052–7059 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Snyder, P. M., Olson, D. R. & Thomas, B. C. Serum and glucocorticoid-regulated kinase modulates Nedd4-2-mediated inhibition of the epithelial Na+ channel. J. Biol. Chem. 277, 5–8 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Oberst, A. et al. The Nedd4-binding partner 1 (N4BP1) protein is an inhibitor of the E3 ligase Itch. Proc. Natl Acad. Sci. USA 104, 11280–11285 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gallagher, E., Gao, M., Liu, Y. C. & Karin, M. Activation of the E3 ubiquitin ligase Itch through a phosphorylation-induced conformational change. Proc. Natl Acad. Sci. USA 103, 1717–1722 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bruce, M. C. et al. Regulation of Nedd4–2 self-ubiquitination and stability by a PY motif located within its HECT-domain. Biochem. J. 415, 155–163 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Lu, K. et al. Targeting WW domains linker of HECT-type ubiquitin ligase Smurf1 for activation by CKIP-1. Nature Cell Biol. 10, 994–1002 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Spana, E. P. & Doe, C. Q. Numb antagonizes Notch signaling to specify sibling neuron cell fates. Neuron 17, 21–26 (1996).

    Article  CAS  PubMed  Google Scholar 

  123. McGill, M. A. & McGlade, C. J. Mammalian numb proteins promote Notch1 receptor ubiquitination and degradation of the Notch1 intracellular domain. J. Biol. Chem. 278, 23196–23203 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Kee, Y., Lyon, N. & Huibregtse, J. M. The Rsp5 ubiquitin ligase is coupled to and antagonized by the Ubp2 deubiquitinating enzyme. EMBO J. 24, 2414–2424 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Liu, X. F. & Culotta, V. C. Post-translation control of Nramp metal transport in yeast. Role of metal ions and the BSD2 gene. J. Biol. Chem. 274, 4863–4868 (1999).

    Article  CAS  PubMed  Google Scholar 

  126. Hettema, E. H., Valdez-Taubas, J. & Pelham, H. R. Bsd2 binds the ubiquitin ligase Rsp5 and mediates the ubiquitination of transmembrane proteins. EMBO J. 23, 1279–1288 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Liu, X. F., Supek, F., Nelson, N. & Culotta, V. C. Negative control of heavy metal uptake by the Saccharomyces cerevisiae BSD2 gene. J. Biol. Chem. 272, 11763–11769 (1997).

    Article  CAS  PubMed  Google Scholar 

  128. Stimpson, H. E., Lewis, M. J. & Pelham, H. R. Transferrin receptor-like proteins control the degradation of a yeast metal transporter. EMBO J. 25, 662–672 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Shearwin-Whyatt, L., Dalton, H. E., Foot, N. & Kumar, S. Regulation of functional diversity within the Nedd4 family by accessory and adaptor proteins. Bioessays 28, 617–628 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Oliver, P. M. et al. Ndfip1 protein promotes the function of itch ubiquitin ligase to prevent T cell activation and T helper 2 cell-mediated inflammation. Immunity 25, 929–940 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Putz, U. et al. Nedd4-family interacting protein 1 (Ndfip1) is required for the exosomal secretion of Nedd4-family proteins. J. Biol. Chem. 283, 32621–32627 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Nikko, E., Sullivan, J. A. & Pelham, H. R. Arrestin-like proteins mediate ubiquitination and endocytosis of the yeast metal transporter Smf1. EMBO Rep. 9, 1216–1221 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lin, C. H., Macgurn, J. A., Chu, T., Stefan, C. J. & Emr, S. D. Arrestin-related ubiquitin-ligase adaptors regulate endocytosis and protein turnover at the cell surface. Cell 135, 714–725 (2008). References 132 and 133 provide evidence that arrestin-like proteins act as adaptors for Rsp5 to regulate protein turnover and endocytosis.

    Article  CAS  PubMed  Google Scholar 

  134. Leon, S., Erpapazoglou, Z. & Haguenauer-Tsapis, R. Ear1p and Ssh4p are new adaptors of the ubiquitin ligase Rsp5p for cargo ubiquitylation and sorting at multivesicular bodies. Mol. Biol. Cell 19, 2379–2388 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gupta, R. et al. Ubiquitination screen using protein microarrays for comprehensive identification of Rsp5 substrates in yeast. Mol. Syst. Biol. 3, 116 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yen, H. C., Xu, Q., Chou, D. M., Zhao, Z. & Elledge, S. J. Global protein stability profiling in mammalian cells. Science 322, 918–923 (2008). Describes a novel proteomic approach to identify substrates for E3 ligases in vivo .

    Article  CAS  PubMed  Google Scholar 

  137. Tokunaga, F. et al. Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nature Cell Biol. 11, 123–132 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Rahighi, S. et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-κB activation. Cell 136, 1098–1109 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research on ubiquitin pathways in the Rotin laboratory is supported by the Canadian Institute of Health Research and the National Cancer Institute of Canada/Canadian Cancer Society, and research in the Kumar laboratory by the National Health and Medical Research Council of Australia and the Australian Research Council. The authors thank the members of their respective laboratories for helpful comments and apologize to those whose work could not be cited owing to space limitations.

Author information

Authors and Affiliations

Authors

Supplementary information

Related links

Related links

DATABASES

OMIM

Angelman syndrome

FALS

Liddle syndrome

Wilm's tumour

XLMR

PFAM 

C2

DUF908

DUF913

HECT

IQ

PHD

RCC1

RING

SPRY

UBA

WD40

WW

WWE

FURTHER INFORMATION

Daniela Rotin's homepage

Sharad Kumar's laboratory

Sanger protein domain database

Glossary

26S proteasome

A multiprotein complex that comprises 19S regulatory and 20S catalytic subcomplexes and that recognizes and breaks down ubiquitylated proteins.

WW domain

A protein–protein interaction domain that contains two conserved Trp residues.

Multivesicular body

(MVB). An intermediate organelle that is involved in protein sorting in the lysosomal degradation pathway.

PY motif

A short protein motif, either Pro-Pro-X-Tyr or Leu-Pro-X-Tyr (where X indicates any amino acid), that binds WW domains.

GEF

(Guanine nucleotide-exchange factor). A factor that stimulates the activity of GTPases by catalysing the exchange of GDP for GTP.

Lysosome

A eukaryotic organelle that carries proteolytic enzymes, which degrade proteins targeted to the compartment. In yeast, the lysosome is often called the vacuole.

Tight junction

A cell–cell junction that tightly adheres adjacent epithelial cells and prevents the paracellular passage of solutes and ions.

Gag

The gag gene encodes the viral matrix, capsid and nucleoproteins. These proteins are synthesized as a polyprotein precursor, which is cleaved by proteases into products that associate with the nucleoprotein core of the virion.

VP40

(Viral protein 40). The major matrix protein of Ebola virus that is essential for viral assembly and budding.

M protein

Rhabdovirus matrix (M) protein is required to condense and target the viral ribonucleoprotein coil to the plasma membrane.

Z region

A region of arenavirus that encodes a small protein (Z) that contains a Pro-rich region and a RING domain.

T helper 2

A subset of T helper lymphocytes that inhibits the cell-mediated immune response.

GRF

(Guanine nucleotide-releasing factor). A protein that catalyses the release of GDP.

ISGylation

A similar process to ubiquitylation in which interferon-stimulated gene 15 (ISG15), a ubiquitin-like protein, is covalently attached to a specific substrate.

UBR1-like zinc finger

A domain in yeast Ubr1 that is involved in the recognition of substrates of the N-end rule, the ubiquitin-dependent pathway by which target proteins are degraded through their destabilizing amino-terminal residues. Zinc finger domains are small motifs that bind one or more zinc atoms.

Imprinted region

A region in the chromosome that is transcribed only from the maternal or paternal chromosome.

Telomerase

An enzyme that elongates the 3′ ends (telomeres) of DNA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rotin, D., Kumar, S. Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol 10, 398–409 (2009). https://doi.org/10.1038/nrm2690

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2690

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing