Abstract
Several non-coding RNAs (ncRNAs) that regulate eukaryotic mRNA transcription have recently been discovered. Their mechanisms of action and biological roles are extremely diverse, which indicates that, so far, we have only had a glimpse of this new class of regulatory factor. Many surprises are likely to be revealed as further ncRNA transcriptional regulators are identified and characterized.
Access options
Subscribe to Journal
Get full journal access for 1 year
70,80 €
only 5,90 € per issue
All prices include VAT for France.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.
References
- 1.
Storz, G., Altuvia, S. & Wassarman, K. M. An abundance of RNA regulators. Annu. Rev. Biochem. 74, 199–217 (2005).
- 2.
Narlikar, G. J., Fan, H. Y. & Kingston, R. E. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475–487 (2002).
- 3.
Kadonaga, J. T. Regulation of RNA polymerase II transcription by sequence-specific DNA binding factors. Cell 116, 247–257 (2004).
- 4.
Smale, S. T. & Kadonaga, J. T. The RNA polymerase II core promoter. Annu. Rev. Biochem. 72, 449–479 (2003).
- 5.
Naar, A. M., Lemon, B. D. & Tjian, R. Transcriptional coactivator complexes. Annu. Rev. Biochem. 70, 475–501 (2001).
- 6.
Lanz, R. B. et al. A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97, 17–27 (1999).
- 7.
Lanz, R. B., Razani, B., Goldberg, A. D. & O'Malley, B. W. Distinct RNA motifs are important for coactivation of steroid hormone receptors by steroid receptor RNA activator (SRA). Proc. Natl Acad. Sci. USA 99, 16081–16086 (2002).
- 8.
Kuwabara, T., Hsieh, J., Nakashima, K., Taira, K. & Gage, F. H. A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell 116, 779–793 (2004).
- 9.
Shamovsky, I., Ivannikov, M., Kandel, E. S., Gershon, D. & Nudler, E. RNA-mediated response to heat shock in mammalian cells. Nature 440, 556–560 (2006).
- 10.
Willingham, A. T. et al. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309, 1570–1573 (2005).
- 11.
Orphanides, G., Lagrange, T. & Reinberg, D. The general transcription factors of RNA polymerase II. Genes Dev. 10, 2657–2683 (1996).
- 12.
Reines, D., Conaway, J. W. & Conaway, R. C. The RNA polymerase II general elongation factors. Trends Biochem. Sci. 21, 351–355 (1996).
- 13.
Kwek, K. Y. et al. U1 snRNA associates with TFIIH and regulates transcriptional initiation. Nature Struct. Biol. 9, 800–805 (2002).
- 14.
O'Gorman, W., Thomas, B., Kwek, K. Y., Furger, A. & Akoulitchev, A. Analysis of U1 small nuclear RNA interaction with cyclin H. J. Biol. Chem. 280, 36920–36925 (2005).
- 15.
Nguyen, V. T., Kiss, T., Michels, A. A. & Bensaude, O. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature 414, 322–325 (2001).
- 16.
Yang, Z., Zhu, Q., Luo, K. & Zhou, Q. The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature 414, 317–322 (2001).
- 17.
Yik, J. H. et al. Inhibition of P-TEFb (CDK9/Cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA. Mol. Cell 12, 971–982 (2003).
- 18.
Allen, T. A., Von Kaenel, S., Goodrich, J. A. & Kugel, J. F. The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nature Struct. Mol. Biol. 11, 816–821 (2004).
- 19.
Espinoza, C. A., Allen, T. A., Hieb, A. R., Kugel, J. F. & Goodrich, J. A. B2 RNA binds directly to RNA polymerase II to repress transcript synthesis. Nature Struct. Mol. Biol. 11, 822–829 (2004).
- 20.
Liu, W. M., Chu, W. M., Choudary, P. V. & Schmid, C. W. Cell stress and translational inhibitors transiently increase the abundance of mammalian SINE transcripts. Nucl. Acids Res. 23, 1758–1765 (1995).
- 21.
Wassarman, K. M. & Storz, G. 6S RNA regulates E. coli RNA polymerase activity. Cell 101, 613–623 (2000).
- 22.
Thomas, M. et al. Selective targeting and inhibition of yeast RNA polymerase II by RNA aptamers. J. Biol. Chem. 272, 27980–27986 (1997).
- 23.
Kettenberger, H. et al. Structure of an RNA polymerase II–RNA inhibitor complex elucidates transcription regulation by noncoding RNAs. Nature Struct. Mol. Biol. 13, 44–48 (2006).
- 24.
Kugel, J. F. & Goodrich, J. A. Translocation after synthesis of a four-nucleotide RNA commits RNA polymerase II to promoter escape. Mol. Cell. Biol. 22, 762–773 (2002).
- 25.
Boumil, R. M. & Lee, J. T. Forty years of decoding the silence in X-chromosome inactivation. Hum. Mol. Genet. 10, 2225–2232 (2001).
- 26.
Almeida, R. & Allshire, R. C. RNA silencing and genome regulation. Trends Cell Biol. 15, 251–258 (2005).
- 27.
Gollnick, P. & Babitzke, P. Transcription attenuation. Biochim. Biophys. Acta 1577, 240–250 (2002).
- 28.
Rosen, C. A., Sodroski, J. G. & Haseltine, W. A. The location of cis-acting regulatory sequences in the human T cell lymphotropic virus type III (HTLV-III/LAV) long terminal repeat. Cell 41, 813–823 (1985).
- 29.
Selby, M. J., Bain, E. S., Luciw, P. A. & Peterlin, B. M. Structure, sequence, and position of the stem–loop in tar determine transcriptional elongation by tat through the HIV-1 long terminal repeat. Genes Dev. 3, 547–558 (1989).
- 30.
Feng, S. & Holland, E. C. HIV-1 tat trans-activation requires the loop sequence within tar. Nature 334, 165–167 (1988).
- 31.
Roy, S., Delling, U., Chen, C. H., Rosen, C. A. & Sonenberg, N. A bulge structure in HIV-1 TAR RNA is required for Tat binding and Tat-mediated trans-activation. Genes Dev. 4, 1365–1373 (1990).
- 32.
Teixeira, A. et al. Autocatalytic RNA cleavage in the human β-globin pre-mRNA promotes transcription termination. Nature 432, 526–530 (2004).
- 33.
Kaneko, S. & Manley, J. L. The mammalian RNA polymerase II C-terminal domain interacts with RNA to suppress transcription-coupled 3′ end formation. Mol. Cell 20, 91–103 (2005).
- 34.
Tian, Y. et al. Dissecting protein:protein interactions between transcription factors with an RNA aptamer. RNA 1, 317–326 (1995).
- 35.
Zhai, G., Iskandar, M., Barilla, K. & Romaniuk, P. J. Characterization of RNA aptamer binding by the Wilms' tumor suppressor protein WT1. Biochemistry 40, 2032–2040 (2001).
- 36.
Park, M. W., Choi, K. H. & Jeong, S. Inhibition of the DNA binding by the TCF-1 binding RNA aptamer. Biochem. Biophys. Res. Commun. 330, 11–17 (2005).
- 37.
Ghosh, G., Huang, D. B. & Huxford, T. Molecular mimicry of the NF-κB DNA target site by a selected RNA aptamer. Curr. Opin. Struct. Biol. 14, 21–27 (2004).
- 38.
Fan, X., Shi, H., Adelman, K. & Lis, J. T. Probing TBP interactions in transcription initiation and reinitiation with RNA aptamers that act in distinct modes. Proc. Natl Acad. Sci. USA 101, 6934–6939 (2004).
- 39.
Fan, X., Shi, H. & Lis, J. T. Distinct transcriptional responses of RNA polymerases I, II and III to aptamers that bind TBP. Nucl. Acids Res. 33, 838–845 (2005).
- 40.
Saha, S., Ansari, A. Z., Jarrell, K. A. & Ptashne, M. RNA sequences that work as transcriptional activating regions. Nucl. Acids Res. 31, 1565–1570 (2003).
Acknowledgements
Research in the authors' laboratory is supported by the National Institutes of Health and the National Science Foundation.
Author information
Affiliations
James A. Goodrich and Jennifer F. Kugel are in the Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215 UCB, Boulder, Colorado 80309-0215, USA. james.goodrich@colorado.edu; jennifer.kugel@colorado.edu
- James A. Goodrich
- & Jennifer F. Kugel
Authors
Search for James A. Goodrich in:
Search for Jennifer F. Kugel in:
Competing interests
The authors declare no competing financial interests.
Rights and permissions
To obtain permission to re-use content from this article visit RightsLink.
About this article
Further reading
-
1.
Up-regulation of ceRNA TINCR by SP1 contributes to tumorigenesis in breast cancer
BMC Cancer (2018)
-
2.
Scientific Reports (2018)
-
3.
Molecular Psychiatry (2018)
-
4.
Scientific Reports (2017)
-
5.
Cell Death & Disease (2017)