Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of nuclear architecture in genomic instability and ageing

Key Points

  • Heterochromatin, euchromatin and the nuclear matrix are often collectively referred to as the nuclear architecture. Changes in nuclear architecture appear to be an evolutionarily conserved hallmark of ageing that may result in increased genomic instability as well as transcriptional deregulation.

  • In yeast, ageing is a direct consequence of increased genomic instability in ribosomal DNA (rDNA). The NAD+-dependent histone deacetylase Sir2 has a crucial role in heterochromatin formation in budding yeast by stabilizing rDNA and thereby extending lifespan.

  • DNA damage and increased rDNA instability trigger the redistribution of Sir2-containing DNA-silencing complexes from heterochromatin to sites of DNA damage. This results in a loss of silencing at functionally important loci — telomeres, rDNA and mating-type loci — and phenotypic changes such as sterility, which together are manifested as yeast ageing.

  • Human premature-ageing syndromes implicate increased genomic instability and alterations in nuclear architecture in normal human ageing. Cells from older humans and cells that have undergone DNA-damage-induced senescence show significant changes in heterochromatin, including loss of perinuclear heterochromatin and the formation of senescence-associated heterochromatin foci (SAHFs).

  • Changes in gene expression are a hallmark of ageing across species and may directly contribute to the ageing process by impairing the ability of a cell to function normally. Changes in nuclear architecture caused by DNA damage may underlie these changes.

  • Like in yeast, mammalian DNA-damage repair requires the recruitment of chromatin-modifying enzymes to sites of DNA damage. We propose that DNA damage triggers an evolutionarily conserved redistribution of chromatin modifiers that aids DNA repair but may result in loss of silencing at other loci, thereby explaining age-related gene-expression changes. We refer to this as the epigenetic balance hypothesis of ageing.

Abstract

Eukaryotes come in many shapes and sizes, yet one thing that they all seem to share is a decline in vitality and health over time — a process known as ageing. If there are conserved causes of ageing, they may be traced back to common biological structures that are inherently difficult to maintain throughout life. One such structure is chromatin, the DNA–protein complex that stabilizes the genome and dictates gene expression. Studies in the budding yeast Saccharomyces cerevisiae have pointed to chromatin reorganization as a main contributor to ageing in that species, which raises the possibility that similar processes underlie ageing in more complex organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of age-related changes in nuclear architecture between yeast and mammalian cells.
Figure 2: Redistribution of heterochromatin-associated factors as a cause of age-related changes in nuclear architecture and gene expression.

Similar content being viewed by others

References

  1. Cheutin, T. et al. Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science 299, 721–725 (2003).

    CAS  PubMed  Google Scholar 

  2. Grewal, S. I. & Jia, S. Heterochromatin revisited. Nature Rev. Genet. 8, 35–46 (2007).

    CAS  PubMed  Google Scholar 

  3. Obe, G. et al. Chromosomal aberrations: formation, identification and distribution. Mutat. Res. 504, 17–36 (2002).

    CAS  PubMed  Google Scholar 

  4. Villeponteau, B. The heterochromatin loss model of aging. Exp. Gerontol. 32, 383–394 (1997).

    CAS  PubMed  Google Scholar 

  5. Imai, S. & Kitano, H. Heterochromatin islands and their dynamic reorganization: a hypothesis for three distinctive features of cellular aging. Exp. Gerontol. 33, 555–570 (1998).

    CAS  PubMed  Google Scholar 

  6. Goldstein, S. Replicative senescence: the human fibroblast comes of age. Science 249, 1129–1133 (1990).

    CAS  PubMed  Google Scholar 

  7. Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513–522 (2005).

    CAS  PubMed  Google Scholar 

  8. Kennedy, B. K. et al. Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. Cell 89, 381–391 (1997).

    CAS  PubMed  Google Scholar 

  9. Sinclair, D. A. & Guarente, L. Extrachromosomal rDNA circles — a cause of aging in yeast. Cell 91, 1033–1042 (1997).

    CAS  PubMed  Google Scholar 

  10. Chakalova, L., Debrand, E., Mitchell, J. A., Osborne, C. S. & Fraser, P. Replication and transcription: shaping the landscape of the genome. Nature Rev. Genet. 6, 669–677 (2005).

    CAS  PubMed  Google Scholar 

  11. Hennekam, R. C. Hutchinson–Gilford progeria syndrome: review of the phenotype. Am. J. Med. Genet. A 140, 2603–2624 (2006).

    PubMed  Google Scholar 

  12. Narita, M. et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703–716 (2003). Describes how cellular senescence leads to the formation of facultative heterochromatic foci, which alter the nuclear architecture. Alterations in nuclear architecture change the expression of cell-cycle regulators and can cause cell-cycle arrest.

    CAS  PubMed  Google Scholar 

  13. Scaffidi, P. & Misteli, T. Lamin A-dependent nuclear defects in human aging. Science 312, 1059–1063 (2006). Implicates the main cause of HGPS — a defective lamin A splice variant — in normal human ageing.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sinclair, D. A., Mills, K. & Guarente, L. Molecular mechanisms of yeast aging. Trends Biochem. Sci. 23, 131–134 (1998).

    CAS  PubMed  Google Scholar 

  15. Imai, S., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000).

    CAS  PubMed  Google Scholar 

  16. Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Straight, A. F. et al. Net1, a Sir2-associated nucleolar protein required for rDNA silencing and nucleolar integrity. Cell 97, 245–256 (1999).

    CAS  PubMed  Google Scholar 

  18. Shou, W. et al. Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell 97, 233–244 (1999).

    CAS  PubMed  Google Scholar 

  19. Visintin, R. et al. The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol. Cell 2, 709–718 (1998).

    CAS  PubMed  Google Scholar 

  20. Kennedy, B. K., Austriaco, N. R., Jr, Zhang, J. & Guarente, L. Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 80, 485–496 (1995).

    CAS  PubMed  Google Scholar 

  21. Watt, P. M., Louis, E. J., Borts, R. H. & Hickson, I. D. Sgs1: a eukaryotic homolog of E. coli RecQ that interacts with topoisomerase II in vivo and is required for faithful chromosome segregation. Cell 81, 253–260 (1995).

    CAS  PubMed  Google Scholar 

  22. Yu, C. E. et al. Positional cloning of the Werner's syndrome gene. Science 272, 258–262 (1996).

    CAS  PubMed  Google Scholar 

  23. Sinclair, D. A., Mills, K. & Guarente, L. Accelerated aging and nucleolar fragmentation in yeast sgs1 mutants. Science 277, 1313–1316 (1997).

    CAS  PubMed  Google Scholar 

  24. McAinsh, A. D., Scott-Drew, S., Murray, J. A. & Jackson, S. P. DNA damage triggers disruption of telomeric silencing and Mec1p-dependent relocation of Sir3p. Curr. Biol. 9, 963–966 (1999).

    CAS  PubMed  Google Scholar 

  25. Mills, K. D., Sinclair, D. A. & Guarente, L. MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell 97, 609–620 (1999).

    CAS  PubMed  Google Scholar 

  26. Lee, S. E., Paques, F., Sylvan, J. & Haber, J. E. Role of yeast SIR genes and mating type in directing DNA double-strand breaks to homologous and non-homologous repair paths. Curr. Biol. 9, 767–770 (1999).

    CAS  PubMed  Google Scholar 

  27. Martin, S. G., Laroche, T., Suka, N., Grunstein, M. & Gasser, S. M. Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell 97, 621–633 (1999). References 25 and 27 show that DNA damage triggers the relocalization of the yeast Sir-silencing complex to sites of DNA breaks and causes nuclear changes that are reminiscent of normal ageing in yeast.

    CAS  PubMed  Google Scholar 

  28. Tamburini, B. A. & Tyler, J. K. Localized histone acetylation and deacetylation triggered by the homologous recombination pathway of double-strand DNA repair. Mol. Cell. Biol. 25, 4903–4913 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. McMurray, M. A. & Gottschling, D. E. An age-induced switch to a hyper-recombinational state. Science 301, 1908–1911 (2003).

    CAS  PubMed  Google Scholar 

  30. Eriksson, M. et al. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423, 293–298 (2003).

    CAS  PubMed  Google Scholar 

  31. Scaffidi, P. & Misteli, T. Reversal of the cellular phenotype in the premature aging disease Hutchinson–Gilford progeria syndrome. Nature Med. 11, 440–445 (2005).

    CAS  PubMed  Google Scholar 

  32. Haithcock, E. et al. Age-related changes of nuclear architecture in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 102, 16690–16695 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Shiloh, Y. Ataxia-telangiectasia: closer to unraveling the mystery. Eur. J. Hum. Genet. 3, 116–138 (1995).

    CAS  PubMed  Google Scholar 

  34. Smilenov, L. B. et al. Influence of ATM function on telomere metabolism. Oncogene 15, 2659–2665 (1997).

    CAS  PubMed  Google Scholar 

  35. Verdun, R. E. & Karlseder, J. The DNA damage machinery and homologous recombination pathway act consecutively to protect human telomeres. Cell 127, 709–720 (2006).

    CAS  PubMed  Google Scholar 

  36. Greenwell, P. W. et al. TEL1, a gene involved in controlling telomere length in S. cerevisiae, is homologous to the human ataxia telangiectasia gene. Cell 82, 823–829 (1995).

    CAS  PubMed  Google Scholar 

  37. Gaubatz, J. W. & Cutler, R. G. Mouse satellite DNA is transcribed in senescent cardiac muscle. J. Biol. Chem. 265, 17753–17758 (1990).

    CAS  PubMed  Google Scholar 

  38. Shen, S., Liu, A., Li, J., Wolubah, C. & Casaccia-Bonnefil, P. Epigenetic memory loss in aging oligodendrocytes in the corpus callosum. Neurobiol. Aging 19 December 2006 (doi:10.1016/j.neurobiolaging.2006.10.026).

    CAS  PubMed  Google Scholar 

  39. Imai, S. et al. Dissociation of Oct-1 from the nuclear peripheral structure induces the cellular aging-associated collagenase gene expression. Mol. Biol. Cell 8, 2407–2419 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, R. et al. Formation of macroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev. Cell 8, 19–30 (2005).

    CAS  PubMed  Google Scholar 

  41. Dellaire, G. & Bazett-Jones, D. P. PML nuclear bodies: dynamic sensors of DNA damage and cellular stress. Bioessays 26, 963–977 (2004).

    CAS  PubMed  Google Scholar 

  42. Herbig, U., Ferreira, M., Condel, L., Carey, D. & Sedivy, J. M. Cellular senescence in aging primates. Science 311, 1257 (2006).

    CAS  PubMed  Google Scholar 

  43. Lu, T. et al. Gene regulation and DNA damage in the ageing human brain. Nature 429, 883–891 (2004). Gene-expression profiling reveals DNA-damage-induced global gene repression in the ageing brain.

    CAS  PubMed  Google Scholar 

  44. Lee, C. K., Weindruch, R. & Prolla, T. A. Gene-expression profile of the ageing brain in mice. Nature Genet. 25, 294–297 (2000).

    CAS  PubMed  Google Scholar 

  45. Lee, C. K., Klopp, R. G., Weindruch, R. & Prolla, T. A. Gene expression profile of aging and its retardation by caloric restriction. Science 285, 1390–1393 (1999).

    CAS  PubMed  Google Scholar 

  46. Kayo, T., Allison, D. B., Weindruch, R. & Prolla, T. A. Influences of aging and caloric restriction on the transcriptional profile of skeletal muscle from rhesus monkeys. Proc. Natl Acad. Sci. USA 98, 5093–5098 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Fraser, H. B., Khaitovich, P., Plotkin, J. B., Paabo, S. & Eisen, M. B. Aging and gene expression in the primate brain. PLoS Biol. 3, e274 (2005).

    PubMed  PubMed Central  Google Scholar 

  48. Park, S. K. & Prolla, T. A. Gene expression profiling studies of aging in cardiac and skeletal muscles. Cardiovasc. Res. 66, 205–212 (2005).

    CAS  PubMed  Google Scholar 

  49. Bahar, R. et al. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature 441, 1011–1014 (2006). Gene-expression patterns vary between individual cells of aged cardiomyocytes. These changes appear to be stochastic and are caused by DNA damage.

    CAS  PubMed  Google Scholar 

  50. Pletcher, S. D. et al. Genome-wide transcript profiles in aging and calorically restricted Drosophila melanogaster. Curr. Biol. 12, 712–723 (2002).

    CAS  PubMed  Google Scholar 

  51. Lin, S. J., Defossez, P. A. & Guarente, L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126–2128 (2000).

    CAS  PubMed  Google Scholar 

  52. Rogina, B. & Helfand, S. L. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl Acad. Sci. USA 101, 15998–16003 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cohen, H. Y. et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390–392 (2004).

    CAS  PubMed  Google Scholar 

  54. Pruitt, K. et al. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet. 2, e40 (2006).

    PubMed  PubMed Central  Google Scholar 

  55. Bordone, L. et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic b cells. PLoS Biol. 4, e31 (2006).

    PubMed  Google Scholar 

  56. Picard, F. et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature 429, 771–776 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Yu, B. P. & Chung, H. Y. Adaptive mechanisms to oxidative stress during aging. Mech. Ageing Dev. 127, 436–443 (2006).

    CAS  PubMed  Google Scholar 

  58. Liu, B. et al. Genomic instability in laminopathy-based premature aging. Nature Med. 11, 780–785 (2005).

    CAS  PubMed  Google Scholar 

  59. Csoka, A. B. et al. Genome-scale expression profiling of Hutchinson–Gilford progeria syndrome reveals widespread transcriptional misregulation leading to mesodermal/mesenchymal defects and accelerated atherosclerosis. Aging Cell 3, 235–243 (2004).

    CAS  PubMed  Google Scholar 

  60. Niedernhofer, L. J. et al. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444, 1038–1043 (2006). A mouse model for a human nucleotide-excision repair defect shows premature ageing and gene-expression changes similar to those observed during normal ageing.

    CAS  PubMed  Google Scholar 

  61. van Attikum, H. & Gasser, S. M. The histone code at DNA breaks: a guide to repair? Nature Rev. Mol. Cell Biol. 6, 757–765 (2005).

    CAS  Google Scholar 

  62. Downs, J. A. et al. Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol. Cell 16, 979–990 (2004).

    CAS  PubMed  Google Scholar 

  63. Burma, S., Chen, B. P., Murphy, M., Kurimasa, A. & Chen, D. J. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J. Biol. Chem. 276, 42462–42467 (2001).

    CAS  PubMed  Google Scholar 

  64. Ward, I. M. & Chen, J. Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J. Biol. Chem. 276, 47759–47762 (2001).

    CAS  PubMed  Google Scholar 

  65. Rogakou, E. P., Boon, C., Redon, C. & Bonner, W. M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146, 905–916 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Sanders, S. L. et al. Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell 119, 603–614 (2004).

    CAS  PubMed  Google Scholar 

  67. Giannattasio, M., Lazzaro, F., Plevani, P. & Muzi-Falconi, M. The DNA damage checkpoint response requires histone H2B ubiquitination by Rad6–Bre1 and H3 methylation by Dot1. J. Biol. Chem. 280, 9879–9886 (2005).

    CAS  PubMed  Google Scholar 

  68. Kim, S., Benguria, A., Lai, C. Y. & Jazwinski, S. M. Modulation of life-span by histone deacetylase genes in Saccharomyces cerevisiae. Mol. Biol. Cell 10, 3125–3136 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Huyen, Y. et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432, 406–411 (2004). The crystal structure of a methyl-binding DNA repair factor reveals an evolutionarily conserved role for histone methylation in mammalian DNA repair.

    CAS  PubMed  Google Scholar 

  70. Botuyan, M. V. et al. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell 127, 1361–1373 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Malins, D. C. et al. Oxidative changes in the DNA of stroma and epithelium from the female breast: potential implications for breast cancer. Cell Cycle 5, 1629–1632 (2006).

    CAS  PubMed  Google Scholar 

  72. Raghavan, S. C. & Lieber, M. R. DNA structures at chromosomal translocation sites. Bioessays 28, 480–494 (2006).

    CAS  PubMed  Google Scholar 

  73. Welle, S., Brooks, A. I., Delehanty, J. M., Needler, N. & Thornton, C. A. Gene expression profile of aging in human muscle. Physiol. Genomics 14, 149–159 (2003).

    CAS  PubMed  Google Scholar 

  74. Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11, 298–300 (1956).

    CAS  PubMed  Google Scholar 

  75. Loden, M. & van Steensel, B. Whole-genome views of chromatin structure. Chromosome Res. 13, 289–298 (2005).

    CAS  PubMed  Google Scholar 

  76. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    CAS  PubMed  Google Scholar 

  77. Craig, J. M. Heterochromatin — many flavours, common themes. Bioessays 27, 17–28 (2005).

    CAS  PubMed  Google Scholar 

  78. Dernburg, A. F. et al. Perturbation of nuclear architecture by long-distance chromosome interactions. Cell 85, 745–759 (1996).

    CAS  PubMed  Google Scholar 

  79. Kovtun, I. V. et al. OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells. Nature 447, 447–452 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Bokov, A., Chaudhuri, A. & Richardson, A. The role of oxidative damage and stress in aging. Mech. Ageing Dev. 125, 811–826 (2004).

    CAS  PubMed  Google Scholar 

  81. Schriner, S. E. et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308, 1909–1911 (2005).

    CAS  PubMed  Google Scholar 

  82. Mostoslavsky, R. et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124, 315–329 (2006).

    CAS  PubMed  Google Scholar 

  83. Lombard, D. B. et al. DNA repair, genome stability, and aging. Cell 120, 497–512 (2005).

    CAS  PubMed  Google Scholar 

  84. Van Remmen, H. et al. Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol. Genomics 16, 29–37 (2003).

    CAS  PubMed  Google Scholar 

  85. Lund, J. et al. Transcriptional profile of aging in C. elegans. Curr. Biol. 12, 1566–1573 (2002).

    CAS  PubMed  Google Scholar 

  86. Hoppe, G. J. et al. Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation. Mol. Cell. Biol. 22, 4167–4180 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank B. North for critical reading of the manuscript. The Sinclair laboratory is supported by National Institutes of Health grants and the Paul F. Glenn Laboratories for the Biological Mechanisms of Aging. P.O. is supported by the National Space Biomedical Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Sinclair.

Ethics declarations

Competing interests

David A. Sinclair is a co-founder of and consultant to Sirtris Pharmaceuticals, Inc. (USA), a company that aims to treat diseases by modulating sirtuins. He sits on the board of directors and scientific advisory board, and owns less than 1% equity.

Related links

Related links

DATABASES

Entrez Gene

WRN

LMNA

ATM

OMIM

ataxia telangiectasia

Hutchinson–Gilford progeria syndrome

Werner syndrome

FURTHER INFORMATION

David A. Sinclair's homepage

Glossary

Senescence

A nearly irreversible stage of permanent G1 cell-cycle arrest, which is linked to morphological changes, metabolic changes and changes in gene expression. The induction of senescence depends on p53 and cell-cycle inhibitors such as p21 and p16.

Mating-type locus

The mating of yeast only occurs between haploids, which can be either mating type a or mating type α. The mating type is determined by a single locus (MAT). Gene conversion between MAT and the silent mating-type loci HML and HMR allows haploid yeast to switch to the active mating type as often as every cell cycle.

Telomeres

Regions of highly repetitive DNA at the ends of linear chromosomes. Telomeres function as caps to protect the DNA ends from degradation or fusion with other chromosomes, and as facilitators of DNA replication at the ends of chromosomes by recruiting the reverse transcriptase telomerase.

Progeroid disease

A genetic disorder in which various tissues, organs or systems of the human body appear to age prematurely. These diseases are often called segmental progeroid diseases because they do not fully recapitulate normal ageing. A common feature of such diseases is genomic instability.

RecQ DNA helicase

One of a family of DNA helicases that help to stabilize replication forks and remove DNA recombination intermediates, thereby maintaining genome integrity. In humans, there are five family members; mutations in three of these helicases are associated with a predisposition to cancer and premature ageing.

Position-effect variegation

The variation in gene expression that can occur between genetically identical cells when a gene is juxtaposed to a region of contracting and expanding heterochromatin.

Transcription-coupled repair

A DNA-repair mechanism that operates in tandem with transcription and involves members of the XP gene family. Failure of the transcription-coupled repair mechanism results in Cockayne syndrome, an extreme form of accelerated ageing that is fatal early in life.

Base-excision repair

(BER). A DNA-repair pathway that corrects single mutated bases. The two main enzymes used in BER are DNA glycosylases and apurinic or apyrimidinic (AP) endonucleases. The DNA glycosylase hydrolyses the glycosidic bond to create an AP site, which is then recognized and excised by the AP endonuclease, allowing DNA polymerases to replace the missing base.

Xeroderma pigmentosa

A genetic DNA-repair disorder in which the ability of the body to remove damage caused by ultraviolet light is impaired, leading to multiple basaliomas and other skin malignancies at a young age.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oberdoerffer, P., Sinclair, D. The role of nuclear architecture in genomic instability and ageing. Nat Rev Mol Cell Biol 8, 692–702 (2007). https://doi.org/10.1038/nrm2238

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2238

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing