Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inheritance and biogenesis of organelles in the secretory pathway

Key Points

  • The duplication and inheritance of both the endoplasmic reticulum (ER) and Golgi apparatus is coupled to cell-cycle progression.

  • Although the exact mechanisms underlying ER and Golgi inheritance differ according to the organism and growth state being studied, there are some common themes. Organelles can either be constructed de novo, or be remodelled and then segregated into the daughter cells. These are not necessarily mutually exclusive options.

  • Organelle structure is controlled by regulatory modifications. The best characterized of these is phosphorylation, but an emerging view is that ubiquitylation is potentially of equal significance.

  • Mitotic kinases, predominantly CDK1, promote the remodelling of organelles in mitosis, and set the stage for their segregation into the daughter cells.

  • In some cases, such as the ER in budding yeast, segregation involves active-transport mechanisms involving microtubule- and/or actin-based motors, whereas in others, for example the Golgi in mammalian cells, passive/stochastic partitioning is likely to be sufficient.

  • The Golgi has been implicated in signalling pathways that control mitotic progression, although the precise details of this regulation differ depending on the organism.

Abstract

In eukaryotic cells, cellular functions are compartmentalized into membrane-bound organelles. This has many advantages, as shown by the success of the eukaryotic lineage, but creates many problems for cells, such as the need to build and partition these organelles during cell growth and division. Diverse mechanisms for biogenesis of the endoplasmic reticulum and Golgi apparatus have evolved, ranging from de novo synthesis to the copying of a template organelle. The different mechanisms by which organelles are inherited in yeasts, protozoa and metazoans probably reflect the differences in the structure and copy number of these organelles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conceptual models for organelle biogenesis and inheritance.
Figure 2: View of the ER and Golgi in yeast and animal cells.
Figure 3: Inheritance of the ER in yeast.
Figure 4: Inheritance of the ER in mammalian cells.
Figure 5: Golgi biogenesis and inheritance in yeast and protozoa.
Figure 6: Inheritance of the Golgi in mammalian cells.

Similar content being viewed by others

References

  1. Howell, G. J., Holloway, Z. G., Cobbold, C., Monaco, A. P. & Ponnambalam, S. Cell biology of membrane trafficking in human disease. Int. Rev. Cytol. 252, 1–69 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Olkkonen, V. M. & Ikonen, E. When intracellular logistics fails — genetic defects in membrane trafficking. J. Cell Sci. 119, 5031–5045 (2006).

    CAS  PubMed  Google Scholar 

  3. Delattre, M. & Gonczy, P. The arithmetic of centrosome biogenesis. J. Cell Sci. 117, 1619–1630 (2004).

    CAS  PubMed  Google Scholar 

  4. Szollosi, D., Calarco, P. & Donahue, R. P. Absence of centrioles in the first and second meiotic spindles of mouse oocytes. J. Cell Sci. 11, 521–541 (1972).

    CAS  PubMed  Google Scholar 

  5. Du, Y., Ferro-Novick, S. & Novick, P. Dynamics and inheritance of the endoplasmic reticulum. J. Cell Sci. 117, 2871–2878 (2004).

    CAS  PubMed  Google Scholar 

  6. Vedrenne, C. & Hauri, H. P. Morphogenesis of the endoplasmic reticulum: beyond active membrane expansion. Traffic 7, 639–646 (2006).

    CAS  PubMed  Google Scholar 

  7. Voeltz, G. K., Prinz, W. A., Shibata, Y., Rist, J. M. & Rapoport, T. A. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124, 573–586 (2006).

    CAS  PubMed  Google Scholar 

  8. De Craene, J. O. et al. Rtn1p is involved in structuring the cortical endoplasmic reticulum. Mol. Biol. Cell 17, 3009–3020 (2006). References 7 and 8 are key studies that identify the reticulon family of proteins as factors that shape the ER in yeast and animal cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Calero, M., Whittaker, G. R. & Collins, R. N. Yop1p, the yeast homolog of the polyposis locus protein 1, interacts with Yip1p and negatively regulates cell growth. J. Biol. Chem. 276, 12100–12112 (2001).

    CAS  PubMed  Google Scholar 

  10. Sivars, U., Aivazian, D. & Pfeffer, S. R. Yip3 catalyses the dissociation of endosomal Rab–GDI complexes. Nature 425, 856–859 (2003).

    CAS  PubMed  Google Scholar 

  11. Martincic, I., Peralta, M. E. & Ngsee, J. K. Isolation and characterization of a dual prenylated Rab and VAMP2 receptor. J. Biol. Chem. 272, 26991–26998 (1997).

    CAS  PubMed  Google Scholar 

  12. Terasaki, M., Chen, L. B. & Fujiwara, K. Microtubules and the endoplasmic reticulum are highly interdependent structures. J. Cell Biol. 103, 1557–1568 (1986).

    CAS  PubMed  Google Scholar 

  13. Lee, C. & Chen, L. B. Dynamic behavior of endoplasmic reticulum in living cells. Cell 54, 37–46 (1988).

    CAS  PubMed  Google Scholar 

  14. Dabora, S. L. & Sheetz, M. P. The microtubule-dependent formation of a tubulovesicular network with characteristics of the ER from cultured cell extracts. Cell 54, 27–35 (1988).

    CAS  PubMed  Google Scholar 

  15. Vale, R. D. & Hotani, H. Formation of membrane networks in vitro by kinesin-driven microtubule movement. J. Cell Biol. 107, 2233–2241 (1988).

    CAS  PubMed  Google Scholar 

  16. Allan, V. & Vale, R. Movement of membrane tubules along microtubules in vitro: evidence for specialised sites of motor attachment. J. Cell Sci. 107, 1885–1897 (1994).

    CAS  PubMed  Google Scholar 

  17. Toyoshima, I., Yu, H., Steuer, E. R. & Sheetz, M. P. Kinectin, a major kinesin-binding protein on ER. J. Cell Biol. 118, 1121–1131 (1992).

    CAS  PubMed  Google Scholar 

  18. Kumar, J., Yu, H. & Sheetz, M. P. Kinectin, an essential anchor for kinesin-driven vesicle motility. Science 267, 1834–1837 (1995).

    CAS  PubMed  Google Scholar 

  19. Vedrenne, C., Klopfenstein, D. R. & Hauri, H. P. Phosphorylation controls CLIMP-63-mediated anchoring of the endoplasmic reticulum to microtubules. Mol. Biol. Cell 16, 1928–1937 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Huffaker, T. C., Thomas, J. H. & Botstein, D. Diverse effects of β-tubulin mutations on microtubule formation and function. J. Cell Biol. 106, 1997–2010 (1988).

    CAS  PubMed  Google Scholar 

  21. Jacobs, C. W., Adams, A. E., Szaniszlo, P. J. & Pringle, J. R. Functions of microtubules in the Saccharomyces cerevisiae cell cycle. J. Cell Biol. 107, 1409–1426 (1988).

    CAS  PubMed  Google Scholar 

  22. Preuss, D. et al. Structure of the yeast endoplasmic reticulum: localization of ER proteins using immunofluorescence and immunoelectron microscopy. Yeast 7, 891–911 (1991).

    CAS  PubMed  Google Scholar 

  23. Patel, S. K., Indig, F. E., Olivieri, N., Levine, N. D. & Latterich, M. Organelle membrane fusion: a novel function for the syntaxin homolog Ufe1p in ER membrane fusion. Cell 92, 611–620 (1998).

    CAS  PubMed  Google Scholar 

  24. Prinz, W. A. et al. Mutants affecting the structure of the cortical endoplasmic reticulum in Saccharomyces cerevisiae. J. Cell Biol. 150, 461–474 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Estrada, P. et al. Myo4p and She3p are required for cortical ER inheritance in Saccharomyces cerevisiae. J. Cell Biol. 163, 1255–1266 (2003). Identification of myosin as the motor driving the active inheritance of cortical ER in yeast. See reference 83 for related evidence for the role of myosin in Golgi inheritance.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Estrada de Martin, P., Du, Y., Novick, P. & Ferro-Novick, S. Ice2p is important for the distribution and structure of the cortical ER network in Saccharomyces cerevisiae. J. Cell Sci. 118, 65–77 (2005).

    CAS  PubMed  Google Scholar 

  27. Du, Y., Pypaert, M., Novick, P. & Ferro-Novick, S. Aux1p/Swa2p is required for cortical endoplasmic reticulum inheritance in Saccharomyces cerevisiae. Mol. Biol. Cell 12, 2614–2628 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Xiao, J., Kim, L. S. & Graham, T. R. Dissection of Swa2p/auxilin domain requirements for cochaperoning Hsp70 clathrin-uncoating activity in vivo. Mol. Biol. Cell 17, 3281–3290 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Denic, V., Quan, E. M. & Weissman, J. S. A luminal surveillance complex that selects misfolded glycoproteins for ER-associated degradation. Cell 126, 349–359 (2006).

    CAS  PubMed  Google Scholar 

  30. Rape, M. et al. Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell 107, 667–677 (2001).

    CAS  PubMed  Google Scholar 

  31. Latterich, M. & Schekman, R. The karyogamy gene KAR2 and novel proteins are required for ER-membrane fusion. Cell 78, 87–98 (1994).

    CAS  PubMed  Google Scholar 

  32. Latterich, M., Frohlich, K. U. & Schekman, R. Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes. Cell 82, 885–893 (1995).

    CAS  PubMed  Google Scholar 

  33. TerBush, D. R., Maurice, T., Roth, D. & Novick, P. The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 15, 6483–6494 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Guo, W., Roth, D., Walch-Solimena, C. & Novick, P. The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J. 18, 1071–1080 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wiederkehr, A., Du, Y., Pypaert, M., Ferro-Novick, S. & Novick, P. Sec3p is needed for the spatial regulation of secretion and for the inheritance of the cortical endoplasmic reticulum. Mol. Biol. Cell 14, 4770–4782 (2003). References 35 and 36 are important papers demonstrating that the exocyst is a spatial landmark for secretion and ER inheritance.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Finger, F. P., Hughes, T. E. & Novick, P. Sec3p is a spatial landmark for polarized secretion in budding yeast. Cell 92, 559–571 (1998).

    CAS  PubMed  Google Scholar 

  37. Finger, F. P. & Novick, P. Sec3p is involved in secretion and morphogenesis in Saccharomyces cerevisiae. Mol. Biol. Cell 8, 647–662 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Toikkanen, J. H., Miller, K. J., Soderlund, H., Jantti, J. & Keranen, S. The β subunit of the Sec61p endoplasmic reticulum translocon interacts with the exocyst complex in Saccharomyces cerevisiae. J. Biol. Chem. 278, 20946–20953 (2003).

    CAS  PubMed  Google Scholar 

  39. Pruyne, D. & Bretscher, A. Polarization of cell growth in yeast. I. Establishment and maintenance of polarity states. J. Cell Sci. 113, 365–375 (2000).

    CAS  PubMed  Google Scholar 

  40. Pruyne, D. & Bretscher, A. Polarization of cell growth in yeast. J. Cell Sci. 113, 571–585 (2000).

    CAS  PubMed  Google Scholar 

  41. Wedlich-Soldner, R., Wai, S. C., Schmidt, T. & Li, R. Robust cell polarity is a dynamic state established by coupling transport and GTPase signaling. J. Cell Biol. 166, 889–900 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, X. et al. Cdc42 interacts with the exocyst and regulates polarized secretion. J. Biol. Chem. 276, 46745–46750 (2001).

    CAS  PubMed  Google Scholar 

  43. Padmashree, C. G. & Surana, U. Cdc28–Clb mitotic kinase negatively regulates bud site assembly in the budding yeast. J. Cell Sci. 114, 207–218 (2001).

    CAS  PubMed  Google Scholar 

  44. Yeong, F. M., Lim, H. H., Padmashree, C. G. & Surana, U. Exit from mitosis in budding yeast: biphasic inactivation of the Cdc28–Clb2 mitotic kinase and the role of Cdc20. Mol. Cell 5, 501–511 (2000).

    CAS  PubMed  Google Scholar 

  45. Gulli, M. P. et al. Phosphorylation of the Cdc42 exchange factor Cdc24 by the PAK-like kinase Cla4 may regulate polarized growth in yeast. Mol. Cell 6, 1155–1167 (2000).

    CAS  PubMed  Google Scholar 

  46. Du, Y., Walker, L., Novick, P. & Ferro-Novick, S. Ptc1p regulates cortical ER inheritance via Slt2p. EMBO J. 25, 4413–4422 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Harrison, J. C., Bardes, E. S., Ohya, Y. & Lew, D. J. A role for the Pkc1p/Mpk1p kinase cascade in the morphogenesis checkpoint. Nature Cell Biol. 3, 417–420 (2001).

    CAS  PubMed  Google Scholar 

  48. Levin, D. E. Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 69, 262–291 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang, L., Guan, T. & Gerace, L. Integral membrane proteins of the nuclear envelope are dispersed throughout the endoplasmic reticulum during mitosis. J. Cell Biol. 137, 1199–1210 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Burke, B. & Ellenberg, J. Remodelling the walls of the nucleus. Nature Rev. Mol. Cell Biol. 3, 487–497 (2002).

    CAS  Google Scholar 

  51. Ellenberg, J. et al. Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J. Cell Biol. 138, 1193–1206 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Axelsson, M. A. & Warren, G. Rapid, endoplasmic reticulum-independent diffusion of the mitotic Golgi haze. Mol. Biol. Cell 15, 1843–1852 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Salina, D. et al. Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell 108, 97–107 (2002).

    CAS  PubMed  Google Scholar 

  54. Beaudouin, J., Gerlich, D., Daigle, N., Eils, R. & Ellenberg, J. Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina. Cell 108, 83–96 (2002). References 53 and 54 report a major finding that microtubules actively promote the peeling of the NE and ER away from chromatin during mitotic entry.

    CAS  PubMed  Google Scholar 

  55. Peter, M., Nakagawa, J., Doree, M., Labbe, J. C. & Nigg, E. A. In vitro disassembly of the nuclear lamina and M phase-specific phosphorylation of lamins by Cdc2 kinase. Cell 61, 591–602 (1990). An early study showing that Cdk1 controls the assembly status of the nuclear lamina, and therefore the structure of a membrane organelle.

    CAS  PubMed  Google Scholar 

  56. Herpers, B. & Rabouille, C. mRNA localization and ER-based protein sorting mechanisms dictate the use of transitional endoplasmic reticulum–golgi units involved in gurken transport in Drosophila oocytes. Mol. Biol. Cell 15, 5306–5317 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Allan, V. J., Thompson, H. M. & McNiven, M. A. Motoring around the Golgi. Nature Cell Biol. 4, E236–E242 (2002).

    CAS  PubMed  Google Scholar 

  58. Barr, F. A. & Egerer, J. Golgi positioning: are we looking at the right MAP? J. Cell Biol. 168, 993–998 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Shorter, J. & Warren, G. Golgi architecture and inheritance. Annu. Rev. Cell Dev. Biol. 18, 379–420 (2002).

    CAS  PubMed  Google Scholar 

  60. Gillingham, A. K. & Munro, S. Long coiled-coil proteins and membrane traffic. Biochim. Biophys. Acta. 1641, 71–85 (2003).

    CAS  PubMed  Google Scholar 

  61. Short, B., Haas, A. & Barr, F. A. Golgins and GTPases, giving identity and structure to the Golgi apparatus. Biochim. Biophys. Acta 1744, 383–395 (2005).

    CAS  PubMed  Google Scholar 

  62. Guo, Y. & Linstedt, A. D. COPII–Golgi protein interactions regulate COPII coat assembly and Golgi size. J. Cell Biol. 174, 53–63 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Cluett, E. B. & Brown, W. J. Adhesion of Golgi cisternae by proteinaceous interactions: intercisternal bridges as putative adhesive structures. J. Cell Sci. 103, 773–784 (1992).

    CAS  PubMed  Google Scholar 

  64. Slusarewicz, P., Nilsson, T., Hui, N., Watson, R. & Warren, G. Isolation of a matrix that binds medial Golgi enzymes. J. Cell Biol. 124, 405–413 (1994).

    CAS  PubMed  Google Scholar 

  65. Nakamura, N. et al. Characterization of a cis-Golgi matrix protein, GM130. J. Cell Biol. 131, 1715–1726 (1995).

    CAS  PubMed  Google Scholar 

  66. Barr, F. A., Puype, M., Vandekerckhove, J. & Warren, G. GRASP65, a protein involved in the stacking of Golgi cisternae. Cell 91, 253–262 (1997).

    CAS  PubMed  Google Scholar 

  67. Seemann, J., Jokitalo, E., Pypaert, M. & Warren, G. Matrix proteins can generate the higher order architecture of the Golgi apparatus. Nature 407, 1022–1026 (2000).

    CAS  PubMed  Google Scholar 

  68. Puthenveedu, M. A., Bachert, C., Puri, S., Lanni, F. & Linstedt, A. D. GM130 and GRASP65-dependent lateral cisternal fusion allows uniform Golgi-enzyme distribution. Nature Cell Biol. 8, 238–248 (2006).

    CAS  PubMed  Google Scholar 

  69. Vasile, E., Perez, T., Nakamura, N. & Krieger, M. Structural integrity of the Golgi is temperature sensitive in conditional-lethal mutants with no detectable GM130. Traffic 4, 254–272 (2003).

    CAS  PubMed  Google Scholar 

  70. Scaffidi, P. & Misteli, T. Lamin A dependent nuclear defects in human aging. Science 312, 1059–1063 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Rossanese, O. W. et al. Golgi structure correlates with transitional endoplasmic reticulum organization in Pichia pastoris and Saccharomyces cerevisiae. J. Cell Biol. 145, 69–81 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Bevis, B. J., Hammond, A. T., Reinke, C. A. & Glick, B. S. De novo formation of transitional ER sites and Golgi structures in Pichia pastoris. Nature Cell Biol. 4, 750–756 (2002).

    CAS  PubMed  Google Scholar 

  73. Losev, E. et al. Golgi maturation visualized in living yeast. Nature 441, 1002–1006 (2006).

    CAS  PubMed  Google Scholar 

  74. Matsuura-Tokita, K., Takeuchi, M., Ichihara, A., Mikuriya, K. & Nakano, A. Live imaging of yeast Golgi cisternal maturation. Nature 441, 1007–1010 (2006). References 71–74 are a series of landmark papers that identify a role for ER exit sites in directing the formation and inheritance of new Golgi stacks in yeast. This work paved the way for the re-evaluation of the importance of the ER in Golgi biogenesis in other organisms.

    CAS  PubMed  Google Scholar 

  75. Hartmann, J. et al. Golgi and centrosome cycles in Toxoplasma gondii. Mol. Biochem. Parasitol. 145, 125–127 (2006).

    CAS  PubMed  Google Scholar 

  76. He, C. Y. et al. Golgi duplication in Trypanosoma brucei. J. Cell Biol. 165, 313–321 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ho, H. H., He, C. Y., de Graffenried, C. L., Murrells, L. J. & Warren, G. Ordered assembly of the duplicating Golgi in Trypanosoma brucei. Proc. Natl Acad. Sci. USA 103, 7676–7681 (2006). Hints at underlying mechanistic similarities between centrosome duplication and Golgi biogenesis in these organisms.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. He, C. Y., Pypaert, M. & Warren, G. Golgi duplication in Trypanosoma brucei requires Centrin2. Science 310, 1196–1198 (2005). Identification of centrin-2 as a template for Golgi biogenesis in trypanosomes.

    CAS  PubMed  Google Scholar 

  79. Joiner, K. A. & Roos, D. S. Secretory traffic in the eukaryotic parasite Toxoplasma gondii: less is more. J. Cell Biol. 157, 557–563 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Pelletier, L. et al. Golgi biogenesis in Toxoplasma gondii. Nature 418, 548–552 (2002).

    CAS  PubMed  Google Scholar 

  81. Benchimol, M., Ribeiro, K. C., Mariante, R. M. & Alderete, J. F. Structure and division of the Golgi complex in Trichomonas vaginalis and Tritrichomonas foetus. Eur. J. Cell Biol. 80, 593–607 (2001). A key study showing that, in some protozoa, the Golgi undergoes lateral growth and then divides into two by medial fission for equal partitioning into the daughter cells.

    CAS  PubMed  Google Scholar 

  82. Reinke, C. A., Kozik, P. & Glick, B. S. Golgi inheritance in small buds of Saccharomyces cerevisiae is linked to endoplasmic reticulum inheritance. Proc. Natl Acad. Sci. USA 101, 18018–18023 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Rossanese, O. W. et al. A role for actin, Cdc1p, and Myo2p in the inheritance of late Golgi elements in Saccharomyces cerevisiae. J. Cell Biol. 153, 47–62 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Barr, F. A. Golgi inheritance: shaken but not stirred. J. Cell Biol. 164, 955–958 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lucocq, J. M. & Warren, G. Fragmentation and partitioning of the Golgi apparatus during mitosis in HeLa cells. EMBO J. 6, 3239–3246 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Jesch, S. A. & Linstedt, A. D. The Golgi and endoplasmic reticulum remain independent during mitosis in HeLa cells. Mol. Biol. Cell 9, 623–635 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Terasaki, M. Dynamics of the endoplasmic reticulum and golgi apparatus during early sea urchin development. Mol. Biol. Cell 11, 897–914 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Jokitalo, E., Cabrera-Poch, N., Warren, G. & Shima, D. T. Golgi clusters and vesicles mediate mitotic inheritance independently of the endoplasmic reticulum. J. Cell Biol. 154, 317–330 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Jesch, S. A., Mehta, A. J., Velliste, M., Murphy, R. F. & Linstedt, A. D. Mitotic Golgi is in a dynamic equilibrium between clustered and free vesicles independent of the ER. Traffic 2, 873–884 (2001).

    CAS  PubMed  Google Scholar 

  90. Thyberg, J. & Moskalewski, S. Reorganization of the Golgi complex in association with mitosis: redistribution of mannosidase II to the endoplasmic reticulum and effects of brefeldin A. J. Submicrosc. Cytol. Pathol. 24, 495–508 (1992).

    CAS  PubMed  Google Scholar 

  91. Zaal, K. J. et al. Golgi membranes are absorbed into and reemerge from the ER during mitosis. Cell 99, 589–601 (1999).

    CAS  PubMed  Google Scholar 

  92. Altan-Bonnet, N. et al. Golgi inheritance in mammalian cells is mediated through endoplasmic reticulum export activities. Mol. Biol. Cell 17, 990–1005 (2006). References 91 and 92 provide evidence for the recycling of Golgi proteins to the ER in mitosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Featherstone, C., Griffiths, G. & Warren, G. Newly synthesized G protein of vesicular stomatitis virus is not transported to the Golgi complex in mitotic cells. J. Cell Biol. 101, 2036–2046 (1985).

    CAS  PubMed  Google Scholar 

  94. Prescott, A. R. et al. Evidence for prebudding arrest of ER export in animal cell mitosis and its role in generating Golgi partitioning intermediates. Traffic 2, 321–335 (2001).

    CAS  PubMed  Google Scholar 

  95. Pecot, M. Y. & Malhotra, V. Golgi membranes remain segregated from the endoplasmic reticulum during mitosis in mammalian cells. Cell 116, 99–107 (2004). A study providing evidence for discrete nature of the ER and Golgi in mitosis. Also refer to references 85–89.

    CAS  PubMed  Google Scholar 

  96. Seemann, J., Pypaert, M., Taguchi, T., Malsam, J. & Warren, G. Partitioning of the matrix fraction of the Golgi apparatus during mitosis in animal cells. Science 295, 848–851 (2002).

    CAS  PubMed  Google Scholar 

  97. Misteli, T. & Warren, G. COP-coated vesicles are involved in the mitotic fragmentation of Golgi stacks in a cell-free system. J. Cell Biol. 125, 269–282 (1994).

    CAS  PubMed  Google Scholar 

  98. Misteli, T. & Warren, G. Mitotic disassembly of the Golgi apparatus in vivo. J. Cell Sci. 108, 2715–2727 (1995).

    CAS  PubMed  Google Scholar 

  99. Lowe, M. et al. Cdc2 kinase directly phosphorylates the cis-Golgi matrix protein GM130 and is required for Golgi fragmentation in mitosis. Cell 94, 783–793 (1998). References 97–99 describe the key role of Cdk1 in controlling the assembly state of the Golgi during mitosis.

    Google Scholar 

  100. Bailly, E. et al. Phosphorylation of two small GTP-binding proteins of the Rab family by p34cdc2. Nature 350, 715–718 (1991).

    CAS  PubMed  Google Scholar 

  101. Lowe, M., Gonatas, N. K. & Warren, G. The mitotic phosphorylation cycle of the cis-Golgi matrix protein GM130. J. Cell Biol. 149, 341–356 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Seemann, J., Jokitalo, E. J. & Warren, G. The role of the tethering proteins p115 and GM130 in transport through the Golgi apparatus in vivo. Mol. Biol. Cell 11, 635–645 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Diao, A., Rahman, D., Pappin, D. J., Lucocq, J. & Lowe, M. The coiled-coil membrane protein golgin-84 is a novel rab effector required for Golgi ribbon formation. J. Cell Biol. 160, 201–212 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Shorter, J. et al. GRASP55, a second mammalian GRASP protein involved in the stacking of Golgi cisternae in a cell-free system. EMBO J. 18, 4949–4960 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Preisinger, C. et al. Plk1 docking to GRASP65 phosphorylated by Cdk1 suggests a mechanism for Golgi checkpoint signalling. EMBO J. 24, 753–765 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Barr, F. A., Nakamura, N. & Warren, G. Mapping the interaction between GRASP65 and GM130, components of a protein complex involved in the stacking of Golgi cisternae. EMBO J. 17, 3258–3268 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Shorter, J. & Warren, G. A role for the vesicle tethering protein, p115, in the post-mitotic stacking of reassembling Golgi cisternae in a cell-free system. J. Cell Biol. 146, 57–70 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Sütterlin, C., Hsu, P., Mallabiabarrena, A. & Malhotra, V. Fragmentation and dispersal of the pericentriolar Golgi complex is required for entry into mitosis in mammalian cells. Cell 109, 359–369 (2002).

    PubMed  Google Scholar 

  109. Sütterlin, C. et al. Polo-like kinase is required for the fragmentation of pericentriolar Golgi stacks during mitosis. Proc. Natl Acad. Sci. USA 98, 9128–9132 (2001). References 108–109 identified a link between GRASP proteins and cell-cycle regulation in both yeast and mammalian cells. This might take the form of a checkpoint reading out the status of the Golgi. Also refer to references 105, 110 and 111.

    PubMed  PubMed Central  Google Scholar 

  110. Feinstein, T. N. & Linstedt, A. D. Mitogen-activated protein kinase-dependent Golgi unlinking occurs in G2 phase and promotes the G2/M cell cycle transition. Mol. Biol. Cell 18, 594–604 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Sutterlin, C., Polishchuk, R., Pecot, M. & Malhotra, V. The Golgi-associated protein GRASP65 regulates spindle dynamics and is essential for cell division. Mol. Biol. Cell 16, 3211–3222 (2005).

    PubMed  PubMed Central  Google Scholar 

  112. Norman, T. C. et al. Genetic selection of peptide inhibitors of biological pathways. Science 285, 591–595 (1999).

    CAS  PubMed  Google Scholar 

  113. Behnia, R., Barr, F. A., Flanagan, J. J., Barlowe, C. & Munro, S. The yeast orthologue of GRASP65 forms a complex with a coiled-coil protein that contributes to membrane traffic. J. Cell Biol. 176, 255–261 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Peters, J. M. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nature Rev. Mol. Cell Biol. 7, 644–656 (2006).

    CAS  Google Scholar 

  115. Rabouille, C., Levine, T. P., Peters, J. M. & Warren, G. An NSF--like ATPase, p97, and NSF mediate cisternal regrowth from mitotic Golgi fragments. Cell 82, 905–914 (1995).

    CAS  PubMed  Google Scholar 

  116. Kondo, H. et al. p47 is a cofactor for p97-mediated membrane fusion. Nature 388, 75–78 (1997).

    CAS  PubMed  Google Scholar 

  117. Uchiyama, K. et al. The localization and phosphorylation of p47 are important for Golgi disassembly–assembly during the cell cycle. J. Cell Biol. 161, 1067–1079 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Uchiyama, K. et al. VCIP135, a novel essential factor for p97/p47-mediated membrane fusion, is required for Golgi and ER assembly in vivo. J. Cell Biol. 159, 855–866 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Kano, F. et al. NSF/SNAPs and p97/p47/VCIP135 are sequentially required for cell cycle-dependent reformation of the ER network. Genes Cells 10, 989–999 (2005).

    CAS  PubMed  Google Scholar 

  120. Wang, Y., Satoh, A., Warren, G. & Meyer, H. H. VCIP135 acts as a deubiquitinating enzyme during p97–p47-mediated reassembly of mitotic Golgi fragments. J. Cell Biol. 164, 973–978 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Uchiyama, K. et al. p37 is a p97 adaptor required for Golgi and ER biogenesis in interphase and at the end of mitosis. Dev. Cell 11, 803–816 (2006). References115–121 are an important series of studies that suggest ubiquitylation and deubiquitylation might have an important role in controlling the assembly state of the Golgi during mitosis in mammalian cells.

    CAS  PubMed  Google Scholar 

  122. Fry, A. M. & Yamano, H. APC/C-mediated degradation in early mitosis: how to avoid spindle assembly checkpoint inhibition. Cell Cycle 5, 1487–1491 (2006).

    CAS  PubMed  Google Scholar 

  123. Misteli, T. The concept of self-organization in cellular architecture. J. Cell Biol. 155, 181–185 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Betschinger, J. & Knoblich, J. A. Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Curr. Biol. 14, R674–R685 (2004).

    CAS  PubMed  Google Scholar 

  125. Emery, G. et al. Asymmetric Rab 11 endosomes regulate delta recycling and specify cell fate in the Drosophila nervous system. Cell 122, 763–773 (2005). A groundbreaking study showing that organelle function in mitosis has a key role in determining the outcome of cell division. In this case, whether cells will adopt similar (symmetrical) or different (asymmetrical) fates. See reference 124 for background details on this topic.

    CAS  PubMed  Google Scholar 

  126. Litvak, V. et al. Mitotic phosphorylation of the peripheral Golgi protein Nir2 by Cdk1 provides a docking mechanism for Plk1 and affects cytokinesis completion. Mol. Cell 14, 319–330 (2004).

    CAS  PubMed  Google Scholar 

  127. Barr, F. A., Sillje, H. H. & Nigg, E. A. Polo-like kinases and the orchestration of cell division. Nature Rev. Mol. Cell Biol. 5, 429–440 (2004).

    CAS  Google Scholar 

  128. Lane, J. D. & Allan, V. J. Microtubule-based endoplasmic reticulum motility in Xenopus laevis: activation of membrane-associated kinesin during development. Mol. Biol. Cell 10, 1909–1922 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Wang, Y., Seemann, J., Pypaert, M., Shorter, J. & Warren, G. A direct role for GRASP65 as a mitotically regulated Golgi stacking factor. EMBO J. 22, 3279–3290 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Lin, C. Y. et al. Peripheral Golgi protein GRASP65 is a target of mitotic polo-like kinase (Plk) and Cdc2. Proc. Natl Acad. Sci. USA 97, 12589–12594 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang, Y., Satoh, A. & Warren, G. Mapping the functional domains of the Golgi stacking factor GRASP65. J. Biol. Chem. 280, 4921–4928 (2005).

    CAS  PubMed  Google Scholar 

  132. Ruan, Q. et al. Polo-like kinase 3 is Golgi localized and involved in regulating Golgi fragmentation during the cell cycle. Exp. Cell Res. 294, 51–59 (2004).

    CAS  PubMed  Google Scholar 

  133. Xie, S. et al. MEK1-induced Golgi dynamics during cell cycle progression is partly mediated by Polo-like kinase-3. Oncogene 23, 3822–3829 (2004).

    CAS  PubMed  Google Scholar 

  134. Acharya, U., Mallabiabarrena, A., Acharya, J. K. & Malhotra, V. Signaling via mitogen-activated protein kinase kinase (MEK1) is required for Golgi fragmentation during mitosis. Cell 92, 183–192 (1998). The first evidence that a kinase other than Cdk1 might contribute to the control of the Golgi during mitosis.

    CAS  PubMed  Google Scholar 

  135. Colanzi, A., Deerinck, T. J., Ellisman, M. H. & Malhotra, V. A specific activation of the mitogen-activated protein kinase kinase 1 (MEK1) is required for Golgi fragmentation during mitosis. J. Cell Biol. 149, 331–339 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Colanzi, A., Sutterlin, C. & Malhotra, V. RAF1-activated MEK1 is found on the Golgi apparatus in late prophase and is required for Golgi complex fragmentation in mitosis. J. Cell Biol. 161, 27–32 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Jesch, S. A., Lewis, T. S., Ahn, N. G. & Linstedt, A. D. Mitotic phosphorylation of Golgi reassembly stacking protein 55 by mitogen-activated protein kinase ERK2. Mol. Biol. Cell 12, 1811–1817 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Shaul, Y. D. & Seger, R. ERK1c regulates Golgi fragmentation during mitosis. J. Cell Biol. 172, 885–897 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank G. Warren and C. He for providing the images of dividing Toxoplasma gondii, V. Allan for images of the ER in animal cells, B. Glick for images of the Golgi in Pichia pastoris and Y. Du and S.Ferro-Novick for images of the budding yeast ER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis A. Barr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Toxoplasma gondii

Trypanosoma brucei

Glossary

Centrosome

The main microtubule organizing centre of animal cells.

Rab GTPases

Rab proteins are Ras-like GTPases that regulate membrane-trafficking events in eukaryotic cells. Different Rab proteins are specific for different transport pathways and different subcellular compartments.

Kinesin-1

A member of the kinesin family of microtubule-based motors, which typically move towards microtubule plus ends.

Mitotic spindle

A highly dynamic array of microtubules that forms during mitosis and serves to move the duplicated chromosomes apart.

COPI

Coat-protein complexes that are required for vesicle formation and trafficking between the endoplasmic reticulum and Golgi.

Unknown function essential-1

(Ufe1). A SNARE protein involved in both fusion between endoplasmic reticulum membranes and vesicle fusion with the endoplasmic reticulum.

Exocyst

A multisubunit protein complex that is important for docking secretory vesicles with the plasma membrane, and anchoring the endoplasmic reticulum to the plasma membrane during cell division.

Sec61 translocon

An endoplasmic reticulum (ER)-localized protein complex that facilitates the insertion of newly synthesized secretory and membrane proteins into the ER.

Cdc42

A small Rho-family GTPase that regulates localized actin dynamics in cells.

CDK1

The catalytic subunit of the principal serine/threonine kinase that regulates entry into mitosis.

B-type cyclin

The regulatory subunit of the principal mitotic serine/threonine kinase. In mammals, cyclin B binds to the catalytic subunit CDK1.

Cdc28–cyclin-2

A serine/threonine kinase that regulates entry into S phase, comprising a catalytic subunit (Cdc28) and a regulatory subunit (cyclin-2).

Dynein

A multisubunit microtubule-based motor, typically moving towards microtubule minus ends.

Nuclear lamina

A structure composed of lamin intermediate-filament proteins that is important for integrity of nuclear envelope.

Golgi matrix

A biochemically defined meshwork of proteins that retains the characteristic cisternal shape of Golgi membranes.

ER exit site

A specialized site in the endoplasmic reticulum (ER) where vesicles are generated that transport proteins from the ER to the Golgi.

Basal body

The microtubule organizing centre of protozoa, equivalent to the centrosome of animal cells, typically the nucleating site for flagella and cilia.

Centrin

A calcium-binding protein that is associated with microtubule organizing centres.

Golgin-84

A member of a diverse family of coiled-coil proteins that have been implicated in vesicle trafficking and shaping the Golgi.

GRASP

(Golgi reassembly stacking protein). A family of proteins identified in an in vitro biochemical screen for Golgi stack formation.

Polo-like kinase 1

A serine or threonine kinase that is required for centrosome and spindle function in mitosis and cytokinesis.

Anaphase promoting complex/cyclosome

A ubiquitin ligase that is required for progression through mitosis.

Cytokinesis

The process of cytoplasmic division in animal cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lowe, M., Barr, F. Inheritance and biogenesis of organelles in the secretory pathway. Nat Rev Mol Cell Biol 8, 429–439 (2007). https://doi.org/10.1038/nrm2179

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2179

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing