Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From cells to organs: building polarized tissue

Key Points

  • Most cells in the body are polarized, showing some level of shape and functional asymmetry, such as apico–basal or front–back polarity.

  • Tissues are formed from the coordinated integration of individual cells into a multicellular structure, such as an epithelial tube.

  • Polarity is established and controlled by highly conserved core complexes, including the PAR, Crumbs and Scribble complexes.

  • Epithelial–mesenchymal transition and mesenchymal–epithelial transition are two processes by which cells can convert between two major types of cell polarity. Transcription factors that control these processes do so by controlling cell adhesion, extracellular matrix interactions and polarity complexes.

  • Polarized tissues, such as tubular epithelia, form and are regulated by various mechanisms, which enable the formation of luminal structures.

  • The extracellular matrix is a key determinant of tissue-polarity establishment, orientation and maintenance.

Abstract

How do animal cells assemble into tissues and organs? A diverse array of tissue structures and shapes can be formed by organizing groups of cells into different polarized arrangements and by coordinating their polarity in space and time. Conserved design principles underlying this diversity are emerging from studies of model organisms and tissues. We discuss how conserved polarity complexes, signalling networks, transcription factors, membrane-trafficking pathways, mechanisms for forming lumens in tubes and other hollow structures, and transitions between different types of polarity, such as between epithelial and mesenchymal cells, are used in similar and iterative manners to build all tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell polarization in diverse tissue types.
Figure 2: EMT and MET in tissue morphogenesis.
Figure 3: Cavitation, hollowing and membrane repulsion as lumen-forming mechanisms.
Figure 4: Membrane traffic and apical extracellular matrix secretion during lumen formation and expansion.

Similar content being viewed by others

References

  1. O'Brien, L. E., Zegers, M. M. & Mostov, K. E. Building epithelial architecture: insights from three-dimensional culture models. Nature Rev. Mol. Cell Biol. 3, 531–537 (2002).

    Article  CAS  Google Scholar 

  2. Goldstein, B. & Macara, I. G. The PAR proteins: fundamental players in animal cell polarization. Dev. Cell 13, 609–622 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nelson, W. J. Adaptation of core mechanisms to generate cell polarity. Nature 422, 766–774 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lecuit, T. & Le Goff, L. Orchestrating size and shape during morphogenesis. Nature 450, 189–192 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Alberts, B. Molecular Biology Of The Cell (Garland Science, New York, 2008).

    Google Scholar 

  6. Aijaz, S., Balda, M. S. & Matter, K. Tight junctions: molecular architecture and function. Int. Rev. Cytol. 248, 261–298 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Shin, K., Fogg, V. C. & Margolis, B. Tight junctions and cell polarity. Annu. Rev. Cell Dev. Biol. 22, 207–235 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Rafelski, S. M. & Marshall, W. F. Building the cell: design principles of cellular architecture. Nature Rev. Mol. Cell Biol. 9, 593–602 (2008).

    Article  CAS  Google Scholar 

  9. Yamada, S. & Nelson, W. J. Synapses: sites of cell recognition, adhesion, and functional specification. Annu. Rev. Biochem. 76, 267–294 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Iglesias, P. A. & Devreotes, P. N. Navigating through models of chemotaxis. Curr. Opin. Cell Biol. 20, 35–40 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Deng, W. M. et al. Dystroglycan is required for polarizing the epithelial cells and the oocyte in Drosophila. Development 130, 173–184 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Yu, W. et al. β1-integrin orients epithelial polarity via Rac1 and laminin. Mol. Biol. Cell 16, 433–445 (2005). Outlines, together with references 37 and 38, the importance of ECM–integrin–Rac signalling in the orientation of polarity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kass, L., Erler, J. T., Dembo, M. & Weaver, V. M. Mammary epithelial cell: influence of extracellular matrix composition and organization during development and tumorigenesis. Int. J. Biochem. Cell Biol. 39, 1987–1994 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miner, J. H. & Yurchenco, P. D. Laminin functions in tissue morphogenesis. Annu. Rev. Cell Dev. Biol. 20, 255–284 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Gumbiner, B. M. Regulation of cadherin-mediated adhesion in morphogenesis. Nature Rev. Mol. Cell Biol. 6, 622–634 (2005).

    Article  CAS  Google Scholar 

  16. Gurdon, J. B. & Bourillot, P. Y. Morphogen gradient interpretation. Nature 413, 797–803 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Macara, I. G. Parsing the polarity code. Nature Rev. Mol. Cell Biol. 5, 220–231 (2004).

    Article  CAS  Google Scholar 

  18. Wang, Y. & Nathans, J. Tissue/planar cell polarity in vertebrates: new insights and new questions. Development 134, 647–658 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Zallen, J. A. Planar polarity and tissue morphogenesis. Cell 129, 1051–1063 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Yang, J. & Weinberg, R. A. Epithelial–mesenchymal transition: at the crossroads of development and tumor metastasis. Dev. Cell 14, 818–829 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Thiery, J. P. & Sleeman, J. P. Complex networks orchestrate epithelial–mesenchymal transitions. Nature Rev. Mol. Cell Biol. 7, 131–142 (2006).

    Article  CAS  Google Scholar 

  22. Vainio, S. & Lin, Y. Coordinating early kidney development: lessons from gene targeting. Nature Rev. Genet. 3, 533–543 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Mani, S. A. et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Debnath, J. & Brugge, J. S. Modelling glandular epithelial cancers in three-dimensional cultures. Nature Rev. Cancer 5, 675–688 (2005).

    Article  CAS  Google Scholar 

  25. Leroy, P. & Mostov, K. E. Slug is required for cell survival during partial epithelial–mesenchymal transition of HGF-induced tubulogenesis. Mol. Biol. Cell 18, 1943–1952 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. O'Brien, L. E. et al. ERK and MMPs sequentially regulate distinct stages of epithelial tubule development. Dev. Cell 7, 21–32 (2004). References 25 and 26 describe a pEMT event during morphogenesis and its molecular regulation.

    Article  CAS  PubMed  Google Scholar 

  27. Pacquelet, A. & Rorth, P. Regulatory mechanisms required for DE-cadherin function in cell migration and other types of adhesion. J. Cell Biol. 170, 803–812 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Prasad, M. & Montell, D. J. Cellular and molecular mechanisms of border cell migration analyzed using time-lapse live-cell imaging. Dev. Cell 12, 997–1005 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Peinado, H., Olmeda, D. & Cano, A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nature Rev. Cancer 7, 415–428 (2007).

    Article  CAS  Google Scholar 

  30. Aigner, K. et al. The transcription factor ZEB1 (δEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene 26, 6979–6988 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Whiteman, E. L., Liu, C. J., Fearon, E. R. & Margolis, B. The transcription factor snail represses Crumbs3 expression and disrupts apico–basal polarity complexes. Oncogene 27, 3875–3879 (2008). References 30 and 31 demonstrate that direct repression of polarity complexes by ZEB and Snail factors modulates EMT.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. De Craene, B. et al. The transcription factor Snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer Res. 65, 6237–6244 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Spaderna, S. et al. A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology 131, 830–840 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Beltran, M. et al. A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial–mesenchymal transition. Genes Dev. 22, 756–769 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gregory, P. A. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biol. 10, 593–601 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Burk, U. et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 9, 582–589 (2008). References 35 and 36 reveal mutual antagonism between miRNAs and ZEB1 in controlling epithelial differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. O'Brien, L. E. et al. Rac1 orientates epithelial apical polarity through effects on basolateral laminin assembly. Nature Cell Biol. 3, 831–838 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Yu, W. et al. Involvement of RhoA, ROCKI and myosin II in inverted orientation of epithelial polarity. EMBO Rep. 9, 923–929 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pegtel, D. M. et al. The Par–Tiam1 complex controls persistent migration by stabilizing microtubule-dependent front–rear polarity. Curr. Biol. 17, 1623–1634 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Zegers, M. M., O'Brien, L. E., Yu, W., Datta, A. & Mostov, K. E. Epithelial polarity and tubulogenesis in vitro. Trends Cell Biol. 13, 169–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Adams, S. A., Smith, M. E., Cowley, G. P. & Carr, L. A. Reversal of glandular polarity in the lymphovascular compartment of breast cancer. J. Clin. Pathol. 57, 1114–1117 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Velling, T., Stefansson, A. & Johansson, S. EGFR and β1 integrins utilize different signaling pathways to activate Akt. Exp. Cell Res. 314, 309–316 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Halet, G., Viard, P. & Carroll, J. Constitutive PtdIns(3,4,5)P3 synthesis promotes the development and survival of early mammalian embryos. Development 135, 425–429 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Kovacs, E. M., Ali, R. G., McCormack, A. J. & Yap, A. S. E-cadherin homophilic ligation directly signals through Rac and phosphatidylinositol 3-kinase to regulate adhesive contacts. J. Biol. Chem. 277, 6708–6718 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Jaffe, A. B. & Hall, A. Rho GTPases: biochemistry and biology. Annu. Rev. Cell Dev. Biol. 21, 247–269 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Martin-Belmonte, F. et al. PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 128, 383–397 (2007). Shows, together with reference 70, hollowing as a mechanism for de novo lumen formation. Also details a role for PtdInsP and polarity complexes in lumen formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Martin-Belmonte, F. et al. Cell-polarity dynamics controls the mechanism of lumen formation in epithelial morphogenesis. Curr. Biol. 18, 507–513 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wu, X. et al. Cdc42 is crucial for the establishment of epithelial polarity during early mammalian development. Dev. Dyn. 236, 2767–2778 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Xu, J. et al. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114, 201–214 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Lecuit, T. & Lenne, P. F. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nature Rev. Mol. Cell Biol. 8, 633–644 (2007).

    Article  CAS  Google Scholar 

  51. Wong, K., Pertz, O., Hahn, K. & Bourne, H. Neutrophil polarization: spatiotemporal dynamics of RhoA activity support a self-organizing mechanism. Proc. Natl Acad. Sci. USA 103, 3639–3644 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Garrard, S. M. et al. Structure of Cdc42 in a complex with the GTPase-binding domain of the cell polarity protein, Par6. EMBO J. 22, 1125–1133 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Anderson, D. C., Gill, J. S., Cinalli, R. M. & Nance, J. Polarization of the C. elegans embryo by RhoGAP-mediated exclusion of PAR-6 from cell contacts. Science 320, 1771–1774 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Barrett, K., Leptin, M. & Settleman, J. The Rho GTPase and a putative RhoGEF mediate a signaling pathway for the cell shape changes in Drosophila gastrulation. Cell 91, 905–915 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Brouns, M. R., Matheson, S. F. & Settleman, J. p190 RhoGAP is the principal Src substrate in brain and regulates axon outgrowth, guidance and fasciculation. Nature Cell Biol. 3, 361–367 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Hacker, U. & Perrimon, N. DRhoGEF2 encodes a member of the Dbl family of oncogenes and controls cell shape changes during gastrulation in Drosophila. Genes Dev. 12, 274–284 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Haigo, S. L., Hildebrand, J. D., Harland, R. M. & Wallingford, J. B. Shroom induces apical constriction and is required for hingepoint formation during neural tube closure. Curr. Biol. 13, 2125–2137 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Kolsch, V., Seher, T., Fernandez-Ballester, G. J., Serrano, L. & Leptin, M. Control of Drosophila gastrulation by apical localization of adherens junctions and RhoGEF2. Science 315, 384–386 (2007).

    Article  PubMed  CAS  Google Scholar 

  59. Nikolaidou, K. K. & Barrett, K. A Rho GTPase signaling pathway is used reiteratively in epithelial folding and potentially selects the outcome of Rho activation. Curr. Biol. 14, 1822–1826 (2004). References 54–59 collectively define crucial roles for apical activation and basal inactivation of RhoA by GEFs and GAPs, respectively, in tissue morphogenesis.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, H. & Macara, I. G. The PAR-6 polarity protein regulates dendritic spine morphogenesis through p190 RhoGAP and the Rho GTPase. Dev. Cell 14, 216–226 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Nakayama, M. et al. Rho-kinase phosphorylates PAR-3 and disrupts PAR complex formation. Dev. Cell 14, 205–215 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Balklava, Z., Pant, S., Fares, H. & Grant, B. D. Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic. Nature Cell Biol. 9, 1066–1073 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Lubarsky, B. & Krasnow, M. A. Tube morphogenesis: making and shaping biological tubes. Cell 112, 19–28 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Hogan, B. L. & Kolodziej, P. A. Organogenesis: molecular mechanisms of tubulogenesis. Nature Rev. Genet. 3, 513–523 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Debnath, J. et al. The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 111, 29–40 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Mailleux, A. A. et al. BIM regulates apoptosis during mammary ductal morphogenesis, and its absence reveals alternative cell death mechanisms. Dev. Cell 12, 221–234 (2007). References 47, 65 and 66 detail cavitation as a mechanism for lumen formation in 3D culture and in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bilder, D. Epithelial polarity and proliferation control: links from the Drosophila neoplastic tumor suppressors. Genes Dev. 18, 1909–1925 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Aranda, V. et al. Par6–aPKC uncouples ErbB2 induced disruption of polarized epithelial organization from proliferation control. Nature Cell Biol. 8, 1235–1245 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Davis, G. E. & Camarillo, C. W. An α2β1 integrin-dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix. Exp. Cell Res. 224, 39–51 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Kamei, M. et al. Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442, 453–456 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Blum, Y. et al. Complex cell rearrangements during intersegmental vessel sprouting and vessel fusion in the zebrafish embryo. Dev. Biol. 316, 312–322 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Horne-Badovinac, S. et al. Positional cloning of heart and soul reveals multiple roles for PKCλ in zebrafish organogenesis. Curr. Biol. 11, 1492–1502 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Kim, M., Datta, A., Brakeman, P., Yu, W. & Mostov, K. E. Polarity proteins PAR6 and aPKC regulate cell death through GSK-3β in 3D epithelial morphogenesis. J. Cell Sci. 120, 2309–2317 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Medioni, C., Astier, M., Zmojdzian, M., Jagla, K. & Sémériva, M. Genetic control of cell morphogenesis during Drosophila melanogaster cardiac tube formation. J. Cell Biol. 182, 249–261 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Santiago-Martínez, E., Saplop, N. H., Patel, R. & Kramer, S. G. Repulsion by Slit and Roundabout prevents Shotgun/E-cadherin-mediated cell adhesion during Drosophila heart tube lumen formation. J. Cell Biol. 182, 241–248 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Meder, D., Shevchenko, A., Simons, K. & Fullekrug, J. Gp135/podocalyxin and NHERF-2 participate in the formation of a preapical domain during polarization of MDCK cells. J. Cell Biol. 168, 303–313 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Metzger, R. J., Klein, O. D., Martin, G. R. & Krasnow, M. A. The branching programme of mouse lung development. Nature 453, 745–750 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ghabrial, A., Luschnig, S., Metzstein, M. M. & Krasnow, M. A. Branching morphogenesis of the Drosophila tracheal system. Annu. Rev. Cell Dev. Biol. 19, 623–647 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Lee, M., Lee, S., Zadeh, A. D. & Kolodziej, P. A. Distinct sites in E-cadherin regulate different steps in Drosophila tracheal tube fusion. Development 130, 5989–5999 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Shaye, D. D., Casanova, J. & Llimargas, M. Modulation of intracellular trafficking regulates cell intercalation in the Drosophila trachea. Nature Cell Biol. 10, 964–970 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Affolter, M. & Caussinus, E. Tracheal branching morphogenesis in Drosophila: new insights into cell behaviour and organ architecture. Development 135, 2055–2064 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Bokel, C., Prokop, A. & Brown, N. H. Papillote and Piopio: Drosophila ZP-domain proteins required for cell adhesion to the apical extracellular matrix and microtubule organization. J. Cell Sci. 118, 633–642 (2005).

    Article  PubMed  CAS  Google Scholar 

  83. Jazwinska, A., Ribeiro, C. & Affolter, M. Epithelial tube morphogenesis during Drosophila tracheal development requires Piopio, a luminal ZP protein. Nature Cell Biol. 5, 895–901 (2003). References 82, 83, 94 and 95 describe roles for different types of apical ECM in the formation of luminal structures in D. melanogaster tissues.

    Article  CAS  PubMed  Google Scholar 

  84. Ewald, A. J., Brenot, A., Duong, M., Chan, B. S. & Werb, Z. Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Dev. Cell 14, 570–581 (2008). Describes in vitro branching of mammary organoids through a multilayered epithelial state.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Boletta, A. & Germino, G. G. Role of polycystins in renal tubulogenesis. Trends Cell Biol. 13, 484–492 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Roy-Chaudhury, P. & Lee, T. C. Vascular stenosis: biology and interventions. Curr. Opin. Nephrol. Hypertens. 16, 516–522 (2007).

    Article  PubMed  Google Scholar 

  87. Bagnat, M., Cheung, I. D., Mostov, K. E. & Stainier, D. Y. Genetic control of single lumen formation in the zebrafish gut. Nature Cell Biol. 9, 954–960 (2007). Demonstrates, together with references 90 and 134, in vivo roles for Na+/K+-ATPase, septate junctions and TJs in lumen formation.

    Article  CAS  PubMed  Google Scholar 

  88. Yap, A. S., Stevenson, B. R., Armstrong, J. W., Keast, J. R. & Manley, S. W. Thyroid epithelial morphogenesis in vitro: a role for bumetanide-sensitive Cl-secretion during follicular lumen development. Exp. Cell Res. 213, 319–326 (1994).

    Article  CAS  PubMed  Google Scholar 

  89. Yang, B., Sonawane, N. D., Zhao, D., Somlo, S. & Verkman, A. S. Small-molecule CFTR inhibitors slow cyst growth in polycystic kidney disease. J. Am. Soc. Nephrol. 19, 1300–1310 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Paul, S. M., Palladino, M. J. & Beitel, G. J. A pump-independent function of the Na, K-ATPase is required for epithelial junction function and tracheal tube-size control. Development 134, 147–155 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Wu, V. M., Schulte, J., Hirschi, A., Tepass, U. & Beitel, G. J. Sinuous is a Drosophila claudin required for septate junction organization and epithelial tube size control. J. Cell Biol. 164, 313–323 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jayaram, S. A. et al. COPI vesicle transport is a common requirement for tube expansion in Drosophila. PLoS ONE 3, e1964 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Tsarouhas, V. et al. Sequential pulses of apical epithelial secretion and endocytosis drive airway maturation in Drosophila. Dev. Cell 13, 214–225 (2007). References 92 and 93 characterize crucial roles for apical secretion and endocytosis in lumen expansion and morphogenesis.

    Article  CAS  PubMed  Google Scholar 

  94. Swanson, L. E. & Beitel, G. J. Tubulogenesis: an inside job. Curr. Biol. 16, R51–R53 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Husain, N. et al. The agrin/perlecan-related protein eyes shut is essential for epithelial lumen formation in the Drosophila retina. Dev. Cell 11, 483–493 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Kerman, B. E., Cheshire, A. M., Myat, M. M. & Andrew, D. J. Ribbon modulates apical membrane during tube elongation through Crumbs and Moesin. Dev. Biol. 320, 278–288 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Myat, M. M. & Andrew, D. J. Epithelial tube morphology is determined by the polarized growth and delivery of apical membrane. Cell 111, 879–891 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Li, B. X., Satoh, A. K. & Ready, D. F. Myosin V, Rab11, and dRip11 direct apical secretion and cellular morphogenesis in developing Drosophila photoreceptors. J. Cell Biol. 177, 659–669 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. American Cancer Society. Cancer Facts & Figs 2008 (American Cancer Society, Atlanta, 2008).

  100. Lee, M. & Vasioukhin, V. Cell polarity and cancer-cell and tissue polarity as a non-canonical tumor suppressor. J. Cell Sci. 121, 1141–1150 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Fausto, N., Campbell, J. S. & Riehle, K. J. Liver regeneration. Hepatology 43, S45–S53 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Liano, F. & Pascual, J. Epidemiology of acute renal failure: a prospective, multicenter, community-based study. Madrid acute renal failure study group. Kidney Int. 50, 811–818 (1996).

    Article  CAS  PubMed  Google Scholar 

  103. Matthay, M. A. & Zimmerman, G. A. Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management. Am. J. Respir. Cell Mol. Biol. 33, 319–327 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Humphreys, B. D. et al. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2, 284–291 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Venkatachalam, M. A., Bernard, D. B., Donohoe, J. F. & Levinsky, N. G. Ischemic damage and repair in the rat proximal tubule: differences among the S1, S2, and S3 segments. Kidney Int. 14, 31–49 (1978).

    Article  CAS  PubMed  Google Scholar 

  106. Bottinger, E. P. TGF-β in renal injury and disease. Semin. Nephrol. 27, 309–320 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Gibson, M. C. & Perrimon, N. Apicobasal polarization: epithelial form and function. Curr. Opin. Cell Biol. 15, 747–752 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Plant, P. J. et al. A polarity complex of mPar-6 and atypical PKC binds, phosphorylates and regulates mammalian Lgl. Nature Cell Biol. 5, 301–308 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Koshland, D. E. Switches, thresholds and ultrasensitivity. Trends Biochem. Sci. 12, 225–229 (1987).

    Article  CAS  Google Scholar 

  110. Lee, H. S., Nishanian, T. G., Mood, K., Bong, Y. S. & Daar, I. O. EphrinB1 controls cell–cell junctions through the Par polarity complex. Nature Cell Biol. 10, 979–986 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Ozdamar, B. et al. Regulation of the polarity protein Par6 by TGFβ receptors controls epithelial cell plasticity. Science 307, 1603–1609 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Humbert, P. O., Dow, L. E. & Russell, S. M. The Scribble and Par complexes in polarity and migration: friends or foes? Trends Cell Biol. 16, 622–630 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Srinivasan, S. et al. Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis. J. Cell Biol. 160, 375–385 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Pinal, N. et al. Regulated and polarized PtdIns(3,4,5)P3 accumulation is essential for apical membrane morphogenesis in photoreceptor epithelial cells. Curr. Biol. 16, 140–149 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Yu, W. et al. Hepatocyte growth factor switches orientation of polarity and mode of movement during morphogenesis of multicellular epithelial structures. Mol. Biol. Cell 14, 748–763 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pilot, F., Philippe, J. M., Lemmers, C. & Lecuit, T. Spatial control of actin organization at adherens junctions by a synaptotagmin-like protein Btsz. Nature 442, 580–584 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. von Stein, W., Ramrath, A., Grimm, A., Muller-Borg, M. & Wodarz, A. Direct association of Bazooka/PAR-3 with the lipid phosphatase PTEN reveals a link between the PAR/aPKC complex and phosphoinositide signaling. Development 132, 1675–1686 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Feng, W., Wu, H., Chan, L. N. & Zhang, M. PAR-3-mediated junctional localization of the lipid phosphatase PTEN is required for cell polarity establishment. J. Biol. Chem. 283, 23440–23449 (2008). References 118 and 119 demonstrate the direct interaction of PAR-3 with PTEN, revealing regulation of PtdInsP asymmetry by the PAR complex.

    Article  CAS  PubMed  Google Scholar 

  120. Takahama, S., Hirose, T. & Ohno, S. aPKC restricts the basolateral determinant PtdIns(3,4,5)P3 to the basal region. Biochem. Biophys. Res. Commun. 368, 249–255 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Gassama-Diagne, A. et al. Phosphatidylinositol-3,4,5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells. Nature Cell Biol. 8, 963–970 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Kierbel, A. et al. Pseudomonas aeruginosa exploits a PIP3-dependent pathway to transform apical into basolateral membrane. J. Cell Biol. 177, 21–27 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu, J., Zuo, X., Yue, P. & Guo, W. Phosphatidylinositol 4,5-bisphosphate mediates the targeting of the exocyst to the plasma membrane for exocytosis in mammalian cells. Mol. Biol. Cell 18, 4483–4492 (2007). Demonstrates, together with references 46 and 122, that apical PtdIns(4,5)P 2 and basolateral PtdIns(3,4,5)P 3 are key determinants of epithelial polarity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gutierrez-Barrera, A. M., Menter, D. G., Abbruzzese, J. L. & Reddy, S. A. Establishment of three-dimensional cultures of human pancreatic duct epithelial cells. Biochem. Biophys. Res. Commun. 358, 698–703 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Webber, M. M., Bello, D., Kleinman, H. K. & Hoffman, M. P. Acinar differentiation by non-malignant immortalized human prostatic epithelial cells and its loss by malignant cells. Carcinogenesis 18, 1225–1231 (1997).

    Article  CAS  PubMed  Google Scholar 

  126. Yu, W. et al. Formation of cysts by alveolar type II cells in three-dimensional culture reveals a novel mechanism for epithelial morphogenesis. Mol. Biol. Cell 18, 1693–1700 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Montesano, R., Schaller, G. & Orci, L. Induction of epithelial tubular morphogenesis in vitro by fibroblast-derived soluble factors. Cell 66, 697–711 (1991).

    Article  CAS  PubMed  Google Scholar 

  128. Pollack, A. L., Runyan, R. B. & Mostov, K. E. Morphogenetic mechanisms of epithelial tubulogenesis: MDCK cell polarity is transiently rearranged without loss of cell–cell contact during scatter factor/hepatocyte growth factor-induced tubulogenesis. Dev. Biol. 204, 64–79 (1998).

    Article  CAS  PubMed  Google Scholar 

  129. Grant, M. R., Mostov, K. E., Tlsty, T. D. & Hunt, C. A. Simulating properties of in vitro epithelial cell morphogenesis. PLoS Comput. Biol. 2, e129 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Wang, X., Kumar, R., Navarre, J., Casanova, J. E. & Goldenring, J. R. Regulation of vesicle trafficking in Madin–Darby canine kidney cells by Rab11a and Rab25. J. Biol. Chem. 275, 29138–29146 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. Cheng, K. W. et al. The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nature Med. 10, 1251–1256 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Rehder, D. et al. Junctional adhesion molecule-a participates in the formation of apico–basal polarity through different domains. Exp. Cell Res. 312, 3389–3403 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Torkko, J. M., Manninen, A., Schuck, S. & Simons, K. Depletion of apical transport proteins perturbs epithelial cyst formation and ciliogenesis. J. Cell Sci. 121, 1193–1203 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Paul, S. M., Ternet, M., Salvaterra, P. M. & Beitel, G. J. The Na+/K+ ATPase is required for septate junction function and epithelial tube-size control in the Drosophila tracheal system. Development 130, 4963–4974 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Shin, K., Straight, S. & Margolis, B. PATJ regulates tight junction formation and polarity in mammalian epithelial cells. J. Cell Biol. 168, 705–711 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lipschutz, J. H. et al. Exocyst is involved in cystogenesis and tubulogenesis and acts by modulating synthesis and delivery of basolateral plasma membrane and secretory proteins. Mol. Biol. Cell 11, 4259–4275 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gobel, V., Barrett, P. L., Hall, D. H. & Fleming, J. T. Lumen morphogenesis in C. elegans requires the membrane-cytoskeleton linker ERM-1. Dev. Cell 6, 865–873 (2004).

    Article  PubMed  Google Scholar 

  138. Saotome, I., Curto, M. & McClatchey, A. I. Ezrin is essential for epithelial organization and villus morphogenesis in the developing intestine. Dev. Cell 6, 855–864 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Beronja, S. et al. Essential function of Drosophila Sec6 in apical exocytosis of epithelial photoreceptor cells. J. Cell Biol. 169, 635–646 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Liu, X. F., Ohno, S. & Miki, T. Nucleotide exchange factor ECT2 regulates epithelial cell polarity. Cell Signal 18, 1604–1615 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Jiang, L., Rogers, S. L. & Crews, S. T. The Drosophila Dead end Arf-like3 GTPase controls vesicle trafficking during tracheal fusion cell morphogenesis. Dev. Biol. 311, 487–499 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Vieira, O. V., Verkade, P., Manninen, A. & Simons, K. FAPP2 is involved in the transport of apical cargo in polarized MDCK cells. J. Cell Biol. 170, 521–526 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sato, T. et al. The Rab8 GTPase regulates apical protein localization in intestinal cells. Nature 448, 366–369 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Desclozeaux, M. et al. Active Rab11 and functional recycling endosome are required for E-cadherin trafficking and lumen formation during epithelial morphogenesis. Am. J. Physiol. Cell Physiol. 295, C545–C556 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. Sharma, N., Low, S. H., Misra, S., Pallavi, B. & Weimbs, T. Apical targeting of syntaxin 3 is essential for epithelial cell polarity. J. Cell Biol. 173, 937–948 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Croce, A. et al. A novel actin barbed-end-capping activity in EPS-8 regulates apical morphogenesis in intestinal cells of Caenorhabditis elegans. Nature Cell Biol. 6, 1173–1179 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Troxell, M. L., Loftus, D. J., Nelson, W. J. & Marrs, J. A. Mutant cadherin affects epithelial morphogenesis and invasion, but not transformation. J. Cell Sci. 114, 1237–1246 (2001).

    Article  CAS  PubMed  Google Scholar 

  148. Aijaz, S., Sanchez-Heras, E., Balda, M. S. & Matter, K. Regulation of tight junction assembly and epithelial morphogenesis by the heat shock protein APG-2. BMC Cell Biol. 8, 49 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Wu, V. M. & Beitel, G. J. A junctional problem of apical proportions: epithelial tube-size control by septate junctions in the Drosophila tracheal system. Curr. Opin. Cell Biol. 16, 493–499 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants to K.E.M. and a Susan G. Komen Foundation Postdoctoral Fellowship to D.M.B. We thank R. Metzger, C. A. Hunt and A. J. Ewald for comments on the manuscript and members of our laboratory for discussions. This paper is dedicated to the memory of our colleagues S. Ross and P. Kolodzeij.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Mostov lab homepage

Glossary

Basement membrane

A thin extracellular matrix layer that specifically lines the basal side of epithelial sheets, and certain other tissues, to which cells are attached. Also referred to as the basal lamina.

Extracellular matrix

An extracellular scaffolding gel that consists of fibrous structural proteins, complex sugars, fluid and signalling molecules.

Tight junction

A diffusion barrier-forming junction at the apical-most region of the lateral membrane of vertebrate epithelial cells.

Design principle

A simple rule that increases the likelihood of the proper assembly and function of a system.

Mesenchymal–epithelial transition

The de novo acquisition of epithelial characteristics, such as apico–basal polarity and epithelial-type junctions, by mesenchymal cells.

Epithelial–mesenchymal transition

The transition of epithelial cells to a mesenchymal state by complete loss of apico–basal polarity, epithelial-type junctions, basement membrane and the adoption of migratory behaviours.

Front–back polarity

A morphological characteristic, particularly in migratory cells, wherein the front (leading edge) and the back (uropod) show morphological and functional asymmetry.

Polarity complexes

Conserved, multimeric protein complexes that promote and modulate the formation of asymmetric cellular architecture in diverse tissue types and organisms.

Planar cell polarity

(PCP). The polarization of epithelial cells along the plane of the epithelium, orthogonal to the apico–basal axis, directing the orientation of cell shape, division, movement and differentiation. Non-epithelial cells can also exhibit PCP.

Zero-order ultrasensitivity

A reversible system, such as phosphorylation, where modifying enzymes can become saturated with regard to the protein being modified, resulting in a switch-like movement of the substrate between modification states.

Condensation

An event wherein non-adherent or loosely adherent cells can move together and tightly adhere to one another.

Partial EMT

The transient adoption of some mesenchymal characteristics by epithelial cells without complete or permanent loss of the epithelial phenotype.

Exocyst

A highly conserved, octameric protein complex that regulates vesicle docking and delivery to the cell surface.

Hepatocyte growth factor

(HGF). A multipotent ligand, also known as scatter factor, for the c-Met receptor. HGF induces proliferation, scattering motility and branching morphogenesis in many epithelia.

Transforming growth factor-β

Cytokine ligand that induces strong epithelial–mesenchymal transition in many epithelial cells and tissues.

MDCK

Madin–Darby canine kidney cells. A polarized epithelial cell line that is commonly used for studies of polarity, membrane trafficking and cell adhesion.

Guanine nucleotide-exchange factor

A protein that catalyses the exchange of GDP for GTP on GTPase proteins, thereby 'activating' the GTPase.

GTPase-activating protein

Protein that catalyses hydrolysis of GTP to GDP on GTPase proteins, thereby 'inactivating' the GTPase.

Evagination

The deformation of an epithelial sheet, without the loss of apico–basal polarity, such that part of the sheet extrudes into the extracellular matrix.

Invagination

The deformation of an epithelial sheet, without the loss of apico–basal polarity, such that part of the sheet folds into the lumen of the tube.

Radial tissue symmetry

The complimentary arrangement of cell polarity in a symmetric manner around a central line, such as the apical surfaces of cells in a biological tube.

Cavitation

The formation of a lumen between a group of cells by apoptosis of inner cells that are not in contact with the extracellular matrix.

Hollowing

The trafficking of vesicles containing apical membrane to a space between cells, or in a single cell, to form a lumen de novo.

Membrane repulsion

Activation of a signalling cascade that promotes membranes between cells to de-adhere or that inhibits any attraction between membrane regions.

Mammary end bud

The spherical end of a mammary tubule; referred to as an acinus when fully enclosed in 3D culture.

COPI and COPII

Coatomer protein complexes that regulate anterograde (COPII) and retrograde (COPI) membrane transport between the endoplasmic reticulum and through cisternae of the Golgi complex.

Autocellular junctions

The formation of junctional complexes in a single cell. They can be used to form a lumen in a single cell.

Chain

The extension of one or more cells that have lost apico–basal polarity from an epithelial sheet into the extracellular matrix without losing cell–cell adhesion or becoming multilayered.

Cord

Similar to the formation of a chain, but comprised of multilayering of cells that may contain some disconnected luminal structures. Can build on successful chain extension.

Polycystic kidney disease

A group of diseases that cause focal dilation of kidney tubules resulting in the formation of large cysts and severely compromised renal function.

Vascular stenosis

A pathological vascular condition that involves the narrowing of blood vessels and that results in hypoperfusion of tissues.

Septate junction

(SJ). An invertebrate cell–cell junction, localized to the mid-lateral membrane region. Like vertebrate tight junctions (TJs), SJs provide a paracellular diffusion barrier. Unlike TJs, SJs contain basolateral, rather than apical, polarity determinants.

Chitin

A polysaccharide that consists of N-acetylglucosamine, the polymer of which is a primary component of insect cytoskeletons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bryant, D., Mostov, K. From cells to organs: building polarized tissue. Nat Rev Mol Cell Biol 9, 887–901 (2008). https://doi.org/10.1038/nrm2523

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2523

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing