Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Delivering proteins for export from the cytosol

Key Points

  • Correct protein function depends on delivery to the appropriate cellular or subcellular location, and cells have evolved multiple strategies to achieve accurate protein targeting. The delivery process necessitates that the protein either entirely crosses or is integrated into a distinct membrane.

  • In prokaryotes, protein export is defined as the delivery of the protein to the inner membrane or the periplasmic space. This process is conserved in eukaryotes and is exemplified by the delivery of proteins to the membrane and lumen of the endoplasmic reticulum.

  • In post-translational delivery, proteins are delivered to the site of membrane translocation following their complete synthesis in a predominantly ATP-dependent process. Analogous mechanisms for achieving this have been identified in both prokaryotes and eukaryotes, with a common theme being the use of molecular chaperones to maintain the protein in a partially unfolded state suitable for membrane translocation.

  • Co-translational delivery is primarily mediated by the highly conserved signal recognition particle (SRP) and is dependent on GTP hydrolysis.

  • The interplay between these pathways seems to allow for a significant level of substrate specificity during protein targeting. Although the factors that determine the different steps of the delivery process, and overlap between distinct delivery routes, are poorly understood, the resulting plasticity in protein delivery might allow for the modulation of cellular protein delivery pathways in response to distinct environmental stresses.

Abstract

Correct protein function depends on delivery to the appropriate cellular or subcellular compartment. Following the initiation of protein synthesis in the cytosol, many bacterial and eukaryotic proteins must be integrated into or transported across a membrane to reach their site of function. Whereas in the post-translational delivery pathway ATP-dependent factors bind to completed polypeptides and chaperone them until membrane translocation is initiated, a GTP-dependent co-translational pathway operates to couple ongoing protein synthesis to membrane transport. These distinct pathways provide different solutions for the maintenance of proteins in a state that is competent for membrane translocation and their delivery for export from the cytosol.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conserved protein export pathways in bacteria, archaea and eukaryota.
Figure 2: Protein export pathways in prokaryotes.
Figure 3: Structural insights into SRP–SR interaction.
Figure 4: The co-translational delivery pathway in eukaryotes.

Similar content being viewed by others

References

  1. Schatz, G. & Dobberstein, B. Common principles of protein translocation across membranes. Science 271, 1519–1526 (1996).

    CAS  PubMed  Google Scholar 

  2. Schwartz, T. U. in Origins and Evolution of Eukaryotic Endomembranes and Cytoskeleton (ed. Jekely, G.) (Landes Bioscience, 2006).

    Google Scholar 

  3. Marrichi, M. J., Camacho, L., Russell, D. G. & Delisa, M. P. Genetic toggling of alkaline phosphatase folding reveals signal peptides for all major modes of transport across the inner membrane of bacteria. J. Biol. Chem. 283, 35223–35235 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Emanuelsson, O. & von Heijne, G. Prediction of organellar targeting signals. Biochim. Biophys. Acta 1541, 114–119 (2001).

    CAS  PubMed  Google Scholar 

  5. Bendtsen, J. D., Nielsen, H., von Heijne, G. & Brunak, S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795 (2004).

    PubMed  Google Scholar 

  6. Huber, D. et al. Use of thioredoxin as a reporter to identify a subset of Escherichia coli signal sequences that promote signal recognition particle-dependent translocation. J. Bacteriol. 187, 2983–2991 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Randall, L. L. & Hardy, S. J. Correlation of competence for export with lack of tertiary structure of the mature species: a study in vivo of maltose-binding protein in E. coli. Cell 46, 921–928 (1986). Links unfolding to protein export and membrane translocation.

    CAS  PubMed  Google Scholar 

  8. Cross, B. C. S. & High, S. in Protein Transport into the Endoplasmic Reticulum (ed. Zimmermann, R.) (Landes Bioscience, 2009).

    Google Scholar 

  9. Schlenstedt, G., Gudmundsson, G. H., Boman, H. G. & Zimmermann, R. Structural requirements for transport of preprocecropinA and related presecretory proteins into mammalian microsomes. J. Biol. Chem. 267, 24328–24332 (1992).

    CAS  PubMed  Google Scholar 

  10. High, S. & Abell, B. M. Tail-anchored protein biosynthesis at the endoplasmic reticulum: the same but different. Biochem. Soc. Trans. 32, 659–662 (2004).

    CAS  PubMed  Google Scholar 

  11. Ulbrandt, N. D., Newitt, J. A. & Bernstein, H. D. The E. coli signal recognition particle is required for the insertion of a subset of inner membrane proteins. Cell 88, 187–196 (1997).

    CAS  PubMed  Google Scholar 

  12. Valent, Q. A. et al. Nascent membrane and presecretory proteins synthesized in Escherichia coli associate with signal recognition particle and trigger factor. Mol. Microbiol. 25, 53–64 (1997).

    CAS  PubMed  Google Scholar 

  13. Borgese, N., Brambillasca, S. & Colombo, S. How tails guide tail-anchored proteins to their destinations. Curr. Opin. Cell Biol. 19, 368–375 (2007).

    CAS  PubMed  Google Scholar 

  14. Baars, L. et al. Defining the role of the Escherichia coli chaperone SecB using comparative proteomics. J. Biol. Chem. 281, 10024–10034 (2006).

    CAS  PubMed  Google Scholar 

  15. Driessen, A. J. & Nouwen, N. Protein translocation across the bacterial cytoplasmic membrane. Annu. Rev. Biochem. 77, 643–667 (2008).

    CAS  PubMed  Google Scholar 

  16. Papanikou, E., Karamanou, S. & Economou, A. Bacterial protein secretion through the translocase nanomachine. Nature Rev. Microbiol. 5, 839–851 (2007).

    CAS  Google Scholar 

  17. Hardy, S. J. & Randall, L. L. A kinetic partitioning model of selective binding of nonnative proteins by the bacterial chaperone SecB. Science 251, 439–443 (1991).

    CAS  PubMed  Google Scholar 

  18. Crane, J. M. et al. Sites of interaction of a precursor polypeptide on the export chaperone SecB mapped by site-directed spin labeling. J. Mol. Biol. 363, 63–74 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Knoblauch, N. T. et al. Substrate specificity of the SecB chaperone. J. Biol. Chem. 274, 34219–34225 (1999).

    CAS  PubMed  Google Scholar 

  20. Xu, Z., Knafels, J. D. & Yoshino, K. Crystal structure of the bacterial protein export chaperone secB. Nature Struct. Biol. 7, 1172–1177 (2000).

    CAS  PubMed  Google Scholar 

  21. Zimmer, J., Nam, Y. & Rapoport, T. A. Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature 455, 936–943 (2008). This structure of SecA bound to the SecY complex reveals the two-finger domain that can drive the substrate through the translocation channel during post-translational translocation.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Erlandson, K. J. et al. A role for the two-helix finger of the SecA ATPase in protein translocation. Nature 455, 984–987 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Eisner, G., Koch, H. G., Beck, K., Brunner, J. & Muller, M. Ligand crowding at a nascent signal sequence. J. Cell Biol. 163, 35–44 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Karamyshev, A. L. & Johnson, A. E. Selective SecA association with signal sequences in ribosome-bound nascent chains: a potential role for SecA in ribosome targeting to the bacterial membrane. J. Biol. Chem. 280, 37930–37940 (2005).

    CAS  PubMed  Google Scholar 

  25. Genevaux, P., Georgopoulos, C. & Kelley, W. L. The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions. Mol. Microbiol. 66, 840–857 (2007).

    CAS  PubMed  Google Scholar 

  26. Qi, H. Y., Hyndman, J. B. & Bernstein, H. D. DnaK promotes the selective export of outer membrane protein precursors in SecA-deficient Escherichia coli. J. Biol. Chem. 277, 51077–51083 (2002).

    CAS  PubMed  Google Scholar 

  27. Wild, J., Altman, E., Yura, T. & Gross, C. A. DnaK and DnaJ heat shock proteins participate in protein export in Escherichia coli. Genes Dev. 6, 1165–1172 (1992).

    CAS  PubMed  Google Scholar 

  28. Wild, J., Rossmeissl, P., Walter, W. A. & Gross, C. A. Involvement of the DnaK–DnaJ–GrpE chaperone team in protein secretion in Escherichia coli. J. Bacteriol. 178, 3608–3613 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kusukawa, N., Yura, T., Ueguchi, C., Akiyama, Y. & Ito, K. Effects of mutations in heat-shock genes groES and groEL on protein export in Escherichia coli. EMBO J. 8, 3517–3521 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Jungnickel, B. & Rapoport, T. A. A posttargeting signal sequence recognition event in the endoplasmic reticulum membrane. Cell 82, 261–270 (1995).

    CAS  PubMed  Google Scholar 

  31. Sargent, F. Constructing the wonders of the bacterial world: biosynthesis of complex enzymes. Microbiology 153, 633–651 (2007).

    CAS  PubMed  Google Scholar 

  32. Graubner, W., Schierhorn, A. & Bruser, T. DnaK plays a pivotal role in Tat targeting of CueO and functions beside SlyD as a general Tat signal binding chaperone. J. Biol. Chem. 282, 7116–7124 (2007).

    CAS  PubMed  Google Scholar 

  33. Perez-Rodriguez, R. et al. An essential role for the DnaK molecular chaperone in stabilizing over-expressed substrate proteins of the bacterial twin-arginine translocation pathway. J. Mol. Biol. 367, 715–730 (2007).

    CAS  PubMed  Google Scholar 

  34. Abell, B. M., Pool, M. R., Schlenker, O., Sinning, I. & High, S. Signal recognition particle mediates post-translational targeting in eukaryotes. EMBO J. 23, 2755–2764 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rabu, C. & High, S. Membrane protein chaperones: a new twist in the tail? Curr. Biol. 17, R472–R474 (2007).

    CAS  PubMed  Google Scholar 

  36. Rabu, C., Wipf, P., Brodsky, J. L. & High, S. A precursor-specific role for Hsp40/Hsc70 during tail-anchored protein integration at the endoplasmic reticulum. J. Biol. Chem. 283, 27504–27513 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Favaloro, V., Spasic, M., Schwappach, B. & Dobberstein, B. Distinct targeting pathways for the membrane insertion of tail-anchored (TA) proteins. J. Cell Sci. 121, 1832–1840 (2008).

    CAS  PubMed  Google Scholar 

  38. Stefanovic, S. & Hegde, R. S. Identification of a targeting factor for posttranslational membrane protein insertion into the ER. Cell 128, 1147–1159 (2007). References 37 and 38 identify ASNA1 as a novel eukaryotic delivery component for tail-anchored proteins.

    CAS  PubMed  Google Scholar 

  39. Schuldiner, M. et al. The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 134, 634–645 (2008). Identifies the receptor for the yeast homologue of ASNA1, which is shown to be essential for tail-anchored protein delivery.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ngosuwan, J., Wang, N. M., Fung, K. L. & Chirico, W. J. Roles of cytosolic Hsp70 and Hsp40 molecular chaperones in post-translational translocation of presecretory proteins into the endoplasmic reticulum. J. Biol. Chem. 278, 7034–7042 (2003).

    CAS  PubMed  Google Scholar 

  41. Zimmermann, R. The role of molecular chaperones in protein transport into the mammalian endoplasmic reticulum. Biol. Chem. 379, 275–282 (1998).

    CAS  PubMed  Google Scholar 

  42. McClellan, A. J. et al. Specific molecular chaperone interactions and an ATP-dependent conformational change are required during posttranslational protein translocation into the yeast ER. Mol. Biol. Cell 9, 3533–3545 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Pool, M. R. Signal recognition particles in chloroplasts, bacteria, yeast and mammals (review). Mol. Membr. Biol. 22, 3–15 (2005).

    CAS  PubMed  Google Scholar 

  44. Ng, D. T., Brown, J. D. & Walter, P. Signal sequences specify the targeting route to the endoplasmic reticulum membrane. J. Cell Biol. 134, 269–278 (1996). In this paper, yeast genetics was used to tease apart substrates for the co- and post-translational delivery pathways on the basis of signal sequence hydrophobicity.

    CAS  PubMed  Google Scholar 

  45. Miyazaki, E., Kida, Y., Mihara, K. & Sakaguchi, M. Switching the sorting mode of membrane proteins from cotranslational endoplasmic reticulum targeting to posttranslational mitochondrial import. Mol. Biol. Cell 16, 1788–1799 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee, H. C. & Bernstein, H. D. The targeting pathway of Escherichia coli presecretory and integral membrane proteins is specified by the hydrophobicity of the targeting signal. Proc. Natl Acad. Sci. USA 98, 3471–3476 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Adams, H., Scotti, P. A., de Cock, H., Luirink, J. & Tommassen, J. The presence of a helix breaker in the hydrophobic core of signal sequences of secretory proteins prevents recognition by the signal-recognition particle in Escherichia coli. Eur. J. Biochem. 269, 5564–5571 (2002).

    CAS  PubMed  Google Scholar 

  48. Halic, M. et al. Following the signal sequence from ribosomal tunnel exit to signal recognition particle. Nature 444, 507–511 (2006).

    CAS  PubMed  Google Scholar 

  49. Woolhead, C. A., McCormick, P. J. & Johnson, A. E. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116, 725–736 (2004).

    CAS  PubMed  Google Scholar 

  50. Halic, M. et al. Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 427, 808–814 (2004). The structure of the SRP bound to a translating ribosome revealed the rearrangements that are necessary to drive co-translational delivery.

    CAS  PubMed  Google Scholar 

  51. Schaffitzel, C. et al. Structure of the E. coli signal recognition particle bound to a translating ribosome. Nature 444, 503–506 (2006).

    CAS  PubMed  Google Scholar 

  52. Wild, K., Rosendal, K. R. & Sinning, I. A structural step into the SRP cycle. Mol. Microbiol. 53, 357–363 (2004).

    CAS  PubMed  Google Scholar 

  53. Cleverley, R. M. & Gierasch, L. M. Mapping the signal sequence-binding site on SRP reveals a significant role for the NG domain. J. Biol. Chem. 277, 46763–46768 (2002).

    CAS  PubMed  Google Scholar 

  54. Luirink, J. & Sinning, I. SRP-mediated protein targeting: structure and function revisited. Biochim. Biophys. Acta 1694, 17–35 (2004).

    CAS  PubMed  Google Scholar 

  55. Ullers, R. S., Ang, D., Schwager, F., Georgopoulos, C. & Genevaux, P. Trigger factor can antagonize both SecB and DnaK/DnaJ chaperone functions in Escherichia coli. Proc. Natl Acad. Sci. USA 104, 3101–3106 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Rosendal, K. R., Wild, K., Montoya, G. & Sinning, I. Crystal structure of the complete core of archaeal signal recognition particle and implications for interdomain communication. Proc. Natl Acad. Sci. USA 100, 14701–14706 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wild, K., Halic, M., Sinning, I. & Beckmann, R. SRP meets the ribosome. Nature Struct. Mol. Biol. 11, 1049–1053 (2004).

    CAS  Google Scholar 

  58. Bacher, G., Lutcke, H., Jungnickel, B., Rapoport, T. A. & Dobberstein, B. Regulation by the ribosome of the GTPase of the signal-recognition particle during protein targeting. Nature 381, 248–251 (1996).

    CAS  PubMed  Google Scholar 

  59. Doudna, J. A. & Batey, R. T. Structural insights into the signal recognition particle. Annu. Rev. Biochem. 73, 539–557 (2004).

    CAS  PubMed  Google Scholar 

  60. Miller, J. D., Wilhelm, H., Gierasch, L., Gilmore, R. & Walter, P. GTP binding and hydrolysis by the signal recognition particle during initiation of protein translocation. Nature 366, 351–354 (1993).

    CAS  PubMed  Google Scholar 

  61. Buskiewicz, I. A., Jockel, J., Rodnina, M. V. & Wintermeyer, W. Conformation of the signal recognition particle in ribosomal targeting complexes. RNA 15, 44–54 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Egea, P. F. et al. Substrate twinning activates the signal recognition particle and its receptor. Nature 427, 215–221 (2004).

    CAS  PubMed  Google Scholar 

  63. Focia, P. J., Shepotinovskaya, I. V., Seidler, J. A. & Freymann, D. M. Heterodimeric GTPase core of the SRP targeting complex. Science 303, 373–377 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Powers, T. & Walter, P. Reciprocal stimulation of GTP hydrolysis by two directly interacting GTPases. Science 269, 1422–1424 (1995).

    CAS  PubMed  Google Scholar 

  65. Shan, S. O., Chandrasekar, S. & Walter, P. Conformational changes in the GTPase modules of the signal reception particle and its receptor drive initiation of protein translocation. J. Cell Biol. 178, 611–620 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Bange, G., Wild, K. & Sinning, I. Protein translocation: checkpoint role for SRP GTPase activation. Curr. Biol. 17, R980–R982 (2007).

    CAS  PubMed  Google Scholar 

  67. Halic, M. et al. Signal recognition particle receptor exposes the ribosomal translocon binding site. Science 312, 745–747 (2006).

    CAS  PubMed  Google Scholar 

  68. Valent, Q. A. et al. The Escherichia coli SRP and SecB targeting pathways converge at the translocon. EMBO J. 17, 2504–2512 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Connolly, T., Rapiejko, P. J. & Gilmore, R. Requirement of GTP hydrolysis for dissociation of the signal recognition particle from its receptor. Science 252, 1171–1173 (1991).

    CAS  PubMed  Google Scholar 

  70. Gorlich, D. & Rapoport, T. A. Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 75, 615–630 (1993).

    CAS  PubMed  Google Scholar 

  71. Peluso, P. et al. Role of 4.5S RNA in assembly of the bacterial signal recognition particle with its receptor. Science 288, 1640–1643 (2000).

    CAS  PubMed  Google Scholar 

  72. Peluso, P., Shan, S. O., Nock, S., Herschlag, D. & Walter, P. Role of SRP RNA in the GTPase cycles of Ffh and FtsY. Biochemistry 40, 15224–15233 (2001).

    CAS  PubMed  Google Scholar 

  73. Siu, F. Y., Spanggord, R. J. & Doudna, J. A. SRP RNA provides the physiologically essential GTPase activation function in cotranslational protein targeting. RNA 13, 240–250 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Spanggord, R. J., Siu, F., Ke, A. & Doudna, J. A. RNA-mediated interaction between the peptide-binding and GTPase domains of the signal recognition particle. Nature Struct. Mol. Biol. 12, 1116–1122 (2005).

    CAS  Google Scholar 

  75. Luirink, J. et al. An alternative protein targeting pathway in Escherichia coli: studies on the role of FtsY. EMBO J. 13, 2289–2296 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Angelini, S., Boy, D., Schiltz, E. & Koch, H. G. Membrane binding of the bacterial signal recognition particle receptor involves two distinct binding sites. J. Cell Biol. 174, 715–724 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Angelini, S., Deitermann, S. & Koch, H. G. FtsY, the bacterial signal-recognition particle receptor, interacts functionally and physically with the SecYEG translocon. EMBO Rep. 6, 476–481 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. de Leeuw, E. et al. Anionic phospholipids are involved in membrane association of FtsY and stimulate its GTPase activity. EMBO J. 19, 531–541 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Millman, J. S., Qi, H. Y., Vulcu, F., Bernstein, H. D. & Andrews, D. W. FtsY binds to the Escherichia coli inner membrane via interactions with phosphatidylethanolamine and membrane proteins. J. Biol. Chem. 276, 25982–25989 (2001).

    CAS  PubMed  Google Scholar 

  80. Parlitz, R. et al. Escherichia coli signal recognition particle receptor FtsY contains an essential and autonomous membrane-binding amphipathic helix. J. Biol. Chem. 282, 32176–32184 (2007).

    CAS  PubMed  Google Scholar 

  81. Nicchitta, C. V. A platform for compartmentalized protein synthesis: protein translation and translocation in the ER. Curr. Opin. Cell Biol. 14, 412–416 (2002).

    CAS  PubMed  Google Scholar 

  82. Sanz, P. & Meyer, D. I. Signal recognition particle (SRP) stabilizes the translocation-competent conformation of pre-secretory proteins. EMBO J. 7, 3553–3557 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Schunemann, D. Structure and function of the chloroplast signal recognition particle. Curr. Genet. 44, 295–304 (2004).

    PubMed  Google Scholar 

  84. Stengel, K. F. et al. Structural basis for specific substrate recognition by the chloroplast signal recognition particle protein cpSRP43. Science 321, 253–256 (2008). Shows a novel structural basis for the role of cpSRP in post-translational delivery.

    CAS  PubMed  Google Scholar 

  85. Randall, L. L., Josefsson, L. G. & Hardy, S. J. Processing of exported proteins in Escherichia coli. Biochem. Soc. Trans. 8, 413–415 (1980).

    CAS  PubMed  Google Scholar 

  86. Pugsley, A. P. The complete general secretory pathway in gram-negative bacteria. Microbiol Rev. 57, 50–108 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Xie, K. & Dalbey, R. E. Inserting proteins into the bacterial cytoplasmic membrane using the Sec and YidC translocases. Nature Rev. Microbiol. 6, 234–244 (2008).

    CAS  Google Scholar 

  88. Facey, S. J., Neugebauer, S. A., Krauss, S. & Kuhn, A. The mechanosensitive channel protein MscL is targeted by the SRP to the novel YidC membrane insertion pathway of Escherichia coli. J. Mol. Biol. 365, 995–1004 (2007).

    CAS  PubMed  Google Scholar 

  89. van Bloois, E., Jan Haan, G., de Gier, J. W., Oudega, B. & Luirink, J. F1F0 ATP synthase subunit c is targeted by the SRP to YidC in the E. coli inner membrane. FEBS Lett. 576, 97–100 (2004).

    CAS  PubMed  Google Scholar 

  90. van der Laan, M., Bechtluft, P., Kol, S., Nouwen, N. & Driessen, A. J. F1F0 ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis. J. Cell Biol. 165, 213–222 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Yi, L., Celebi, N., Chen, M. & Dalbey, R. E. Sec/SRP requirements and energetics of membrane insertion of subunits a, b, and c of the Escherichia coli F1F0 ATP synthase. J. Biol. Chem. 279, 39260–39267 (2004).

    CAS  PubMed  Google Scholar 

  92. Jia, L. et al. Yeast Oxa1 interacts with mitochondrial ribosomes: the importance of the C-terminal region of Oxa1. EMBO J. 22, 6438–6447 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Szyrach, G., Ott, M., Bonnefoy, N., Neupert, W. & Herrmann, J. M. Ribosome binding to the Oxa1 complex facilitates co-translational protein insertion in mitochondria. EMBO J. 22, 6448–6457 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Houben, E. N., Zarivach, R., Oudega, B. & Luirink, J. Early encounters of a nascent membrane protein: specificity and timing of contacts inside and outside the ribosome. J. Cell Biol. 170, 27–35 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Siegel, V. & Walter, P. Each of the activities of signal recognition particle (SRP) is contained within a distinct domain: analysis of biochemical mutants of SRP. Cell 52, 39–49 (1988).

    CAS  PubMed  Google Scholar 

  96. Wolin, S. L. & Walter, P. Signal recognition particle mediates a transient elongation arrest of preprolactin in reticulocyte lysate. J. Cell Biol. 109, 2617–2622 (1989).

    CAS  PubMed  Google Scholar 

  97. Terzi, L., Pool, M. R., Dobberstein, B. & Strub, K. Signal recognition particle Alu domain occupies a defined site at the ribosomal subunit interface upon signal sequence recognition. Biochemistry 43, 107–117 (2004).

    CAS  PubMed  Google Scholar 

  98. Lakkaraju, A. K., Mary, C., Scherrer, A., Johnson, A. E. & Strub, K. SRP keeps polypeptides translocation-competent by slowing translation to match limiting ER-targeting sites. Cell 133, 440–451 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Mason, N., Ciufo, L. F. & Brown, J. D. Elongation arrest is a physiologically important function of signal recognition particle. EMBO J. 19, 4164–4174 (2000). References 98 and 99 show how eukaryotic SRP can modulate protein synthesis in vivo to streamline the delivery process.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Raine, A. et al. Targeting and insertion of heterologous membrane proteins in E. coli. Biochimie 85, 659–668 (2003).

    CAS  PubMed  Google Scholar 

  101. Bornemann, T., Jockel, J., Rodnina, M. V. & Wintermeyer, W. Signal sequence-independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel. Nature Struct. Mol. Biol. 15, 494–499 (2008).

    CAS  Google Scholar 

  102. Hegde, R. S. & Kang, S. W. The concept of translocational regulation. J. Cell Biol. 182, 225–232 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Palazzo, A. F. et al. The signal sequence coding region promotes nuclear export of mRNA. PLoS Biol. 5, e322 (2007).

    PubMed  PubMed Central  Google Scholar 

  104. Diehn, M., Bhattacharya, R., Botstein, D. & Brown, P. O. Genome-scale identification of membrane-associated human mRNAs. PLoS Genet. 2, e11 (2006).

    PubMed  PubMed Central  Google Scholar 

  105. Lecuyer, E. et al. Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell 131, 174–187 (2007).

    CAS  PubMed  Google Scholar 

  106. Loya, A. et al. The 3′-UTR mediates the cellular localization of an mRNA encoding a short plasma membrane protein. RNA 14, 1352–1365 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Pyhtila, B. et al. Signal sequence- and translation-independent mRNA localization to the endoplasmic reticulum. RNA 14, 445–453 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Stephens, S. B. & Nicchitta, C. V. Divergent regulation of protein synthesis in the cytosol and endoplasmic reticulum compartments of mammalian cells. Mol. Biol. Cell 19, 623–632 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004). The high-resolution structure of the archaeal SecYEG complex reveals the potential mechanism for membrane translocation and transmembrane segment integration by a single translocon heterotrimer.

    CAS  PubMed  Google Scholar 

  110. Tsukazaki, T. et al. Conformational transition of Sec machinery inferred from bacterial SecYE structures. Nature 455, 988–991 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Rapoport, T. A. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450, 663–669 (2007).

    CAS  PubMed  Google Scholar 

  112. High, S. et al. Chloroplast SRP54 interacts with a specific subset of thylakoid precursor proteins. J. Biol. Chem. 272, 11622–11628 (1997).

    CAS  PubMed  Google Scholar 

  113. Groves, M. R. et al. Functional characterization of recombinant chloroplast signal recognition particle. J. Biol. Chem. 276, 27778–27786 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our research is supported by funding from the Deutsche Forschungsgemeinschaft (DFG; SFB 638, GRK1188 and FOR 967) and the German–Israeli Foundation (I.S.), the Netherlands Organisation for Scientific Research (NWO; J.L.) and the Biotechnology and Biological Sciences Research Council (BBSRC) and Wellcome Trust (B.C.S.C. and S.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen High.

Related links

Related links

FURTHER INFORMATION

Benedict C. S. Cross's homepage

Irmgard Sinning's homepage

Joen Luirink's homepage

Stephen High's homepage

Glossary

Export membrane

The site of convergence for protein export pathways, which is the inner membrane in prokaryotes and the endoplasmic reticulum membrane in eukaryotes.

Signal sequence

A short span of amino acid residues that has no consensus sequence but is typically rich in hydrophobic amino acids and that provides the signal for protein export.

Molecular chaperone

A cellular factor that binds to proteins and facilitates their folding, assembly and often export.

Two helix finger

A domain in SecA that is formed by two helices of the helical scaffold domain.

Twin Arg motif

A motif containing two sequential Arg residues. This motif defines the signal sequence to direct substrates to the twin Arg translocon.

M domain

A Met-rich domain of the signal recognition particle SRP54 that both houses the signal sequence recognition region and binds the SRP RNA.

NG domain

A domain in the signal recognition particle SRP54 that comprises a four helix bundle and the GTPase domain.

Stroma

The soluble region in the chloroplast that is functionally synonymous with bacterial cytosol.

Alu domain

A domain of the signal recognition particle (SRP) that comprises SRP9 and SRP14, together with helices three and four of the SRP RNA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cross, B., Sinning, I., Luirink, J. et al. Delivering proteins for export from the cytosol. Nat Rev Mol Cell Biol 10, 255–264 (2009). https://doi.org/10.1038/nrm2657

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2657

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing