Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-hexameric DNA helicases and translocases: mechanisms and regulation

Key Points

  • The superfamily 1 (SF1) and SF2 enzymes are non-hexameric enzymes possessing both helicase and single-stranded DNA (ssDNA) translocase activities, as well as the ability to displace proteins from DNA. In general, the same oligomeric form of these enzymes is not responsible for all of these activities. For some SF1 enzymes, ssDNA-translocase activity is not sufficient for helicase activity, hence these two activities are separable.

  • The monomeric form of some SF1 enzymes are rapid and processive ssDNA translocases, but have subdomains that are autoinhibitory for monomer helicase activity; activation of helicase activity requires self-assembly (oligomerization) or interactions with accessory proteins. This might serve to regulate the enzyme so that it can function as a translocase to displace proteins from the DNA under conditions such that its helicase activity is suppressed.

  • During ssDNA translocation of PcrA and UvrD monomers, the hydrolysis of one molecule of ATP is coupled to movement by one base along the DNA. However, in many cases, larger translocation steps of variable size have been observed from single molecule measurements or calculated from pre-steady-state ensemble kinetic studies suggesting non-uniform translocation mechanisms.

  • Current evidence suggests that many helicases unwind DNA by facilitating the destabilization of the double-stranded DNA (an active mechanism), rather than by translocating into a single-stranded DNA region formed through thermal fluctuations (so-called 'breathing') of the duplex at a ssDNA–dsDNA junction.

  • High resolution crystal structures of SF1 enzymes in complex with DNA and various nucleotide analogues have led to detailed proposals for ssDNA translocation through 'inch-worm' mechanisms that involve relative movements of two subdomains, the interface of which forms the ATP-binding site. Whether the available structures of the monomeric forms of the SF1 enzymes bound to ssDNA–dsDNA junctions represent on-pathway intermediates in the DNA-unwinding reaction or autoinhibited complexes is less certain.

  • There is still much to be learned concerning the mechanisms of translocation, duplex unwinding and protein displacement by these enzymes and especially how these activities are regulated by accessory proteins.

Abstract

Helicases and nucleic acid translocases are motor proteins that have essential roles in nearly all aspects of nucleic acid metabolism, ranging from DNA replication to chromatin remodelling. Fuelled by the binding and hydrolysis of nucleoside triphosphates, helicases move along nucleic acid filaments and separate double-stranded DNA into their complementary single strands. Recent evidence indicates that the ability to simply translocate along single-stranded DNA is, in many cases, insufficient for helicase activity. For some of these enzymes, self assembly and/or interactions with accessory proteins seem to regulate their translocase and helicase activities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multiple activities of SF1 and SF2 helicases and translocases.
Figure 2: Domain structure and domain movement of superfamily-1 translocase and helicase monomers.
Figure 3: Potential mechanisms of the regulation of multiple SF1 helicase/translocase activities.

Similar content being viewed by others

References

  1. Abdel-Monem, M. & Hoffmann-Berling, H. Enzymatic unwinding of DNA. 1. Purification and characterization of a DNA-dependent ATPase from Escherichia coli. Eur. J. Biochem. 65, 431–440 (1976).

    Article  CAS  PubMed  Google Scholar 

  2. Abdel-Monem, M., Durwald, H. & Hoffmann-Berling, H. Enzymic unwinding of DNA. 2. Chain separation by an ATP-dependent DNA unwinding enzyme. Eur. J. Biochem. 65, 441–449 (1976).

    Article  CAS  PubMed  Google Scholar 

  3. Abdel-Monem, M., Durwald, H. & Hoffmann-Berling, H. DNA unwinding enzyme II of Escherichia coli. 2. Characterization of the DNA unwinding activity. Eur. J. Biochem. 79, 39–45 (1977).

    Article  CAS  PubMed  Google Scholar 

  4. Geider, K. & Hoffmann-Berling, H. Proteins controlling the helical structure of DNA. Annu. Rev. Biochem. 50, 233–260 (1981).

    Article  CAS  PubMed  Google Scholar 

  5. Wilcox, K. W. & Smith, H. O. Mechanism of DNA degradation by the ATP-dependent DNase from Hemophilus influenzae Rd. J. Biol. Chem. 251, 6127–6134 (1976).

    Article  CAS  PubMed  Google Scholar 

  6. Scott, J. F., Eisenberg, S., Bertsch, L. L. & Kornberg, A. A mechanism of duplex DNA replication revealed by enzymatic studies of phage φ X174: catalytic strand separation in advance of replication. Proc. Natl Acad. Sci. USA 74, 193–197 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kornberg, A., Scott, J. F. & Bertsch, L. L. ATP utilization by rep protein in the catalytic separation of DNA strands at a replicating fork. J. Biol. Chem. 253, 3298–3304 (1978).

    Article  CAS  PubMed  Google Scholar 

  8. Yarranton, G. T., Das, R. H. & Gefter, M. L. Enzyme-catalyzed DNA unwinding. A DNA-dependent ATPase from E. coli. J. Biol. Chem. 254, 11997–12001 (1979).

    Article  CAS  PubMed  Google Scholar 

  9. Yarranton, G. T. & Gefter, M. L. Enzyme-catalyzed DNA unwinding: studies on Escherichia coli rep protein. Proc. Natl Acad. Sci. USA 76, 1658–1662 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Duguet, M., Yarranton, G. & Gefter, M. The rep protein of Escherichia coli: interaction with DNA and other proteins. Cold Spring Harb. Symp. Quant. Biol. 43, 335–343 (1979).

    Article  CAS  PubMed  Google Scholar 

  11. Flores, M. J., Sanchez, N. & Michel, B. A fork-clearing role for UvrD. Mol. Microbiol. 57, 1664–1675 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Michel, B., Boubakri, H., Baharoglu, Z., Lemasson, M. & Lestini, R. Recombination proteins and rescue of arrested replication forks. DNA Repair (Amst.) 6, 967–980 (2007).

    Article  CAS  Google Scholar 

  13. Veaute, X. et al. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423, 309–312 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Veaute, X. et al. UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli. EMBO J. 24, 180–189 (2005). The anti-recombinogenic activity of UvrD is shown to be the probable result of its ability to displace the RecA protein from ssDNA.

    Article  CAS  PubMed  Google Scholar 

  15. Lestini, R. & Michel, B. UvrD controls the access of recombination proteins to blocked replication forks. EMBO J. 26, 3804–3814 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jankowsky, E., Gross, C. H., Shuman, S. & Pyle, A. M. Active disruption of an RNA-protein interaction by a DExH/D RNA helicase. Science 291, 121–125 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Saha, A., Wittmeyer, J. & Cairns, B. R. Chromatin remodelling: the industrial revolution of DNA around histones. Nature Rev. Mol. CellBiol. 7, 437–447 (2006).

    Article  CAS  Google Scholar 

  18. Cordin, O., Banroques, J., Tanner, N. K. & Linder, P. The DEAD-box protein family of RNA helicases. Gene 367, 17–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Ellis, N. A. DNA helicases in inherited human disorders. Curr. Opin. Genet. Dev. 7, 354–363 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Cheok, C. F. et al. Roles of the Bloom's syndrome helicase in the maintenance of genome stability. Biochem. Soc. Trans. 33, 1456–1459 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Goto, M. Werner's syndrome: from clinics to genetics. Clin. Exp. Rheumatol. 18, 760–766 (2000).

    CAS  PubMed  Google Scholar 

  22. Friedberg, E. C. & Wood, R. D. New insights into the combined Cockayne/xeroderma pigmentosum complex: human XPG protein can function in transcription factor stability. Mol. Cell 26, 162–164 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Patel, S. S. & Picha, K. M. Structure and function of hexameric helicases. Annu. Rev. Biochem. 69, 651–697 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Singleton, M. R., Dillingham, M. S. & Wigley, D. B. Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76, 23–50 (2007). Structures and mechanistic models, including the inch-worm model, are reviewed for all classes of helicase.

    Article  CAS  PubMed  Google Scholar 

  25. Gorbalenya, A. E. & Koonin, E. V. Helicases: amino acid sequence comparisons and structure–function relationships. Curr. Opin. Struct. Biol. 3, 419–429 (1993).

    Article  CAS  Google Scholar 

  26. Linder, P. Dead-box proteins: a family affair—active and passive players in RNP-remodeling. Nucleic Acids Res. 34, 4168–4180 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jankowsky, E. & Fairman, M. E. RNA helicases — one fold for many functions. Curr. Opin. Struct. Biol. 17, 316–324 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Hall, M. C. & Matson, S. W. Helicase motifs: the engine that powers DNA unwinding. Mol. Microbiol. 34, 867–877 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Fairman, M. E. et al. Protein displacement by DExH/D “RNA helicases” without duplex unwinding. Science 304, 730–734 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Subramanya, H. S., Bird, L. E., Brannigan, J. A. & Wigley, D. B. Crystal structure of a DExx box DNA helicase. Nature 384, 379–383 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Velankar, S. S., Soultanas, P., Dillingham, M. S., Subramanya, H. S. & Wigley, D. B. Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97, 75–84 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Korolev, S., Hsieh, J., Gauss, G. H., Lohman, T. M. & Waksman, G. Major domain swiveling revealed by the crystal structures of complexes of E. coli Rep helicase bound to single-stranded DNA and ADP. Cell 90, 635–647 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Lee, J. Y. & Yang, W. UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke. Cell 127, 1349–1360 (2006). High resolution crystal structures of UvrD monomers bound to DNA substrates are used to propose a wrench and inch-worm mechanism for DNA unwinding by a UvrD monomer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Singleton, M. R., Dillingham, M. S., Gaudier, M., Kowalczykowski, S. C. & Wigley, D. B. Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks. Nature 432, 187–193 (2004). The crystal structure of the bipolar RecBCD helicase shows interactions between an accessory protein (RecC) and two SF1 helicases with opposite directionality, the 3′ to 5′ RecB and the 5′ to 3′ RecD.

    Article  CAS  PubMed  Google Scholar 

  35. Singleton, M. R., Scaife, S. & Wigley, D. B. Structural analysis of DNA replication fork reversal by RecG. Cell 107, 79–89 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Yao, N. et al. Structure of the hepatitis C virus RNA helicase domain. Nature Struct. Biol. 4, 463–467 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Kim, J. L. et al. Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: the crystal structure provides insights into the mode of unwinding. Structure 6, 89–100 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Mackintosh, S. G. et al. Structural and biological identification of residues on the surface of NS3 helicase required for optimal replication of the hepatitis C virus. J. Biol. Chem. 281, 3528–3535 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Bernstein, D. A., Zittel, M. C. & Keck, J. L. High-resolution structure of the E.coli RecQ helicase catalytic core. EMBO J. 22, 4910–4921 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sengoku, T., Nureki, O., Nakamura, A., Kobayashi, S. & Yokoyama, S. Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell 125, 287–300 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Buttner, K., Nehring, S. & Hopfner, K. P. Structural basis for DNA duplex separation by a superfamily-2 helicase. Nature Struct. Mol. Biol. 14, 647–652 (2007).

    Article  CAS  Google Scholar 

  42. Ali, J. A. & Lohman, T. M. Kinetic measurement of the step-size of DNA unwinding by Escherichia coli UvrD helicase. Science 275, 377–380 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Lucius, A. L., Maluf, N. K., Fischer, C. J. & Lohman, T. M. General methods for analysis of sequential “n-step” kinetic mechanisms: application to single turnover kinetics of helicase-catalyzed DNA unwinding. Biophys. J. 85, 2224–2239 (2003). The use of pre-steady-state kinetic methods to study DNA unwinding is discussed along with the concept of a kinetic step size.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dillingham, M. S., Wigley, D. B. & Webb, M. R. Demonstration of unidirectional single-stranded DNA translocation by PcrA helicase: measurement of step size and translocation speed. Biochemistry 39, 205–212 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Dillingham, M. S., Wigley, D. B. & Webb, M. R. Direct measurement of single-stranded DNA translocation by PcrA helicase using the fluorescent base analogue 2-aminopurine. Biochemistry 41, 643–651 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Fischer, C. J. & Lohman, T. M. ATP-dependent translocation of proteins along single-stranded DNA: models and methods of analysis of pre-steady state kinetics. J. Mol. Biol. 344, 1265–1286 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Cheng, W., Hsieh, J., Brendza, K. M. & Lohman, T. M. E. coli Rep oligomers are required to initiate DNA unwinding in vitro. J. Mol. Biol. 310, 327–350 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Brendza, K. M. et al. Autoinhibition of Escherichia coli Rep monomer helicase activity by its 2B subdomain. Proc. Natl Acad. Sci. USA 102, 10076–10081 (2005). This paper demonstrates that Rep monomers can translocate along ssDNA and do not have helicase activity, but the deletion of subdomain 2B activates helicase activity of the monomer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Maluf, N. K., Fischer, C. J. & Lohman, T. M. A dimer of Escherichia coli UvrD is the active form of the helicase in vitro. J. Mol. Biol. 325, 913–935 (2003). Pre-steady-state kinetic studies show that UvrD monomers do not possess helicase activity in vitro and that dimers are the minimal oligomeric form needed.

    Article  CAS  PubMed  Google Scholar 

  50. Fischer, C. J., Maluf, N. K. & Lohman, T. M. Mechanism of ATP-dependent translocation of E.coli UvrD monomers along single-stranded DNA. J. Mol. Biol. 344, 1287–1309 (2004). Single round methods for studying ssDNA-translocase kinetics show that UvrD monomers are rapid and processive ssDNA translocases, but not helicases in vitro.

    Article  CAS  PubMed  Google Scholar 

  51. Nanduri, B., Byrd, A. K., Eoff, R. L., Tackett, A. J. & Raney, K. D. Pre-steady-state DNA unwinding by bacteriophage T4 Dda helicase reveals a monomeric molecular motor. Proc. Natl Acad. Sci. USA 99, 14722–14727 (2002). Pre-steady-state kinetic methods demonstrate that the T4 Dda monomer has limited helicase activity in vitro.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sikora, B., Eoff, R. L., Matson, S. W. & Raney, K. D. DNA unwinding by Escherichia coli DNA helicase I (TraI) provides evidence for a processive monomeric molecular motor. J. Biol. Chem. 281, 36110–36116 (2006). Pre-steady-state kinetic methods demonstrate that the TraI monomer is a highly processive helicase in vitro.

    Article  CAS  PubMed  Google Scholar 

  53. Serebrov, V. & Pyle, A. M. Periodic cycles of RNA unwinding and pausing by hepatitis C virus NS3 helicase. Nature 430, 476–480 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Levin, M. K., Wang, Y. H. & Patel, S. S. The functional interaction of the hepatitis C virus helicase molecules is responsible for unwinding processivity. J. Biol. Chem. 279, 26005–26012 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Ha, T. et al. Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature 419, 638–641 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Myong, S., Rasnik, I., Joo, C., Lohman, T. M. & Ha, T. Repetitive shuttling of a motor protein on DNA. Nature 437, 1321–1325 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Myong, S., Bruno, M. M., Pyle, A. M. & Ha, T. Spring-loaded mechanism of DNA unwinding by hepatitis C virus NS3 helicase. Science 317, 513–516 (2007). A single molecule fluorescence study concluding that the NS3 helicase unwinds DNA with a mechanical step size of 3 bp, composed of 1 bp sub-steps.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dessinges, M. N., Lionnet, T., Xi, X. G., Bensimon, D. & Croquette, V. Single-molecule assay reveals strand switching and enhanced processivity of UvrD. Proc. Natl Acad. Sci. USA 101, 6439–6444 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Perkins, T. T., Li, H. W., Dalal, R. V., Gelles, J. & Block, S. M. Forward and reverse motion of single RecBCD molecules on DNA. Biophys. J. 86, 1640–1648 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bianco, P. R. et al. Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature 409, 374–378 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Johnson, D. S., Bai, L., Smith, B. Y., Patel, S. S. & Wang, M. D. Single-molecule studies reveal dynamics of DNA unwinding by the ring-shaped T7 helicase. Cell 129, 1299–1309 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dumont, S. et al. RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP. Nature 439, 105–108 (2006). A single molecule, optical tweezers study concluding that the NS3 helicase unwinds RNA with a mechanical step size of 11 bp, composed of 3 bp sub-steps.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cheng, W., Dumont, S., Tinoco, I. Jr & Bustamante, C. NS3 helicase actively separates RNA strands and senses sequence barriers ahead of the opening fork. Proc. Natl Acad. Sci. USA. 104, 13954–13959 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xu, H. Q. et al. The Escherichia coli RecQ helicase functions as a monomer. J. Biol. Chem. 278, 34925–34933 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Niedziela-Majka, A., Chesnik, M. A., Tomko, E. J. & Lohman, T. M. Bacillus stearothermophilus PcrA monomer is a single-stranded DNA translocase but not a processive helicase in vitro. J. Biol. Chem. 282, 27076–27085 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Ali, J. A., Maluf, N. K. & Lohman, T. M. An oligomeric form of the E. coli UvrD helicase is required for optimal helicase activity. J. Mol. Biol. 293, 815–833 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Maluf, N. K., Ali, J. A. & Lohman, T. M. Kinetic mechanism for formation of the active, dimeric UvrD helicase–DNA complex. J. Biol. Chem. 278, 31930–31940 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Zhang, W. et al. Directional loading and stimulation of PcrA helicase by the replication initiator protein RepD. J. Mol. Biol. 371, 336–348 (2007). The RepD protein is shown to greatly stimulate the helicase activity of the PcrA enzyme in vitro.

    Article  CAS  PubMed  Google Scholar 

  69. Yang, Y. et al. Evidence for a functional dimeric form of the PcrA helicase in DNA unwinding. Nucleic Acids Res. 36, 1976–1989 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Byrd, A. K. & Raney, K. D. Increasing the length of the single-stranded overhang enhances unwinding of duplex DNA by bacteriophage T4 Dda helicase. Biochemistry 44, 12990–12997 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Tackett, A. J., Chen, Y., Cameron, C. E. & Raney, K. D. Multiple full-length NS3 molecules are required for optimal unwinding of oligonucleotide DNA in vitro. J. Biol. Chem. 280, 10797–10806 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Lohman, T. M. Helicase-catalyzed DNA unwinding. J. Biol. Chem. 268, 2269–2272 (1993).

    Article  CAS  PubMed  Google Scholar 

  73. Lohman, T. M. & Bjornson, K. P. Mechanisms of helicase-catalyzed DNA unwinding. Ann. Rev. Biochem. 65, 169–214 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Matson, S. W. DNA helicases of Escherichia coli. Prog. Nucleic Acid Res. Mol. Biol. 40, 289–326 (1991).

    Article  CAS  PubMed  Google Scholar 

  75. Matson, S. W., Tabor, S. & Richardson, C. C. The gene 4 protein of bacteriophate T7. Characterization of helicase activity. J. Biol. Chem. 258, 14017–14024 (1983).

    Article  CAS  PubMed  Google Scholar 

  76. Block, S. M. Kinesin motor mechanics: binding, stepping, tracking, gating, and limping. Biophys. J. 92, 2986–2995 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lucius, A. L. & Lohman, T. M. Effects of temperature and ATP on the kinetic mechanism and kinetic step-size for E. coli RecBCD helicase-catalyzed DNA unwinding. J. Mol. Biol. 339, 751–771 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Lee, M. S. & Marians, K. J. Differential ATP requirements distinguish the DNA translocation and DNA unwinding activities of the Escherichia coli PRI A protein. J. Biol. Chem. 265, 17078–17083 (1990).

    Article  CAS  PubMed  Google Scholar 

  79. Tomko, E. J., Fischer, C. J., Niedziela-Majka, A. & Lohman, T. M. A nonuniform stepping mechanism for E. coli UvrD monomer translocation along single-stranded DNA. Mol. Cell 26, 335–347 (2007). Pre-steady-state measurements of both ssDNA-translocation rates and ATP hydrolysis shows an ATP coupling stoichiometry of 1 ATP hydrolyzed per base translocated with a slow kinetic step occurring every 4–5 bases.

    Google Scholar 

  80. Hill, T. L. & Tsuchiya, T. Theoretical aspects of translocation on DNA: Adenosine triphosphatase and treadmilling binding proteins. Proc. Natl Acad. Sci. USA 78, 4796–4800 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Soultanas, P. & Wigley, D. B. Unwinding the 'Gordian knot' of helicase action. Trends Biochem. Sci. 26, 47–54 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Yu, J., Ha, T. & Schulten, K. Structure-based model of the stepping motor of PcrA helicase. Biophys. J. 91, 2097–2114 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wong, I. & Lohman, T. M. Allosteric effects of nucleotide cofactors on Escherichia coli Rep helicase-DNA binding. Science 256, 350–355 (1992).

    Article  CAS  PubMed  Google Scholar 

  84. Lohman, T. M. et al. DNA helicases, motors that move along nucleic acids: lessons from the SF1 helicase superfamily (eds Tamanoi, F. & Hackney, D. D.) 303–369 (Academic Press, New York, 2003).

  85. Levin, M. K., Gurjar, M. M. & Patel, S. S. ATP binding modulates the nucleic acid affinity of hepatitis C virus helicase. J. Biol. Chem. 278, 23311–23316 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Levin, M. K., Gurjar, M. & Patel, S. S. A Brownian motor mechanism of translocation and strand separation by hepatitis C virus helicase. Nature Struct. Mol. Biol. 12, 429–435 (2005).

    Article  CAS  Google Scholar 

  87. Lohman, T. M. E. coli DNA helicases: mechanisms of DNA unwinding. Molecular Microbiology 6, 5–14 (1992).

    Article  CAS  PubMed  Google Scholar 

  88. Amaratunga, M. & Lohman, T. M. Escherichia coli Rep helicase unwinds DNA by an active mechanism. Biochemistry 32, 6815–6820 (1993).

    Article  CAS  PubMed  Google Scholar 

  89. Betterton, M. D. & Julicher, F. Opening of nucleic-acid double strands by helicases: active versus passive opening. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71, 1–11 (2005).

    Article  CAS  Google Scholar 

  90. von Hippel, P. H. & Delagoutte, E. A general model for nucleic acid helicases and their “coupling” within macromolecular machines. Cell 104, 177–190 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Lohman, T. M. DNA helicases: dimeric enzyme action (ed. Lennarz, W. a. L., M. D.) 618–624 (Academic Press, Elsevier Science (USA), San Diego, California, 2004).

  92. Soultanas, P., Dillingham, M. S., Wiley, P., Webb, M. R. & Wigley, D. B. Uncoupling DNA translocation and helicase activity in PcrA: direct evidence for an active mechanism. EMBO J. 19, 3799–3810 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lucius, A. L. et al. DNA unwinding step-size of E. coli RecBCD helicase determined from single turnover chemical quenched-flow kinetic studies. J. Mol. Biol. 324, 409–428 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Zhang, X. D. et al. Escherichia coli RecQ is a rapid, efficient, and monomeric helicase. J. Biol. Chem. 281, 12655–12663 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Eoff, R. L. & Raney, K. D. Intermediates revealed in the kinetic mechanism for DNA unwinding by a monomeric helicase. Nature Struct. Mol. Biol. 13, 242–249 (2006).

    Article  CAS  Google Scholar 

  96. Roman, L. J., Eggleston, A. K. & Kowalczykowski, S. C. Processivity of the DNA helicase activity of Escherichia coli recBCD enzyme. J. Biol. Chem. 267, 4207–4214 (1992).

    Article  CAS  PubMed  Google Scholar 

  97. Dillingham, M. S., Spies, M., Kowalczykowski, S. C. RecBCD enzyme is a bipolar helicase. Nature 423, 893–897 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Taylor, A. F. & Smith, G. R. RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity. Nature 423, 889–893 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Lucius, A. L., Jason Wong, C. & Lohman, T. M. Fluorescence stopped-flow studies of single turnover kinetics of E. coli RecBCD helicase-catalyzed DNA unwinding. J. Mol. Biol. 339, 731–750 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Roman, L. J. & Kowalczykowski, S. C. Characterization of the helicase activity of the Escherichia coli RecBCD enzyme using a novel helicase assay. Biochemistry 28, 2863–2873 (1989).

    Article  CAS  PubMed  Google Scholar 

  101. Bianco, P. R. & Kowalczykowski, S. C. Translocation step size and mechanism of the RecBC DNA helicase. Nature 405, 368–372 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Farah, J. A. & Smith, G. R. The RecBCD enzyme initiation complex for DNA unwinding: enzyme positioning and DNA opening. J. Mol. Biol. 272, 699–715 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Wong, C. J., Lucius, A. L. & Lohman, T. M. Energetics of DNA end binding by E. coli RecBC and RecBCD helicases indicate loop formation in the 3′-single-stranded DNA tail. J. Mol. Biol. 352, 765–782 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Singleton, M. R., Sawaya, M. R., Ellenberger, T. & Wigley, D. B. Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell 101, 589–600 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Mechanic, L. E., Hall, M. C. & Matson, S. W. Escherichia coli DNA helicase II is active as a monomer. J. Biol. Chem. 274, 12488–12498 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Cheng, W. et al. The 2B domain of the Escherichia coli Rep protein is not required for DNA helicase activity. Proc. Natl Acad. Sci. USA 99, 16006–16011 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bidnenko, V., Lestini, R. & Michel, B. The Escherichia coli UvrD helicase is essential for Tus removal during recombination-dependent replication restart from Ter sites. Mol. Microbiol. 62, 382–396 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Flores, M. J., Bidnenko, V. & Michel, B. The DNA repair helicase UvrD is essential for replication fork reversal in replication mutants. EMBO Rep. 5, 983–988 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Krejci, L. et al. DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423, 305–309 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Krejci, L. et al. Role of ATP hydrolysis in the antirecombinase function of Saccharomyces cerevisiae Srs2 protein. J. Biol. Chem. 279, 23193–23199 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Boule, J. B., Vega, L. R. & Zakian, V. A. The yeast Pif1p helicase removes telomerase from telomeric DNA. Nature 438, 57–61 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Anand, S. P., Zheng, H., Bianco, P. R., Leuba, S. H. & Khan, S. A. DNA helicase activity of PcrA is not required for the displacement of RecA protein from DNA or inhibition of RecA-mediated strand exchange. J. Bacteriol. 189, 4502–4509 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Smith, A. J., Szczelkun, M. D. & Savery, N. J. Controlling the motor activity of a transcription-repair coupling factor: autoinhibition and the role of RNA polymerase. Nucleic Acids Res. 35, 1802–1811 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Richards, J. D. et al. Structure of the DNA repair helicase HEL308 reveals DNA binding and autoinhibitory domains. J. Biol. Chem. 283, 5118–5126 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Beran, R. K. F., Serebrov, V. & Pyle, A. M. The serine protease domain of hepatitis C viral NS3 activates RNA helicase activity by promoting the binding of RNA substrate. J. Biol. Chem. 282, 34913–34920 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Eisenberg, S., Griffith, J. D. & Kornberg, A. φX174 cistron A protein is a multifunctional enzyme in DNA replication. Proc. Natl Acad. Sci. USA 74, 3198–3202 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Boehmer, P. E. & Emmerson, P. T. The RecB subunit of the Escherichia coli RecBCD enzyme couples ATP hydrolysis to DNA unwinding. J. Biol. Chem. 267, 4981–4987 (1992).

    Article  CAS  PubMed  Google Scholar 

  118. Rigden, D. J. An inactivated nuclease-like domain in RecC with novel function: implications for evolution. BMC Struct. Biol. 5, 9 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Pang, P. S., Jankowsky, E., Planet., P. J. & Pyle, A. M. The hepatitis C viral NS3 protein is a processive DNA helicase with cofactor enhanced RNA unwinding. EMBO J. 21, 1168–1176 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Spies, M., Amitani, I., Baskin, R. J. & Kowalczykowski, S. C. RecBCD enzyme switches lead motor subunits in response to chi recognition. Cell 131, 694–705 (2007). Single molecule studies showing that recognition of the 'Chi' sequence within the unwound DNA results in a switching of the lead motor during unwinding with a dramatic effect on the rates and nuclease activity of this bipolar helicase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Eggleston, A. K., Rahim, N. A. & Kowalczykowski, S. C. A helicase assay based on the displacement of fluorescent, nucleic acid-binding ligands. Nucleic Acids Res. 24, 1179–1186 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Greenstein, D. & Horiuchi, K. Interaction between the replication origin and the initiator protein of the filamentous phage f1. J. Mol. Biol. 197, 157–174 (1987).

    Article  CAS  PubMed  Google Scholar 

  123. Chao, K. & Lohman, T. M. DNA-induced dimerization of the Escherichia coli rep helicase. J. Mol. Biol. 221, 1165–1181 (1991).

    Article  CAS  PubMed  Google Scholar 

  124. Matson, S. W. & Robertson, A. B. The UvrD helicase and its modulation by the mismatch repair protein MutL. Nucleic Acids Res. 34, 4089–4097 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sinha, K. M., Stephanou, N. C., Gao, F., Glickman, M. S. & Shuman, S. Mycobacterial UvrD1 is a Ku-dependent DNA helicase that plays a role in multiple DNA repair events, including double-strand break repair. J. Biol. Chem. 282, 15114–15125 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Shereda, R. D., Bernstein, D. A. & Keck, J. L. A central role for SSB in Escherichia coli RecQ DNA helicase function. J. Biol. Chem. 282, 19247–19258 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Cadman, C. J. & McGlynn, P. PriA helicase and SSB interact physically and functionally. Nucleic Acids Res. 32, 6378–6387 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of the Lohman laboratory as well as A. Lucius, R. Galletto, N. K. Maluf, C. Fischer, A. Pyle and J. Carey for discussions and comments. The authors of this work are supported by a National Institutes of Health (NIH) grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy M. Lohman.

Related links

Related links

DATABASES

UniProtKB 

PcrA

Rep

UvrD

RecG

RecQ

VASA

Hel308

RecB

RecD

RecC

Srs2

FURTHER INFORMATION

Timothy M. Lohman's homepage

Glossary

Holliday junction

A cruciform DNA structure that is generated during the synaptic phase of homologous recombination.

RNA DEAD-box helicase

An enzyme that unwinds RNA duplexes and contains the evolutionarily conserved motif DEAD (Asp-Glu-Ala-Asp) in the helicase core region.

Ensemble study

An experiment performed with a large population of molecules and during which the average behaviour of the population is monitored.

Kinesin

A microtubule-based molecular motor, most often directed towards the plus end of microtubules.

Myosin

A molecular motor that moves along actin filaments and has several cellular roles in contraction or protein transport.

FRET

(Fluorescence resonance energy transfer). The transfer of energy between a donor and an acceptor fluorophore when the donor is directly excited with one wavelength of light. The acceptor then re-emits the energy with a different, longer wavelength that is characteristic of the acceptor fluorophore. Transfer only occurs if the two fluorophores are within a characteristic distance that depends on the spectral properties of the donor and acceptor.

AMPPNP

A non-hydrolysable ATP analogue.

Replication fork

A site in double-stranded DNA where the template strands are separated, allowing a newly formed copy of the DNA to be synthesized. The fork moves in the direction of leading-strand synthesis.

Telomeric DNA end

A segment at the end of a chromosome arm that consists of a series of repeated DNA sequences.

Crossover hotspot instigator sequence

(Chi sequence). A specific nucleotide sequence (5′-GCTGGTGG-3′) that facilitates the nearby occurrence of recombination and crossing over.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lohman, T., Tomko, E. & Wu, C. Non-hexameric DNA helicases and translocases: mechanisms and regulation. Nat Rev Mol Cell Biol 9, 391–401 (2008). https://doi.org/10.1038/nrm2394

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2394

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing