Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Analysis of protein complexes using mass spectrometry

Key Points

  • In this article, we review the current status of affinity purification and mass spectrometry (AP–MS) and its promise for better understanding protein complexes, complex structure and the dynamics of complex formation.

  • We describe the general AP–MS strategy, with an emphasis on generic approaches (flag-tag, tandem AP) and how AP–MS of multiple components (that is, high-density AP–MS) can help to reveal the true composition of protein complexes.

  • Recent high-throughput studies with flag-tagging or tandem AP significantly improved our understanding of protein–protein interactions in yeast.

  • AP–MS can be combined with classical biochemical purification approaches to reveal complex composition and to resolve the problem of mutually exclusive complexes co-precipitating with the same tagged protein.

  • Crosslinkers can contribute to AP–MS strategies by stabilizing weak or transient protein interactions and by revealing details concerning complex organization and interacting surfaces.

  • Stoichiometry of protein complexes can be obtained using intact-complex mass measurement and absolute quantitative proteomics tools.

  • Quantitative proteomics approaches can help to decipher the dynamics of protein-complex formation.

Abstract

The versatile combination of affinity purification and mass spectrometry (AP–MS) has recently been applied to the detailed characterization of many protein complexes and large protein-interaction networks. The combination of AP–MS with other techniques, such as biochemical fractionation, intact mass measurement and chemical crosslinking, can help to decipher the supramolecular organization of protein complexes. AP–MS can also be combined with quantitative proteomics approaches to better understand the dynamics of protein–complex assembly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General overview of an affinity purification and mass spectrometry experiment.
Figure 2: High-density data acquisition to elucidate complex composition.
Figure 3: Incorporation of stable isotopes into proteins.
Figure 4: Isobaric tags to elucidate complex formation dynamics.

Similar content being viewed by others

References

  1. Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl Acad. Sci. USA 98, 4569–4574 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Krogan, N. J. et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643 (2006). One of the two most comprehensive AP–MS studies in yeast to date (see REF. 4 ) using TAP to generate a high-confidence interaction network and define protein complexes.

    Article  CAS  PubMed  Google Scholar 

  3. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Gavin, A. C. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006). One of the two most comprehensive AP–MS studies in yeast (see REF. 2 ). It introduced the notion of the socio-affinity index to define the propensity of proteins to associate into specific complexes.

    Article  CAS  PubMed  Google Scholar 

  5. Gavin, A. C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Uetz, P. et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Formstecher, E. et al. Protein interaction mapping: a Drosophila case study. Genome Res. 15, 376–384 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Giot, L. et al. A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Stanyon, C. A. et al. A Drosophila protein-interaction map centered on cell-cycle regulators. Genome Biol. 5, R96 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li, S. et al. A map of the interactome network of the metazoan C. elegans. Science 303, 540–543 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stelzl, U. et al. A human protein–protein interaction network: a resource for annotating the proteome. Cell 122, 957–968 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Rual, J. F. et al. Towards a proteome-scale map of the human protein–protein interaction network. Nature 437, 1173–1178 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Gandhi, T. K. et al. Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nature Genet. 38, 285–293 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Fields, S. & Sternglanz, R. The two-hybrid system: an assay for protein–protein interactions. Trends Genet. 10, 286–292 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. von Mering, C. et al. Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417, 399–403 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Parrish, J. R., Gulyas, K. D. & Finley, R. L. Jr. Yeast two-hybrid contributions to interactome mapping. Curr. Opin. Biotechnol. 17, 387–393 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Kratchmarova, I., Blagoev, B., Haack-Sorensen, M., Kassem, M. & Mann, M. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science 308, 1472–1477 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Blagoev, B. et al. A proteomics strategy to elucidate functional protein–protein interactions applied to EGF signaling. Nature Biotechnol. 21, 315–318 (2003).

    Article  CAS  Google Scholar 

  19. Himeda, C. L. et al. Quantitative proteomic identification of six4 as the trex-binding factor in the muscle creatine kinase enhancer. Mol. Cell. Biol. 24, 2132–2143 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ranish, J. A. et al. Identification of TFB5, a new component of general transcription and DNA repair factor IIH. Nature Genet. 36, 707–713 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Ranish, J. A. et al. The study of macromolecular complexes by quantitative proteomics. Nature Genet. 33, 349–355 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Brand, M. et al. Dynamic changes in transcription factor complexes during erythroid differentiation revealed by quantitative proteomics. Nature Struct. Mol. Biol. 11, 73–80 (2004).

    Article  CAS  Google Scholar 

  23. Terpe, K. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 60, 523–533 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Domon, B. & Aebersold, R. Mass spectrometry and protein analysis. Science 312, 212–217 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Nesvizhskii, A. I. Protein identification by tandem mass spectrometry and sequence database searching. Methods Mol. Biol. 367, 87–120 (2006).

    Google Scholar 

  26. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Steen, H. & Mann, M. The ABC's (and XYZ's) of peptide sequencing. Nature Rev. Mol. Cell Biol. 5, 699–711 (2004).

    Article  CAS  Google Scholar 

  28. Domon, B. & Aebersold, R. Challenges and opportunities in proteomic data analysis. Mol. Cell. Proteomics 5, 1921–1926 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Mikesh, L. M. et al. The utility of ETD mass spectrometry in proteomic analysis. Biochim. Biophys. Acta 1764, 1811–1822 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nesvizhskii, A. I. et al. Dynamic spectrum quality assessment and iterative computational analysis of shotgun proteomic data: toward more efficient identification of post-translational modifications, sequence polymorphisms, and novel peptides. Mol. Cell. Proteomics 5, 652–670 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Pedrioli, P. G. et al. Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software. Nature Methods 3, 533–539 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Janssens, V., Goris, J. & Van Hoof, C. PP2A: the expected tumor suppressor. Curr. Opin. Genet. Dev. 15, 34–41 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Goldberg, Y. Protein phosphatase 2A: who shall regulate the regulator? Biochem. Pharmacol. 57, 321–328 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Kong, M. et al. The PP2A-associated protein α4 is an essential inhibitor of apoptosis. Science 306, 695–698 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, J., Peterson, R. T. & Schreiber, S. L. α4 associates with protein phosphatases 2A, 4, and 6. Biochem. Biophys. Res. Commun. 247, 827–832 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Inui, S. et al. Ig receptor binding protein 1 (α4) is associated with a rapamycin-sensitive signal transduction in lymphocytes through direct binding to the catalytic subunit of protein phosphatase 2A. Blood 92, 539–546 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Gingras, A. C. et al. A novel, evolutionarily conserved protein phosphatase complex involved in cisplatin sensitivity. Mol. Cell. Proteomics 4, 1725–1740 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Cosentino, G. P. et al. Eap1p, a novel eukaryotic translation initiation factor 4E-associated protein in Saccharomyces cerevisiae. Mol. Cell. Biol. 20, 4604–4613 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Collins, S. R. et al. Towards a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol. Cell. Proteomics 6, 439–450 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Abelson, J. N. & Simon, M. I. (eds) Guide to protein purification (Academic Press, 1990).

    Google Scholar 

  41. Weiner, O. D. et al. Hem-1 complexes are essential for Rac activation, actin polymerization, and myosin regulation during neutrophil chemotaxis. PLoS Biol. 4, e38 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Panigrahi, A. K. et al. Association of two novel proteins, TbMP52 and TbMP48, with the Trypanosoma brucei RNA editing complex. Mol. Cell. Biol. 21, 380–389 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Moyer, S. E., Lewis, P. W. & Botchan, M. R. Isolation of the Cdc45/Mcm2–7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc. Natl Acad. Sci. USA 103, 10236–10241 (2006). A nice example of classical biochemical fractionation combined with AP–MS. CDC45 interactors were identified as components of the Mcm2–7 and GINS complexes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Poot, R. A. et al. HuCHRAC, a human ISWI chromatin remodelling complex contains hACF1 and two novel histone-fold proteins. EMBO J. 19, 3377–3387 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mueller, C. L. & Jaehning, J. A. Ctr9, Rtf1, and Leo1 are components of the Paf1/RNA polymerase II complex. Mol. Cell. Biol. 22, 1971–1980 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lindstrom, D. L. et al. Dual roles for Spt5 in pre-mRNA processing and transcription elongation revealed by identification of Spt5-associated proteins. Mol. Cell. Biol. 23, 1368–1378 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ducut Sigala, J. L. et al. Activation of transcription factor NF-κB requires ELKS, an IκB kinase regulatory subunit. Science 304, 1963–1967 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Weber, G. & Bocek, P. Recent developments in preparative free flow isoelectric focusing. Electrophoresis 19, 1649–1653 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Lasserre, J. P. et al. A complexomic study of Escherichia coli using two-dimensional blue native/SDS polyacrylamide gel electrophoresis. Electrophoresis 27, 3306–3321 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Schagger, H. & von Jagow, G. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem. 199, 223–231 (1991).

    Article  CAS  PubMed  Google Scholar 

  51. Camacho-Carvajal, M. M., Wollscheid, B., Aebersold, R., Steimle, V. & Schamel, W. W. Two-dimensional Blue native/SDS gel electrophoresis of multi-protein complexes from whole cellular lysates: a proteomics approach. Mol. Cell. Proteomics 3, 176–182 (2004). Example of the use of blue native electrophoresis combined with MS for the study of multiprotein complexes.

    Article  CAS  PubMed  Google Scholar 

  52. Nijtmans, L. G., Henderson, N. S. & Holt, I. J. Blue native electrophoresis to study mitochondrial and other protein complexes. Methods 26, 327–334 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Fandino, A. S. et al. LC-nanospray–MS/MS analysis of hydrophobic proteins from membrane protein complexes isolated by blue-native electrophoresis. J. Mass Spectrom. 40, 1223–1231 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Andersen, J. S. et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426, 570–574 (2003). Description of the protein correlation profiling strategy and its use in the identification of novel components of the centrosome. This approach can also be applied to other organelles.

    Article  CAS  PubMed  Google Scholar 

  55. Foster, L. J. et al. A mammalian organelle map by protein correlation profiling. Cell 125, 187–199 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Marelli, M. et al. Quantitative mass spectrometry reveals a role for the GTPase Rho1p in actin organization on the peroxisome membrane. J. Cell Biol. 167, 1099–1112 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim, D. H. et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163–175 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Vasilescu, J., Guo, X. & Kast, J. Identification of protein–protein interactions using in vivo cross-linking and mass spectrometry. Proteomics 4, 3845–3854 (2004). Example of the use of crosslinking (with formaldehyde) coupled to AP–MS to identify protein interactors for an activated form of myc-tagged Ras.

    Article  CAS  PubMed  Google Scholar 

  59. Meunier, L., Usherwood, Y. K., Chung, K. T. & Hendershot, L. M. A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins. Mol. Biol. Cell 13, 4456–4469 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim, S., Wong, P. & Coulombe, P. A. A keratin cytoskeletal protein regulates protein synthesis and epithelial cell growth. Nature 441, 362–365 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Rashid, K. A., Hevi, S., Chen, Y., Le Caherec, F. & Chuck, S. L. A proteomic approach identifies proteins in hepatocytes that bind nascent apolipoprotein B. J. Biol. Chem. 277, 22010–22017 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Schmitt-Ulms, G. et al. Time-controlled transcardiac perfusion cross-linking for the study of protein interactions in complex tissues. Nature Biotechnol. 22, 724–731 (2004).

    Article  CAS  Google Scholar 

  63. Tagwerker, C. et al. A tandem affinity tag for two-step purification under fully denaturing conditions: application in ubiquitin profiling and protein complex identification combined with in vivo cross-linking. Mol. Cell. Proteomics 5, 737–748 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Guerrero, C., Tagwerker, C., Kaiser, P. & Huang, L. An integrated mass spectrometry-based proteomic approach: quantitative analysis of tandem affinity-purified in vivo cross-linked protein complexes (QTAX) to decipher the 26S proteasome-interacting network. Mol. Cell. Proteomics 5, 366–378 (2006). A nice example of a combination of approaches, including quantitative proteomics, AP and crosslinking, to define protein–protein interactions.

    Article  CAS  PubMed  Google Scholar 

  65. Sinz, A. Chemical cross-linking and mass spectrometry to map three-dimensional protein structures and protein–protein interactions. Mass Spectrom. Rev. 25, 663–682 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Schmidt, A., Kalkhof, S., Ihling, C., Cooper, D. M. & Sinz, A. Mapping protein interfaces by chemical cross-linking and Fourier transform ion cyclotron resonance mass spectrometry: application to a calmodulin/adenylyl cyclase 8 peptide complex. Eur. J. Mass Spectrom. 11, 525–534 (2005).

    Article  CAS  Google Scholar 

  67. Muller, D. R. et al. Isotope-tagged cross-linking reagents. A new tool in mass spectrometric protein interaction analysis. Anal Chem. 73, 1927–1934 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Seebacher, J. et al. Protein cross-linking analysis using mass spectrometry, isotope-coded cross-linkers, and integrated computational data processing. J. Proteome Res. 5, 2270–2282 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Tang, X., Munske, G. R., Siems, W. F. & Bruce, J. E. Mass spectrometry identifiable cross-linking strategy for studying protein–protein interactions. Anal Chem. 77, 311–318 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Sobott, F., Hernandez, H., McCammon, M. G., Tito, M. A. & Robinson, C. V. A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies. Anal Chem. 74, 1402–1407 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Ilag, L. L. et al. Heptameric (L12)6/L10 rather than canonical pentameric complexes are found by tandem MS of intact ribosomes from thermophilic bacteria. Proc. Natl Acad. Sci. USA 102, 8192–8197 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sharon, M., Taverner, T., Ambroggio, X. I., Deshaies, R. J. & Robinson, C. V. Structural organization of the 19S proteasome lid: insights from MS of intact complexes. PLoS Biol. 4, e267 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Hernandez, H., Dziembowski, A., Taverner, T., Seraphin, B. & Robinson, C. V. Subunit architecture of multimeric complexes isolated directly from cells. EMBO Rep. 7, 605–610 (2006). A nice example of the use of intact-complex MS in the characterization of component stoichiometry, subunit interactions and overall assembly of protein complexes. TAP-purified material was used to elucidate the structure of the exosome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Benesch, J. L. & Robinson, C. V. Mass spectrometry of macromolecular assemblies: preservation and dissociation. Curr. Opin. Struct. Biol. 16, 245–251 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Gerber, S. A., Rush, J., Stemman, O., Kirschner, M. W. & Gygi, S. P. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl Acad. Sci. USA 100, 6940–6945 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Beynon, R. J., Doherty, M. K., Pratt, J. M. & Gaskell, S. J. Multiplexed absolute quantification in proteomics using artificial QCAT proteins of concatenated signature peptides. Nature Methods 2, 587–589 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Ross, P. L. et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 3, 1154–1169 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Hochleitner, E. O. et al. Protein stoichiometry of a multiprotein complex, the human spliceosomal U1 small nuclear ribonucleoprotein: absolute quantification using isotope-coded tags and mass spectrometry. J. Biol. Chem. 280, 2536–2542 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Gingras, A. C., Aebersold, R. & Raught, B. Advances in protein complex analysis using mass spectrometry. J. Physiol. 563, 11–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Ong, S. E. & Mann, M. Mass spectrometry-based proteomics turns quantitative. Nature Chem. Biol. 1, 252–262 (2005).

    Article  CAS  Google Scholar 

  81. Ong, S. E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1, 376–386 (2002). First description of SILAC, a metabolic labelling approach that is now widely used for quantitative proteomics.

    Article  CAS  PubMed  Google Scholar 

  82. Foster, L. J. et al. Insulin-dependent interactions of proteins with GLUT4 revealed through stable isotope labeling by amino acids in cell culture (SILAC). J. Proteome Res. 5, 64–75 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Bose, R. et al. Phosphoproteomic analysis of Her2/neu signaling and inhibition. Proc. Natl Acad. Sci. USA 103, 9773–9778 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gygi, S. P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol. 17, 994–999 (1999). First description of ICAT, a chemical labelling approach for quantitative proteomics with isotopes. Different labelling reagents that target different protein reactive groups have subsequently been developed.

    Article  CAS  Google Scholar 

  85. Flory, M. R., Griffin, T. J., Martin, D. & Aebersold, R. Advances in quantitative proteomics using stable isotope tags. Trends Biotechnol. 20, S23–S29 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Giglia-Mari, G. et al. A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nature Genet. 36, 714–719 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Zhang, Y. et al. Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol. Cell. Proteomics 4, 1240–1250 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Corvey, C. et al. Carbon source-dependent assembly of the Snf1p kinase complex in Candida albicans. J. Biol. Chem. 280, 25323–25330 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Rinner, O. et al. An integrated mass spectrometric and computational framework for the analysis of protein interaction networks. Nature Biotechnol. 25, 345–352 (2007).

    Article  CAS  Google Scholar 

  90. Chen, G. I. & Gingras, A. -C. Affinity-purification mass spectrometry (AP-MS) of serine/threonine phosphatases. Methods 42, 298–305 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding was provided in part by the Terry Fox Foundation to A.-C.G., the Canada Institutes of Health Research to B.R. and the National Heart, Lung, and Blood Institute, National Institute of Health contract N01-HV-28179 to R.A. A.-C.G. and B.R. are recipients of Canada Research Chairs, Canadian Foundation for Innovation and Ontario Research Fund grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Claude Gingras.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Anne-Claude Gingras's homepage

Brian Raught's homepage

Matthias Gstaiger's homepage

Ruedi Aebersold's homepage

Ruedi Aebersold's homepage

Glossary

Interactomes

Global networks of interactions (proteinprotein interactions in this article).

Yeast two-hybrid

A genetic technique that detects binary interactions between protein pairs.

Flag tag

A short amino-acid sequence (usually 811 amino acids) that is recognized by monoclonal antibodies and is used to tag proteins for detection and purification.

Tandem affinity purification (TAP) tag

A recombinant fusion tag formed of two moieties, used sequentially for protein purification. The original version consists of the immunoglobulin G (IgG)-binding portion of Staphylococcus aureus protein A (distal tag) and the calmodulin-binding peptide (proximal tag); these tags are separated by a tobacco etch virus protease cleavage site.

Electrospray ionization

(ESI). One of two common techniques (see MALDI) used in mass spectrometry to ionize large, non-volatile molecules (such as peptides). ESI charges analytes directly from the liquid phase and is easily coupled with reversed-phase high-pressure liquid chromatography.

Matrix-assisted laser desorption/ionization

(MALDI). One of two common techniques (see ESI) used in mass spectrometry to ionize large, non-volatile molecules (such as peptides). MALDI ionizes molecules through laser excitation of a matrix in which the molecules are embedded.

Graph-clustering algorithm

Proteinprotein interactions are often represented in a graph format, in which individual proteins are depicted as circles (nodes) and the observed associations are depicted as lines (edges) that link the nodes.

Socio-affinity index

Measure of the propensity of proteins to form partnerships. This index represents the log odds of the number of times particular proteins are observed together in a tandem affinity purification, as compared to what would be expected for their individual frequency of detection in the data set.

Tobacco etch virus protease

Specific endopeptidase that recognizes the linear epitope EXXYXQG/S, in which X is any amino acid (although some preferences are observed).

Gel filtration

A chromatographic method (also called size-exclusion chromatography) that separates proteins or protein complexes on the basis of their size (or hydrodynamic volume).

Density gradient

Centrifugation-based separation technique that often uses sucrose or glycerol density gradients to separate components on the basis of their density. It is applicable to protein complexes, organelles and intact cells.

Selective precipitation

Common enrichment procedure (also known as salting out) that most often uses increasing concentrations of ammonium sulphate to alter the solubility of proteins and cause their precipitation. It is usually used in the early steps of a biochemical fractionation protocol.

Ion-exchange chromatography

A frequently used separation technique for peptides, proteins and protein complexes that exploits the charge properties of the molecules to be fractionated.

Free-flow electrophoresis

(FFE). Separation procedure that fractionates the sample (ranging in size from small molecules, including peptides, to objects of cellular dimension) on the basis of the isoelectric point (or electrophoretic mobility). FFE operates continuously in the absence of a solid support.

Blue native gel electrophoresis

A native gel-based approach that efficiently separates protein complexes. It can be used alone or in combination with a denaturing second dimension.

Spacer arm length

Spacer arm length refers to the distance between two reactive groups in a bifunctional crosslinker. The spacer arm length defines the maximal distance between the two crosslinked moieties.

Isobaric tags for relative and absolute quantification

A type of chemical labelling for quantitative proteomics in which isobaric tags are added to the N terminus of every peptide (and to the lysine -amine).

Stable-isotope labelling with amino acids in cell culture

A type of metabolic labelling for quantitative proteomics in which heavy isotopic versions of one or more amino acids are used in the culture medium to replace their normal (light) isotopic counterparts.

Isotope-coded affinity tags

(ICAT). A chemical labelling reagent used for quantitative proteomics. The current version of ICAT consists of an acid-cleavable biotin-labelled tag that reacts with cysteine groups on proteins. Isotopically heavy (13C9) and light (12C9) variants are commercially available.

DNA-repair syndrome trichothiodystrophy group A

Trichothiodystrophy is a human syndrome characterized by brittle hair and nails, ichthyotic skin, and developmental and mental retardation. Photosensitivity is observed in roughly half of the patients and has been linked to defects in nucleotide-excision repair.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gingras, AC., Gstaiger, M., Raught, B. et al. Analysis of protein complexes using mass spectrometry. Nat Rev Mol Cell Biol 8, 645–654 (2007). https://doi.org/10.1038/nrm2208

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2208

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing