Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

The twentieth century struggle to decipher insulin signalling

Abstract

Following the discovery of insulin, it took the rest of the twentieth century to understand how this hormone regulates intracellular metabolism. What are the main discoveries that led to our current understanding of this process? And how is this new knowledge being exploited in an attempt to develop improved drugs to treat the epidemic of type-2 diabetes?

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activation of glycogen synthase by insulin in mammalian skeletal muscle.
Figure 2: Inhibitors of insulin signalling are potential targets for the development of drugs for diabetes.
Figure 3: Drugs that dissociate phosphorylase a from PP1-GL might stimulate glycogen synthesis in the liver.

References

  1. Levine, R., Goldstein, M., Klein, S. & Huddlestun, B. The action of insulin on the distribution of galactose in eviscerated nephrectomized dogs. J. Biol. Chem. 179, 985–986 (1949).

    Article  CAS  PubMed  Google Scholar 

  2. Cushman, S. W. & Wardzala, L. J. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J. Biol. Chem. 255, 4758–4762 (1980).

    Article  CAS  PubMed  Google Scholar 

  3. Suzuki, K. & Kono, T. Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site. Proc. Natl Acad. Sci. USA 77, 2542–2545 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. James, D. E., Brown, R., Navarro, J. & Pilich, P. F. Insulin-regulatable tissues express a unique insulin-sensitive glucose transport protein. Nature 333, 183–185 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Birnbaum, M. J. Identification of a novel gene encoding an insulin-responsive glucose transporter protein. Cell 57, 305–315 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. James, D. E., Strube, M. & Mueckler, M. Molecular cloning and characterisation of an insulin-regulatable glucose transporter. Nature 338, 83–87 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Villar-Palasi, C. & Larner, J. Insulin-mediated effect on the activity of UDPG-glycogen transglucosylase of muscle. Biochim. Biophys. Acta 39, 171–173 (1960).

    Article  CAS  PubMed  Google Scholar 

  8. Friedman, D. L. & Larner, J. Studies on UDPG-α-glucan transglucosylase. III. Interconversion of two forms of muscle UDPG-α-glucan transglucosylase by a phosphorylation–dephosphorylation reaction sequence. Biochemistry 2, 669–675 (1963).

    Article  CAS  PubMed  Google Scholar 

  9. Craig, J. W. & Larner, J. Influence of epinephrine and insulin on uridine diphosphate glucose-α-glucan transferase and phosphorylase in muscle. Nature 202, 971–973 (1964).

    Article  CAS  PubMed  Google Scholar 

  10. Nimmo, H. G. & Cohen, P. Glycogen synthetase kinase 2 (GSK 2); the identification of a new protein kinase in skeletal muscle. FEBS Lett. 47, 162–166 (1974).

    Article  CAS  PubMed  Google Scholar 

  11. Embi, N., Rylatt, D. B. & Cohen, P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur. J. Biochem. 107, 519–527 (1980).

    Article  CAS  PubMed  Google Scholar 

  12. Parker, P. J., Caudwell, F. B. & Cohen, P. Glycogen synthase from rabbit skeletal muscle; effect of insulin on the state of phosphorylation of the seven phosphoserine residues in vivo. Eur. J. Biochem. 130, 227–234 (1983).

    Article  CAS  PubMed  Google Scholar 

  13. Benjamin, W. B. & Singer, I. Effect of insulin on the phosphorylation of adipose tissue protein. Biochim. Biophys. Acta 351, 28–41 (1974).

    Article  CAS  PubMed  Google Scholar 

  14. Kasuga, M., Karlsson, F. A. & Kahn, C. R. Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor. Science 215, 185–187 (1982).

    Article  CAS  PubMed  Google Scholar 

  15. Petruzzelli, L. M. et al. Insulin activates a tyrosine-specific protein kinase in extracts of 3T3-L1 adipocytes and human placenta. Proc. Natl Acad. Sci. USA 79, 6792–6796 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. White, M. F., Maron, R. & Kahn, C. R. Insulin rapidly stimulates tyrosine phosphorylation of a M r-185,000 protein in intact cells. Nature 318, 183–186 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. Keller, S. R., Kitagawa, K., Aebersold, R., Lienhard, G. E. & Garner, C. W. Isolation and characterisation of the 160,000-Da phosphotyrosyl protein, a putative participant in insulin signalling. J. Biol. Chem. 266, 12817–12820 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Rothenberg, P. L., Lane, W. S., Backer, J. M., White, M. F. & Kahn, C. R. Purification and partial sequence analysis of pp185, the major cellular substrate of the insulin receptor tyrosine kinase. J. Biol. Chem. 266, 8302–8311 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Sun, X. J. et al. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 352, 73–77 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Sun, X. J., Crimmins, D. L., Myers, M. G. Jr, Miralpeiz, M. & White, M. F. Pleiotropic insulin signals are engaged by multisite phosphorylation of IRS-1. Mol. Cell Biol. 13, 7418–7428 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ruderman, N. B., Kapeller, R., White, M. F. & Cantley, L. C. Activation of phosphatidylinositol 3-kinase by insulin. Proc. Natl Acad. Sci. USA 87, 1411–1415 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Backer, J. M. et al. Phosphatidylinositol 3-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J. 11, 3469–3479 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kaplan, D. R. et al. Common elements in growth factor stimulation and oncogenic transformation: 85 kd phosphoprotein and phosphatidylinositol kinase activity. Cell 50, 1021–1029 (1987).

    Article  CAS  PubMed  Google Scholar 

  24. Whitman, M., Downes, C. P., Keeler, M., Keller, T. & Cantley, L. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 332, 644–646 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Traynor-Kaplan, A. E. et al. Transient increase in phosphatidylinositol 3, 4-bisphosphate and phosphatidylinositol trisphosphate during activation of human neutrophils. J. Biol. Chem. 264, 15668–15673 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Traynor-Kaplan, A. E., Harris, A. L., Thompson, B. L., Taylor, P. & Sklar, L. A. An inositol tetrakisphosphate-containing phospholipid in activated neutrophils. Nature 334, 353–356 (1988).

    Article  CAS  PubMed  Google Scholar 

  27. Skolnik, E. Y. et al. Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell 65, 83–90 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Otsu, M. et al. Characterization of two 85 kd proteins that associate with receptor tyrosine kinases, middle-T/pp60c-src complexes, and PI3-kinase. Cell 65, 91–104 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Escobedo, J. A. et al. cDNA cloning of a novel 85 kd protein that has SH2 domains and regulates binding of PI3-kinase to the PDGF β-receptor. Cell 65, 75–82 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Hiles, I. D. et al. Phosphatidylinositol 3-kinase: structure and expression of the 110 kd catalytic subunit. Cell 70, 419–429 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Arcaro, A. & Wymann, M. P. Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochem. J. 296, 297–301 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Okada, T., Sakuma, L., Fukui, Y., Hazeki, O. & Ui, M. Blockage of chemotactic peptide-induced stimulation of neutrophils by wortmannin as a result of selective inhibition of phosphatidylinositol 3-kinase. J. Biol. Chem. 269, 3563–3567 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Kanai, F. et al. Insulin-stimulated GLUT4 translocation is relevant to the phosphorylation of IRS-1 and the activity of PI3-kinase. Biochem. Biophys. Res. Commun. 195, 762–768 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Clarke, J. F., Young, P. W., Yonezawa, K., Kasuga, M. & Holman, G. D. Inhibition of the translocation of GLUT1 and GLUT4 in 3T3-L1 cells by the phosphatidylinositol 3-kinase inhibitor, wortmannin. Biochem. J. 300, 631–635 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cheatham, B. et al. Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis and glucose transporter translocation. Mol. Cell Biol. 14, 4902–4911 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hughes, K., Ramakrishna, S., Benjamin, W. B. & Woodgett, J. R. Identification of multifunctional ATP-citrate lyase kinase as the α-isoform of glycogen synthase kinase-3. Biochem. J. 288, 309–314 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Welsh, G. I. & Proud, C. G. Glycogen synthase kinase-3 is rapidly inactivated in response to insulin and phosphorylates eukaryotic initiation factor eIF-2B. Biochem. J. 294, 625–629 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cross, D. A. et al. The inhibition of glycogen synthase kinase-3 by insulin or insulin-like growth factor 1 in the rat skeletal muscle cell line L6 is blocked by wortmannin, but not by rapamycin: evidence that wortmannin blocks activation of the mitogen-activated protein kinase pathway in L6 cells between Ras and Raf. Biochem. J. 303, 21–26 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sutherland, C., Leighton, I. A. & Cohen, P. Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem. J. 296, 15–19 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sutherland, C. & Cohen, P. The α-isoform of glycogen synthase kinase-3 from rabbit skeletal muscle is inactivated by p70 S6 kinase or MAP kinase-activated protein kinase-1 in vitro. FEBS Lett. 338, 37–42 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M. & Hemmings, B. A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Burgering, B. M. & Coffer, P. J. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376, 599–602 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Franke, T. F. et al. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81, 727–736 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. James, S. R. et al. The protein kinase Akt binds to phosphatidylinositol 3,4,5-trisphosphate without subsequent activation. Biochem. J. 315, 709–713 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alessi, D. R. et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 15, 6541–6551 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Alessi, D. R. et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα. Curr. Biol. 7, 261–269 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Stokoe, D. et al. Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science 277, 567–570 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Alessi, D. R. et al. 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr. Biol. 7, 776–789 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Kommander, D. et al. Structural insights into the regulation of PDK1 by phosphoinositides and inositol phosphates. EMBO J. 23, 3918–3928 (2004).

    Article  CAS  Google Scholar 

  50. Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor–mTOR complex. Science 307, 1098–101 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Hresko, R. C. & Mueckler, M. mTOR RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J. Biol. Chem. 280, 40406–40416 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Mora, A., Kommander, D., van Aalten, D. M. F. & Alessi, D. R. PDK1, the master regulator of AGC-kinase signal transduction. Semin. Cell Dev. Biol. 15, 161–170 (2005).

    Article  CAS  Google Scholar 

  53. Cho, H. et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ). Science 292, 1728–1731 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. McManus, E. J. et al. Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis. EMBO J. 24, 1571–1583 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kimura, K. D., Tissenbaum, H. A., Liu, Y. & Ruvkun, G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277, 942–946 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Leevers, S. J. & Hafen, E. Growth regulation by insulin and TOR signaling in Drosophila in Cell Growth: Control of Cell Size (eds Hall, N. M., Raff, M. & Thomas, G.) 167–192 (Cold Spring Harbor Laboratory Press, 2004).

    Google Scholar 

  57. Biddinger, S. B. & Kahn, C. R. From mice to men: insights into the insulin resistance syndromes. Annu. Rev. Physiol. 68, 123–158 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Cohen, P. & Goedert, M. GSK3 inhibitors: development and therapeutic potential. Nature Rev. Drug Discov. 3, 479–487 (2004).

    Article  CAS  Google Scholar 

  59. Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature 420, 333–336 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Gao, Z. et al. Serine phosphorylation of insulin receptor substrate 1 by inhibitor κB kinase complex. J. Biol. Chem. 277, 48115–48121 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Tzatsos, A. & Kandror, K. V. Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation. Mol. Cell Biol. 26, 63–76 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Griffin, M. E. et al. Free fatty acid-induced insulin resistance is associated with activation of PKCθ and alterations in the insulin signaling cascade. Diabetes 48, 1270–1274 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Hardie, D. G. & Sakamoto, K. AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology 21, 48–60 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Elchebly, M. et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283, 1544–1548 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Lund, I. K. et al. Structure-based design of selective and potent inhibitors of protein-tyrosine phosphatase β. J. Biol. Chem. 279, 24226–24235 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Thomas, C. C., Dowler, S., Deak, M., Alessi, D. R. & van Aalten, D. M. Crystal structure of the phosphatidylinositol 3,4-bisphosphate-binding pleckstrin homology (PH) domain of tandem PH-domain-containing protein 1 (TAPP1): molecular basis of lipid specificity. Biochem. J. 358, 287–294 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kimber, W. A., Deak, M., Prescott, A. R. & Alessi, D. R. Interaction of the protein tyrosine phosphatase PTPL1 with the PtdIns(3,4)P2-binding adaptor protein TAPP1. Biochem. J. 376, 525–535 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Villa, F., Deak, M., Bloomberg, G. B., Alessi, D. R. & van Aalten, D. M. Crystal structure of the PTPL1/FAP1 human tyrosine phosphatase mutated in colorectal cancer: evidence for a second phosphotyrosine substrate recognition pocket. J. Biol. Chem. 280, 8180–8187 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Lazar, D. F. & Saltiel, A. R. Lipid phosphatases as drug discovery targets for type 2 diabetes. Nature Rev. Drug Discov. 5, 333–342 (2006).

    Article  CAS  Google Scholar 

  70. Moorhead, G., MacKintosh, C., Morrice, N. & Cohen, P. Purification of the hepatic glycogen-associated form of protein phosphatase-1 by microcystin-Sepharose affinity chromatography. FEBS Lett. 362, 101–105 (1995).

    Article  CAS  PubMed  Google Scholar 

  71. Doherty, M. J., Cadefau, J., Stalmans, W., Bollen, M. & Cohen, P. T. Loss of the hepatic glycogen-binding subunit (GL) of protein phosphatase 1 underlies deficient glycogen synthesis in insulin-dependent diabetic rats and in adrenalectomized starved rats. Biochem. J. 333, 253–257 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Alemany, S. & Cohen, P. Phosphorylase a is an allosteric inhibitor of the glycogen and microsomal forms of rat hepatic protein phosphatase-1. FEBS Lett. 198, 194–202 (1986).

    Article  CAS  PubMed  Google Scholar 

  73. Hers, H. G. The control of glycogen metabolism in the liver. Annu. Rev. Biochem. 45, 167–189 (1976).

    Article  CAS  PubMed  Google Scholar 

  74. Armstrong, C. G., Doherty, M. J. & Cohen, P. T. Identification of the separate domains in the hepatic glycogen-targeting subunit of protein phosphatase 1 that interact with phosphorylase a, glycogen and protein phosphatase 1. Biochem. J. 336, 699–704 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Alessi, D. R., Caudwell, F. B., Andjelkovic, M., Hemmings, B. A. & Cohen, P. Molecular basis for the substrate specificity of protein kinase B; comparison with MAPKAP kinase-1 and p70 S6 kinase. FEBS Lett. 399, 333–338 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Kitamura, T. et al. Insulin-induced phosphorylation and activation of cyclic nucleotide phosphodiesterase 3B by the serine-threonine kinase Akt. Mol. Cell Biol. 19, 6286–6296 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lefebvre, V., Mechin, M. C., Louckx, M. P., Rider, M. H. & Hue, L. Signaling pathway involved in the activation of heart 6-phosphofructo-2-kinase by insulin. J. Biol. Chem. 271, 22289–22292 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Manning, B. D., Tee, A. R., Logsdon, M. N., Blenis, J. & Cantley, L. C. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/Akt pathway. Mol. Cell 10, 151–162 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Eguez, L. et al. Full intracellular retention of GLUT4 requires AS160 Rab GTPase activating protein. Cell Metab. 2, 263–272 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Sakamoto, K. et al. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J. 24, 1810–1820 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shaw, R. J. et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642–1646 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Owen, M. R., Doran, E. & Halestrap, A. P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J. 348, 607–614 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author's work on insulin signalling carried out from 1973–1998 was supported by the UK Medical Research Council, Diabetes UK and the Royal Society. I thank many colleagues for helpful suggestions and apologize to the many scientists whose important discoveries could not be included or referenced in this article because of space restrictions.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

OMIM

type-1 diabetes

type-2 diabetes

FURTHER INFORMATION

Philip Cohen's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, P. The twentieth century struggle to decipher insulin signalling. Nat Rev Mol Cell Biol 7, 867–873 (2006). https://doi.org/10.1038/nrm2043

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2043

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing