Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

It takes two to tango: regulation of G proteins by dimerization

Abstract

Guanine nucleotide-binding (G) proteins, which cycle between a GDP- and a GTP-bound conformation, are conventionally regulated by GTPase-activating proteins (GAPs) and guanine nucleotide-exchange factors (GEFs), and function by interacting with effector proteins in the GTP-bound 'on' state. Here we present another class of G proteins that are regulated by homodimerization, which we would categorize as G proteins activated by nucleotide-dependent dimerization (GADs). This class includes proteins such as signal recognition particle (SRP), dynamin, septins and the newly discovered Roco protein Leu-rich repeat kinase 2 (LRRK2). We propose that the juxtaposition of the G domains of two monomers across the GTP-binding sites activates the biological function of these proteins and the GTPase reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two versions of the GTPase cycle.
Figure 2: Structures of G proteins activated by nucleotide-dependent dimerization
Figure 3: The G protein cycle of GADs.

Similar content being viewed by others

References

  1. Colicelli, J. Human RAS superfamily proteins and related GTPases. Sci. STKE 250, 1–31 (2004).

    Google Scholar 

  2. Vetter, I. R. & Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science 294, 1299–1304 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Saraste, M., Sibbald, P. R. & Wittinghofer, A. The P-loop—a common motif in ATP- and GTP-binding proteins. Trends Biochem. Sci. 15, 430–434 (1990).

    Article  PubMed  Google Scholar 

  4. Leipe, D. D., Wolf, Y. I., Koonin, E. V. & Aravind, L. Classification and evolution of P-loop GTPases and related ATPases. J Mol. Biol. 317, 41–72 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Bos, J. L., Rehmann, H. & Wittinghofer, A. GEFs and GAPs: critical elements in the control of small G proteins. Cell 129, 865–877 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Scheffzek, K. & Ahmadian, M. GTPase activating proteins: structural and functional insights 18 years after discovery. Cell. Mol. Life Sci. 62, 3014–3038 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Scrima, A. & Wittinghofer, A. Dimerisation-dependent GTPase reaction of MnmE: how potassium acts as GTPase-activating element. EMBO J. 25, 2940–2951 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moser, C., Mol., O., Goody, R. S. & Sinning, I. The signal recognition particle receptor of Escherichia coli (Ftsy) has a nucleotide exchange factor built into the GTPase domain. Proc. Natl Acad. Sci. USA 94, 11339–11344 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gasper, R., Scrima, A. & Wittinghofer, A. Structural insights into HypB, a GTP-binding protein that regulates metal binding. J Biol.Chem. 281, 27492–27502 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Wandinger, S. K., Richter, K. & Buchner, J. The Hsp90 chaperone machinery. J Biol.Chem. 283, 18473–18477 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Wittinghofer, A. Signaling mechanistics: aluminum fluoride for molecule of the year. Curr. Biol. 7, R682–R685 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Ghosh, A., Praefcke, G. J. K., Renault, L., Wittinghofer, A. & Herrmann, C. How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP. Nature 440, 101–104 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Schindelin, H., Kisker, C., Schlessman, J. L., Howard, J. B. & Rees, D. C. Structure of ADP˙AIF4-stabilized nitrogenase complex and its implications for signal transduction. Nature 387, 370–376 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Wallas, T. R., Smith, M. D., Sanchez-Nieto, S. & Schnell, D. J. The roles of Toc34 and Toc75 in targeting the Toc159 preprotein receptor to chloroplasts. J Biol.Chem. 278, 44289–44297 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Oreb, M., Tews, I. & Schleiff, E. Policing Tic 'n' Toc, the doorway to chloroplasts. Trends Cell Biol. 18, 19–27 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Egea, P. F. et al. Substrate twinning activates the signal recognition particle and its receptor. Nature 427, 215–221 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Focia, P. J., Shepotinovskaya, I. V., Seidler, J. A. & Freymann, D. M. Heterodimeric GTPase core of the SRP targeting complex. Science 303, 373–377 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Connolly, T. & Gilmore, R. The signal recognition particle receptor mediates the GTP-dependent displacement of SRP from the signal sequence of the nascent polypeptide. Cell 57, 599–610 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Focia, P. J., Gawronski-Salerno, J., Coon, J. S. & Freymann, D. M. Structure of a GDP: AlF4 complex of the SRP GTPases Ffh and FtsY, and identification of peripheral nucleotide interaction site. J Mol.Biol. 360, 631–643 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shan, S. O., Stroud, R. M. & Walter, P. Mechanism of association and reciprocal activation of two GTPases. PLoS. Biol. 2, e320 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, X., Schaffitzel, C., Ban, N. & Shan, S. O. Multiple conformational switches in a GTPase complex control co-translational protein targeting. Proc. Natl Acad. Sci. USA 106, 1754–1759 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Neher, S. B., Bradshaw, N., Floor, S. N., Gross, J. D. & Walter, P. SRP RNA controls a conformational switch regulating the SRP–SRP receptor interaction. Nature Struct. Mol. Biol. 15, 916–923 (2008).

    Article  CAS  Google Scholar 

  23. Zhang, X., Kung, S. & Shan, S. O. Demonstration of a multistep mechanism for assembly of the SRP × SRP receptor complex: implications for the catalytic role of SRP RNA. J Mol.Biol. 381, 581–593 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Egea, P. F., Stroud, R. M. & Walter, P. Targeting proteins to membranes: structure of the signal recognition particle. Curr Opin Struct.Biol. 15, 213–220 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Versele, M. & Thorner, J. Some assembly required: yeast septins provide the instruction manual. Trends Cell Biol. 15, 414–424 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Barral, Y. & Kinoshita, M. Structural insights shed light onto septin assemblies and function. Curr. Opin. Cell Biol. 20, 12–18 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Farkasovsky, M., Herter, P., Voss, B. & Wittinghofer, A. Nucleotide binding and filament assembly of recombinant yeast septin complexes. Biol. Chem. 386, 643–656 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Frazier, J. A. et al. Polymerization of purified yeast septins — evidence that organized filament arrays may not be required for septin function. J. Cell Biol. 143, 737–749 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sheffield, P. J. et al. Borg/septin interactions and the assembly of mammalian septin heterodimers, trimers, and filaments. J Biol.Chem. 278, 3483–3488 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Sirajuddin, M. et al. Structural insight into filament formation by mammalian septins. Nature 449, 311–315 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Huang, Y. W., Surka, M. C., Reynaud, D., Pace-Asciak, C. & Trimble, W. S. GTP binding and hydrolysis kinetics of human septin 2. FEBS J. 273, 3248–3260 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Mitchison, T. J. & Field, C. M. Cytoskeleton: what does GTP do for septins? Curr. Biol. 12, R788–R790 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Barral, Y., Mermall, V., Mooseker, M. S. & Snyder, M. Compartmentalization of the cell cortex by septins is required for maintenance of cell polarity in yeast. Mol. Cell 5, 841–851 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Kessler, F. & Schnell, D. J. The function and diversity of plastid protein import pathways: a multilane GTPase highway into plastids. Traffic 7, 248–257 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Schleiff, E., Jelic, M. & Soll, J. A GTP-driven motor moves proteins across the outer envelope of chloroplasts. Proc. Natl Acad. Sci. USA 100, 4604–4609 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kessler, F., Blobel, G., Patel, H. A. & Schnell, D. J. Identification of two GTP-binding proteins in the chloroplast protein import machinery. Science 266, 1035–1039 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Hirsch, S., Muckel, E., Heemeyer, F., von Heijne, G. & Soll, J. A receptor component of the chloroplast protein translocation machinery. Science 266, 1989–1992 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Sun, Y. J. et al. Crystal structure of pea Toc34, a novel GTPase of the chloroplast protein translocon. Nature Struct. Biol. 9, 95–100 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Koenig, P. et al. The GTPase cycle of the chloroplast import receptors Toc33/Toc34: implications from monomeric and dimeric structures. Structure 16, 585–596 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Koenig, P. et al. On the significance of Toc-GTPase homodimers. J Biol.Chem. 283, 23104–23112 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Yeh, Y. H. et al. Dimerization is important for the GTPase activity of chloroplast translocon components at Toc33 and psToc159. J Biol.Chem. 282, 13845–13853 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Reddick, L. E., Vaughn, M. D., Wright, S. J., Campbell, I. M. & Bruce, B. D. In vitro comparative kinetic analysis of the chloroplast Toc GTPases. J. Biol. Chem. 282, 11410–11426 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Ertel, F. et al. The evolutionarily related β-barrel polypeptide transporters from Pisum sativum and Nostoc PCC7120 contain two distinct functional domains. J Biol. Chem. 280, 28281–28289 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Smith, M. D., Hiltbrunner, A., Kessler, F. & Schnell, D. J. The targeting of the atToc159 preprotein receptor to the chloroplast outer membrane is mediated by its GTPase domain and is regulated by GTP. J. Cell Biol. 159, 833–843 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Praefcke, G. J. K. & McMahon, H. T. The dynamin superfamily: universal membrane tubulation and fission molecules? Nature Rev. Mol. Cell Biol. 5, 133–147 (2004).

    Article  CAS  Google Scholar 

  46. Sever, S., Muhlberg, A. B. & Schmid, S. L. Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis. Nature 398, 481–486 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Niemann, H. H., Knetsch, M. L. W., Scherer, A., Manstein, D. J. & Kull, F. J. Crystal structure of a dynamin GTPase domain in both nucleotide-free and GDP-bound forms. EMBO J. 20, 5813–5821 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Reubold, T. F. et al. Crystal structure of the GTPase domain of rat dynamin 1. Proc. Natl Acad. Sci. USA 102, 13093–13098 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Low, H. H. & Lowe, J. A bacterial dynamin-like protein. Nature 444, 766–769 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Prakash, B., Praefcke, G. J. K., Renault, L., Wittinghofer, A. & Herrmann, C. Structure of human guanylate-binding protein 1 representing a unique class of GTP-binding proteins. Nature 403, 567–571 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Schwemmle, M. & Staeheli, P. The interferon-induced 67-kDa guanylate-binding protein (hGBP1) is a GTPase that converts GTP to GMP. J Biol. Chem. 269, 11299–11305 (1994).

    CAS  PubMed  Google Scholar 

  52. Prakash, B., Renault, L., Praefcke, G. J. K., Herrmann, C. & Wittinghofer, A. Triphosphate structure of guanylate-binding protein 1 and implications for nucleotide binding and GTPase mechanism. EMBO J. 19, 4555–4564 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Decoster, E., Vassal, A. & Faye, G. MSS1, a nuclear-encoded mitochondrial GTPase involved in the expression of COX1 subunit of cytochrome c oxidase. J Mol. Biol. 232, 79–88 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Colby, G., Tu, M. & Tzagoloff, A. Mto1 codes for a mitochondrial protein required for respiration in paromomycin-resistant mutants of Saccharomyces cerevisiae. J Biol. Chem. 273, 27945–27952 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Li, X. M., Li, R. H., Lin, X. H. & Guan, M. X. Isolation and characterization of the putative nuclear modifier gene MTO1 involved in the pathogenesis of deafness-associated mitochondrial 12S rRNA A1555G mutation. J. Biol. Chem. 277, 27256–27264 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Suzuki, T., Suzuki, T., Wada, T., Saigo, K. & Watanabe, K. Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases. EMBO J. 21, 6581–6589 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Scrima, A., Vetter, I. R., Armengod, M. E. & Wittinghofer, A. The structure of the TrmE GTP-binding protein and its implications for tRNA modification. EMBO J. 24, 23–33 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Yim, L. et al. The GTPase activity and C-terminal cysteine of the Escherichia coli MnmE protein are essential for its tRNA modifying function. J Biol. Chem. 278, 28378–28387 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Meyer, S., Scrima, A., Versees, W. & Wittinghofer, A. Crystal structures of the conserved tRNA-modifying enzyme GidA: implications for its interaction with MnmE and substrate. J Mol. Biol. 380, 532–547 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Goldberg, J. M., Bosgraaf, L., Van Haastert, P. J. M. & Smith, J. L. Identification of four candidate cGMP targets in Dictylostelium. Proc. Natl Acad. Sci. USA 99, 6749–6754 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bosgraaf, L. & Van Haastert, P. J. Roc, a Ras/GTPase domain in complex proteins. Biochim Biophys. Acta 1643, 5–10 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Paisan-Ruiz, C. et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 44, 595–600 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Zimprich, A. et al. Mutations in LRRK2 cause autosomal-dominant Parkinsonism with pleiomorphic pathology. Neuron 44, 601–607 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Smith, W. W. et al. Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nature Neurosci. 9, 1231–1233 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Korr, D. et al. LRRK1 protein kinase activity is stimulated upon binding of GTP to its Roc domain. Cell. Signal. 18, 910–920 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Lewis, P. A. et al. The R1441C mutation of LRRK2 disrupts GTP hydrolysis. Biochem Biophys Res. Commun. 357, 1668–1671 (2007).

    Article  CAS  Google Scholar 

  67. West, A. B. et al. Parkinson's disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum Mol. Genet. 16, 223–232 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Greggio, E. et al. Mutations in LRRK2/dardarin associated with Parkinson disease are more toxic than equivalent mutations in the homologous kinase LRRK1. J. Neurochem. 102, 93–102 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Ito, G. et al. GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson's disease. Biochemistry 46, 1380–1388 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Gotthardt, K., Weyand, M., Kortholt, A., Van Haastert, P. J. & Wittinghofer, A. Structure of the Roc-COR domain tandem of C. tepidum, a prokaryotic homologue of the human LRRK2 Parkinson kinase. EMBO J. 27, 2239–2249 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Deng, J. et al. Structure of the ROC domain from the Parkinson's disease-associated leucine-rich repeat kinase 2 reveals a dimeric GTPase. Proc. Natl Acad. Sci. USA 105, 1499–1504 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jaleel, M. et al. LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson's disease mutants affect kinase activity. Biochem. J. 405, 307–317 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bickford, L. C., Mossessova, E. & Goldberg, J. A structural view of the COPII vesicle coat. Curr Opin Struct. Biol. 14, 147–153 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Slep, K. C. et al. Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 angstrom. Nature 409, 1071–1077 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Scrima, A., Thomas, C., Deaconescu, D. & Wittinghofer, A. The Rap–RapGAP complex: GTP hydrolysis without catalytic glutamine and arginine residues. EMBO J. 27, 1145–1153 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sondek, J., Lambright, D. G., Noel, J. P., Hamm, H. E. & Sigler, P. B. GTPase mechanism of G proteins from the 1.7-Å crystal structure of transducin α˙GDP˙ AIF4 . Nature 372, 276–279 (1994).

    Article  CAS  PubMed  Google Scholar 

  77. Coleman, D. E. et al. Structures of active conformations of Giα1 and the mechanism of GTP hydrolysis. Science 265, 1405–1412 (1994).

    Article  CAS  PubMed  Google Scholar 

  78. Mittal, R., Ahmadian, M. R., Goody, R. S. & Wittinghofer, A. Formation of a transition-state analog of the Ras GTPase reaction by Ras-GDP, tetrafluoroaluminate, and GTPase-activating proteins. Science 273, 115–117 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Pan, X. J., Eathiraj, S., Munson, M. & Lambright, D. G. TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism. Nature 442, 303–306 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Gremer, L., Gilsbach, B., Ahmadian, M. R. & Wittinghofer, A. Fluoride complexes of oncogenic Ras mutants to study the Ras–RasGap interaction. Biol. Chem. 389, 1163–1171 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Tesmer, J. J. G., Berman, D. M., Gilman, A. G. & Sprang, S. R. Structure of RGS4 bound to AlF4 activated Giα1: stabilization of the transition state or GTP hydrolysis. Cell 89, 251–261 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Veltel, S., Gasper, R., Eisenacher, E. & Wittinghofer, A. The retinitis pigmentosa 2 gene product is a GTPase-activating protein for Arf-like 3. Nature Struct. Mol. Biol. 15, 373–380 (2008).

    Article  CAS  Google Scholar 

  83. Bigay, J., Gounon, P., Robineau, S. & Antonny, B. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426, 563–566 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Goldberg, J. Structural and functional analysis of the ARF1–ARFGAP complex reveals a role for coatomer in GTP hydrolysis. Cell 96, 893–902 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Lutz, S. et al. Molecular characterization of an operon (hyp) necessary for the activity of the three hydrogenase isoenzymes in Escherichia coli. Mol. Microbiol. 5, 123–135 (1991).

    Article  CAS  PubMed  Google Scholar 

  86. Maier, T., Lottspeich, F. & Bock, A. GTP hydrolysis by HypB is essential for nickel insertion into hydrogenases of Escherichia coli. Eur J. Biochem. 230, 133–138 (1995).

    Article  CAS  PubMed  Google Scholar 

  87. Maier, T., Jacobi, A., Sauter, M. & Bock, A. The product of the hypB gene, which is required for nickel incorporation into hydrogenases, is a novel guanine nucleotide-binding protein. J. Bacteriol. 175, 630–635 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Leonard, T. A., Butler, P. J. & Lowe, J. Bacterial chromosome segregation: structure and DNA binding of the Soj dimer—a conserved biological switch. EMBO J. 24, 270–282 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize for not citing all relevant references owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Wittinghofer.

Related links

Related links

DATABASES

Protein Data Bank

2b92

2bc9

2cnw

2gj8

2hf8

FURTHER INFORMATION

Alfred Wittinghofer's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gasper, R., Meyer, S., Gotthardt, K. et al. It takes two to tango: regulation of G proteins by dimerization. Nat Rev Mol Cell Biol 10, 423–429 (2009). https://doi.org/10.1038/nrm2689

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2689

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing