Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How membrane proteins sense voltage

Key Points

  • Voltage sensors are structures within a protein that can sense the membrane potential.

  • The movement of the sensing charges, combined with the configuration of the electric field, determines the extent of the conformational change that occurs.

  • Gating currents, or more generally sensing currents, are the transient currents that are produced by the movement of the sensing charges.

  • The K+ channel voltage sensor is described in detail because it has been studied using several biophysical techniques and its crystal structure is available. Biophysical techniques can delineate the details of the movement of the voltage sensor in response to changes in the membrane potential.

  • The Na+ channel is responsible for the upstroke of the nerve impulse and differs from K+ channels; it is faster and has intrinsic cooperativity.

  • Channels that close on depolarization contain the voltage sensor for segments 1–4 (S1–S4); however, the gate operates in reverse to the classic Na+, K+ and Ca2+ channels. The proton channel is another member of the S1–S4 voltage sensor family, but it lacks a pore region. Another membrane protein that contains the S1–S4 voltage sensor is voltage-dependent phosphatase; here the sensor regulates the activity of its built-in phosphatase.

  • Some G-protein coupled receptors are voltage dependent. The membrane potential regulates affinity in the m1 and m2 muscarinic receptors and shows sensing currents.

  • The Na–glucose co-transporter is voltage dependent and shows sensing currents; and the Na+−K+ pump is electrogenic and shows sensing currents.

Abstract

The ionic gradients across cell membranes generate a transmembrane voltage that regulates the function of numerous membrane proteins such as ion channels, transporters, pumps and enzymes. The mechanisms by which proteins sense voltage is diverse: ion channels have a conserved, positively charged transmembrane region that moves in response to changes in membrane potential, some G-protein coupled receptors possess a specific voltage-sensing motif and some membrane pumps and transporters use the ions that they transport across membranes to sense membrane voltage. Characterizing the general features of voltage sensors might lead to the discovery of further membrane proteins that are voltage regulated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The possible structures of voltage sensors.
Figure 2: The basic architecture of voltage-gated channels.
Figure 3: A model of the two extreme configurations of the Shaker K+ channel.
Figure 4: The architecture of several voltage-dependent proteins.

Similar content being viewed by others

References

  1. Armstrong, C. M. & Bezanilla, F. Currents related to movement of the gating particles of the sodium channels. Nature 242, 459–461 (1973).

    Article  CAS  PubMed  Google Scholar 

  2. Conti, F. & Stuhmer, W. Quantal charge redistribution accompanying the structural transitions of sodium channels. Eur. Biophys. J. 17, 53–59 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Sigg, D., Stefani, E. & Bezanilla, F. Gating current noise produced by elementary transition in shaker potassium channels. Science 264, 578–582 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Sigg, D., Bezanilla, F. & Stefani, E. Fast gating in the Shaker K+ channel and the energy landscape of activation. Proc. Natl Acad. Sci. USA 100, 7611–7615 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Armstrong, C. M. & Bezanilla, F. Inactivation of the sodium channel. II. Gating current experiments. J. Gen. Physiol. 70, 567–590 (1977).

    Article  CAS  PubMed  Google Scholar 

  6. Miller, C. ClC chloride channels viewed through a transporter lens. Nature 440, 484–489 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Chen, M.-F. & Chen, T.-Y. Side-chain charge effects and conductance determinants in the pore of ClC-0 chloride channels. J. Gen. Physiol. 122, 133–145 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schoppa, N. E., McCormack, K., Tanouye, M. A. & Sigworth, F. J. The size of gating charge in wild-type and mutant shaker potassium channels. Science 255, 1712–1715 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Seoh, S.-A., Sigg, D., Papazian, D. M. & Bezanilla, F. Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 16, 1159–1167 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Noda, M. et al. Primary structure of electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312, 121–127 (1984).

    Article  CAS  PubMed  Google Scholar 

  11. Aggarwal, S. K. & MacKinnon, R. Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron 16, 1169–1177 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Catterall, W. A. Molecular properties of voltage-sensitive sodium channels Annu. Rev. Biochem. 55, 953–985 (1986).

    Article  CAS  PubMed  Google Scholar 

  13. Guy, H. R. & Seetharamulu, P. Molecular model of the action potential sodium channel. Proc. Natl Acad. Sci. USA 83, 508–512 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jiang, Y., Ruta, V., Chen, J., Lee, A. & MacKinnon, R. The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423, 42–48 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Bezanilla, F. The voltage sensor in voltage-dependent ion channels. Physiol. Rev. 80, 555–592 (2000). A review of the biophysical properties of voltage-dependent channels.

    Article  CAS  PubMed  Google Scholar 

  16. Tombola, F., Pathak, M. M. & Isacoff, E. Y. How does voltage open an ion channel? Annu. Rev. Cell Dev. Biol. 22, 23–52 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Starace, D. M. & Bezanilla, F. A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 427, 548–552 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Tombola, F., Pathak, M. M. & Isacoff, E. Y. Voltage-sensing arginines in a potassium channel permeate and occlude cation-selective pores. Neuron 45, 379–388 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Tombola, F, Pathak, M. M., Gorostiza, P. & Isacoff, E. Y. The twisted ion-permeation pathway of a resting voltage-sensing domain. Nature 445, 546–549 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Ahern, C. A. & Horn, R. Focused electric field across the voltage sensor of potassium channels. Neuron 48, 25–29 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Long, S. B., Campbell, E. B. & MacKinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903 (2005). Crystal structure of a voltage-gated channel.

    Article  CAS  PubMed  Google Scholar 

  22. Jogini, V. & Roux, B. Dynamics of the Kv1.2 voltage-gated K+ channel in a membrane environment. Biophys. J. 93, 3070–3082 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Asamoah, O. K., Wuskell, J. P., Loew, L. M. & Bezanilla, F. A fluorometric approach to local electric field measurements in a voltage-gated ion channel. Neuron 37, 85–97 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Chanda, B., Asamoah, O. K., Blunck, R., Roux, B. & Bezanilla, F. Gating charge displacement in voltage-gated channels involves limited transmembrane movement. Nature 436, 852–856 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Posson, D. J., Ge, P., Miller, C., Bezanilla, F. & Selvin, P. R. Small vertical movement of a K+ channel voltage sensor measured with luminescence energy transfer. Nature 436, 848–851 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ruta, V., Chen, J. & MacKinnon, R. Calibrated measurement of gating-charge arginine displacement in the KvAP voltage-dependent K+ channel. Cell 123, 463–475 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Yarov-Yarovoy, V., Baker, D. & Catterall, W. A. Voltage sensor conformations in the open and closed states in ROSETTA structural models of K+ channels. Proc. Natl Acad. Sci. USA 103, 7292–7297 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pathak, M. M. et al. Closing in on the resting state of the Shaker K+ channel. Neuron 56, 124–140 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Campos, F. V., Chanda, B., Roux, B. & Bezanilla, F. Two atomic constraints unambiguously position the S4 segment relative to S1 and S2 segments in the closed state of Shaker K channel. Proc. Natl Acad. Sci. USA 104, 7904–7909 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Long, S. B., Tao, X. Campbell, E. B. & MacKinnon, R. Atomic structure of a voltage-dependent K channel in a lipid membrane-like environment. Nature 450, 376–383 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Webster, S. M., Del Camino, D., Dekker, J. P. & Yellen, G. Intracellular gate opening in Shaker K+ channels defined by high-affinity metal bridges. Nature 428, 864–868 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Noceti, F. et al. Effective gating charges per channel in voltage-dependent K+ and Ca2+ channel. J. Gen. Physiol. 108, 143–155 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Hirschberg, B., Rovner, A., Lieberman, M. & Patlak, J. Transfer of twelve charges is needed to open skeletal muscle Na+ channels. J. Gen. Physiol. 106, 1053–1068 (1996).

    Article  Google Scholar 

  34. Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952). The first description of voltage-dependent conductance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chanda, B. & Bezanilla, F. Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation. J. Gen. Physiol. 120, 629–645 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chanda, B., Asamoah, O. K & Bezanilla, F. Coupling interactions between voltage sensors of the sodium channel as revealed by site-specific measurements. J. Gen. Physiol. 123, 217–230 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Campos, F. V, Chanda, B., Beirao, P. S. L. & Bezanilla, F. β-Scorpion toxin modifies gating transitions in all four voltage sensors of the sodium channel. J. Gen. Physiol. 130, 257–268 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Horn, R., Ding, S. & Gruber, H. J. Immobilizing the moving parts of voltage-gated ion channels. J. Gen. Physiol. 116, 461–476 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mannuzzu, L. M. & Isacoff, E. Y. Independence and cooperativity in rearrangements of a potassium channel voltage sensor revealed by single subunit fluorescence. J. Gen. Physiol. 115, 257–268 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Aldrich, R. W., Corey, D. P. & Stevens, C. F. A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature 306, 436–441 (1983).

    Article  CAS  PubMed  Google Scholar 

  41. Sheets, M. F. & Hanck, D. A. Gating of skeletal and cardiac muscle sodium channels in mammalian cells. J. Physiol. 514, 425–436 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. West, J. W. et al. A cluster of hydrophobic amino acid residues required for fast Na+-channels inactivation. Proc. Natl Acad. Sci. USA 89, 10910–10914 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cha, A., Ruben, P. C., George, A. L., Fujimoto, E. & Bezanilla, F. Voltage sensors in domains III and IV, but not I and II, are immobilized by Na+ channel fast inactivation. Neuron 22, 73–87 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Sasaki, M., Takagi, M. & Okamura, Y. A voltage sensor-domain protein is a voltage-gated proton channel. Science 312, 589–592 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Ramsey, S., Moran, M. M., Chong, J. A., Clapham, D. E. A voltage-gated proton-selective channel lacking the pore domain. Nature 440, 1213–1216 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Latorre, R. et al. Molecular coupling between voltage sensor and pore opening in the arabidopsis inward rectifier K channel KAT1. J. Gen. Physiol. 122, 459–469 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mãnnikkõ, R., Elinder, F. & Larsson, H. P. Voltage sensing mechanism is conserved among ion channels gated by opposite voltages. Nature 419, 837–841 (2002).

    Article  PubMed  Google Scholar 

  48. Smith, P., Braukowitz, T. & Yellen, G. The inward rectification mechanism of the HERG cardiac potassium channel. Nature 379, 833–836 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Murata, M., Iwasaki, H., Sasaki, M., Inaba, K. & Okamura, Y. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435, 1239–1243 (2005). The description of the voltage-dependent phosphatase.

    Article  CAS  PubMed  Google Scholar 

  50. Murata, Y. & Okamura, Y. Depolarization activates the phosphoinositide phosphatase Ci-VSP, as detected in Xenopus oocytes coexpressing sensors of PIP2. J. Physiol. 583, 875–889 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gether, U. Uncovering molecular mechanisms involved in activation of G protein- coupled receptors. Endocrinol. Rev. 21, 90–113 (2000).

    Article  CAS  Google Scholar 

  52. Ben-Chain, Y. et al. Movement of 'gating charge' is coupled to ligand binding in a G-protein coupled receptor. Nature 444, 106–109 (2006).

    Article  Google Scholar 

  53. Ben-Chaim, Y., Tour, O., Dascal, N., Parnas, I. & Parnas, H. The M2 muscarinic G-protein-coupled receptor is voltage-sensitive. J. Biol. Chem. 278, 22482–22491 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Parent, L., Suplisson, S., Loo, D. D. F. & Wright, E. M. Electrogenic properties of the cloned Na+/glucose cotransporter: II. A transport model under nonrapid equilibrium conditions. J. Membr. Biol. 130, 203 (1992).

    Google Scholar 

  55. Loo, D. F. et al. Conformational changes couple Na+ and glucose transport. Proc. Natl Acad. Sci. USA 95, 7789–7794.

  56. Loo, D. F., Hirayama, B. A., Cha, A., Bezanilla, F. & Wright, E. M. Perturbation analysis of the voltage-sensitive conformational changes of the Na+/glucose cotransporter. J. Gen. Physiol. 125, 13–36 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zampighi, G. A. et al. A method for determining the unitary functional capacity of cloned channels and transporters expressed in Xenopus laevis oocytes. J. Membr. Biol. 148, 65–78 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Abramson, J. et al. Structure and mechanism of the lactose permease of Escherichia coli. Science 301, 610–615 (2003).

    CAS  PubMed  Google Scholar 

  59. Nakao, M. & Gadsby, D. C. Voltage dependence of Na translocation by the Na/K pump. Nature 323, 628–630 (1986).

    Article  CAS  PubMed  Google Scholar 

  60. Holmgren, M. et al. Three distinct and sequential steps in the release of sodium ions by the Na+/K+ ATPase. Nature 403, 898–901 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Morth, J. P. et al. Crystal structure of the sodium-potassium pump. Nature 450, 1043–1049 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Bezanilla, F. in Cell Membrane Transport Ch. 3 (eds Yudilevich, D. L., Deves, R, Peran, S. & Cabantchik, Z. I.) 39–56 (Plenum Press, New York, 1991).

    Book  Google Scholar 

Download references

Acknowledgements

Many thanks to Walter Sandtner and Benoit Roux for comments. F.B. is supported by a National Institutes of Health grant.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Francisco Bezanilla's homepage

Simulation programs for voltage-gated ion channels and nerve impulses

Glossary

Electrochemical gradient

The electrical and chemical driving force that moves ions.

Membrane potential

The difference between the internal minus the external potential in a membrane.

Dielectric

An insulator or substance of very low electrical conductivity.

Capacitor

A device that can store electrical charge.

Electric field

The space that surrounds an electric charge. For a stationary charge, the electric field E at the position where a particle of charge q is located is defined by the vector E = F/q, where F is the force exerted on the particle.

Electric dipole

Two opposite charges of the same magnitude that are separated by a finite distance.

Gating current

The transient electric current that is produced by the movement of the gating charges.

Sensing currents

A more general term for gating currents.

Voltage clamp

An electronic device that imposes a defined potential difference across the membrane.

Q-V curve

A plot of the voltage dependence of the gating charge.

Capacitive current

The current that flows into and out of the plates of the capacitor during its charge or discharge.

Inactivation

The process of conductance reduction during maintained depolarization.

HERG potassium channel

This is the human ether-a-go-go related channel, which is a potassium channel that is classified as Kv11.1.

PTEN

A phosphatase that dephosphorylates phosphatidylinositol (3,4,5)-trisphosphate to obtain phosphatidylinositol (4,5)-bisphosphate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezanilla, F. How membrane proteins sense voltage. Nat Rev Mol Cell Biol 9, 323–332 (2008). https://doi.org/10.1038/nrm2376

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2376

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing