Opinion | Published:

Non-coding-RNA regulators of RNA polymerase II transcription

Nature Reviews Molecular Cell Biology volume 7, pages 612616 (2006) | Download Citation

Subjects

Abstract

Several non-coding RNAs (ncRNAs) that regulate eukaryotic mRNA transcription have recently been discovered. Their mechanisms of action and biological roles are extremely diverse, which indicates that, so far, we have only had a glimpse of this new class of regulatory factor. Many surprises are likely to be revealed as further ncRNA transcriptional regulators are identified and characterized.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & An abundance of RNA regulators. Annu. Rev. Biochem. 74, 199–217 (2005).

  2. 2.

    , & Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475–487 (2002).

  3. 3.

    Regulation of RNA polymerase II transcription by sequence-specific DNA binding factors. Cell 116, 247–257 (2004).

  4. 4.

    & The RNA polymerase II core promoter. Annu. Rev. Biochem. 72, 449–479 (2003).

  5. 5.

    , & Transcriptional coactivator complexes. Annu. Rev. Biochem. 70, 475–501 (2001).

  6. 6.

    et al. A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97, 17–27 (1999).

  7. 7.

    , , & Distinct RNA motifs are important for coactivation of steroid hormone receptors by steroid receptor RNA activator (SRA). Proc. Natl Acad. Sci. USA 99, 16081–16086 (2002).

  8. 8.

    , , , & A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell 116, 779–793 (2004).

  9. 9.

    , , , & RNA-mediated response to heat shock in mammalian cells. Nature 440, 556–560 (2006).

  10. 10.

    et al. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309, 1570–1573 (2005).

  11. 11.

    , & The general transcription factors of RNA polymerase II. Genes Dev. 10, 2657–2683 (1996).

  12. 12.

    , & The RNA polymerase II general elongation factors. Trends Biochem. Sci. 21, 351–355 (1996).

  13. 13.

    et al. U1 snRNA associates with TFIIH and regulates transcriptional initiation. Nature Struct. Biol. 9, 800–805 (2002).

  14. 14.

    , , , & Analysis of U1 small nuclear RNA interaction with cyclin H. J. Biol. Chem. 280, 36920–36925 (2005).

  15. 15.

    , , & 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature 414, 322–325 (2001).

  16. 16.

    , , & The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature 414, 317–322 (2001).

  17. 17.

    et al. Inhibition of P-TEFb (CDK9/Cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA. Mol. Cell 12, 971–982 (2003).

  18. 18.

    , , & The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nature Struct. Mol. Biol. 11, 816–821 (2004).

  19. 19.

    , , , & B2 RNA binds directly to RNA polymerase II to repress transcript synthesis. Nature Struct. Mol. Biol. 11, 822–829 (2004).

  20. 20.

    , , & Cell stress and translational inhibitors transiently increase the abundance of mammalian SINE transcripts. Nucl. Acids Res. 23, 1758–1765 (1995).

  21. 21.

    & 6S RNA regulates E. coli RNA polymerase activity. Cell 101, 613–623 (2000).

  22. 22.

    et al. Selective targeting and inhibition of yeast RNA polymerase II by RNA aptamers. J. Biol. Chem. 272, 27980–27986 (1997).

  23. 23.

    et al. Structure of an RNA polymerase II–RNA inhibitor complex elucidates transcription regulation by noncoding RNAs. Nature Struct. Mol. Biol. 13, 44–48 (2006).

  24. 24.

    & Translocation after synthesis of a four-nucleotide RNA commits RNA polymerase II to promoter escape. Mol. Cell. Biol. 22, 762–773 (2002).

  25. 25.

    & Forty years of decoding the silence in X-chromosome inactivation. Hum. Mol. Genet. 10, 2225–2232 (2001).

  26. 26.

    & RNA silencing and genome regulation. Trends Cell Biol. 15, 251–258 (2005).

  27. 27.

    & Transcription attenuation. Biochim. Biophys. Acta 1577, 240–250 (2002).

  28. 28.

    , & The location of cis-acting regulatory sequences in the human T cell lymphotropic virus type III (HTLV-III/LAV) long terminal repeat. Cell 41, 813–823 (1985).

  29. 29.

    , , & Structure, sequence, and position of the stem–loop in tar determine transcriptional elongation by tat through the HIV-1 long terminal repeat. Genes Dev. 3, 547–558 (1989).

  30. 30.

    & HIV-1 tat trans-activation requires the loop sequence within tar. Nature 334, 165–167 (1988).

  31. 31.

    , , , & A bulge structure in HIV-1 TAR RNA is required for Tat binding and Tat-mediated trans-activation. Genes Dev. 4, 1365–1373 (1990).

  32. 32.

    et al. Autocatalytic RNA cleavage in the human β-globin pre-mRNA promotes transcription termination. Nature 432, 526–530 (2004).

  33. 33.

    & The mammalian RNA polymerase II C-terminal domain interacts with RNA to suppress transcription-coupled 3′ end formation. Mol. Cell 20, 91–103 (2005).

  34. 34.

    et al. Dissecting protein:protein interactions between transcription factors with an RNA aptamer. RNA 1, 317–326 (1995).

  35. 35.

    , , & Characterization of RNA aptamer binding by the Wilms' tumor suppressor protein WT1. Biochemistry 40, 2032–2040 (2001).

  36. 36.

    , & Inhibition of the DNA binding by the TCF-1 binding RNA aptamer. Biochem. Biophys. Res. Commun. 330, 11–17 (2005).

  37. 37.

    , & Molecular mimicry of the NF-κB DNA target site by a selected RNA aptamer. Curr. Opin. Struct. Biol. 14, 21–27 (2004).

  38. 38.

    , , & Probing TBP interactions in transcription initiation and reinitiation with RNA aptamers that act in distinct modes. Proc. Natl Acad. Sci. USA 101, 6934–6939 (2004).

  39. 39.

    , & Distinct transcriptional responses of RNA polymerases I, II and III to aptamers that bind TBP. Nucl. Acids Res. 33, 838–845 (2005).

  40. 40.

    , , & RNA sequences that work as transcriptional activating regions. Nucl. Acids Res. 31, 1565–1570 (2003).

Download references

Acknowledgements

Research in the authors' laboratory is supported by the National Institutes of Health and the National Science Foundation.

Author information

Affiliations

  1. James A. Goodrich and Jennifer F. Kugel are in the Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215 UCB, Boulder, Colorado 80309-0215, USA.  james.goodrich@colorado.edu; jennifer.kugel@colorado.edu

    • James A. Goodrich
    •  & Jennifer F. Kugel

Authors

  1. Search for James A. Goodrich in:

  2. Search for Jennifer F. Kugel in:

Competing interests

The authors declare no competing financial interests.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nrm1946

Further reading Further reading

  • 1.

    Up-regulation of ceRNA TINCR by SP1 contributes to tumorigenesis in breast cancer

    • Yun Liu
    • , Yaying Du
    • , Xiaopeng Hu
    • , Lu Zhao
    •  & Wenfei Xia

    BMC Cancer (2018)

  • 2.

    Genome-wide association study of paclitaxel and carboplatin disposition in women with epithelial ovarian cancer

    • Bo Gao
    • , Yi Lu
    • , Annemieke J. M. Nieuweboer
    • , Hongmei Xu
    • , Jonathan Beesley
    • , Ingrid Boere
    • , Anne-Joy M. de Graan
    • , Peter de Bruijn
    • , Howard Gurney
    • , Catherine J. Kennedy
    • , Yoke-Eng Chiew
    • , Sharon E. Johnatty
    • , Philip Beale
    • , Michelle Harrison
    • , Craig Luccarini
    • , Don Conroy
    • , Ron H. J. Mathijssen
    • , Paul R. Harnett
    • , Rosemary L. Balleine
    • , Georgia Chenevix-Trench
    • , Stuart Macgregor
    •  & Anna de Fazio

    Scientific Reports (2018)

  • 3.

    Whole exome sequencing study identifies novel rare and common Alzheimer’s-Associated variants involved in immune response and transcriptional regulation

    • Joshua C. Bis
    • , Xueqiu Jian
    • , Brian W. Kunkle
    • , Yuning Chen
    • , Kara L. Hamilton-Nelson
    • , William S. Bush
    • , William J. Salerno
    • , Daniel Lancour
    • , Yiyi Ma
    • , Alan E. Renton
    • , Edoardo Marcora
    • , John J. Farrell
    • , Yi Zhao
    • , Liming Qu
    • , Shahzad Ahmad
    • , Najaf Amin
    • , Philippe Amouyel
    • , Gary W. Beecham
    • , Jennifer E. Below
    • , Dominique Campion
    • , Camille Charbonnier
    • , Jaeyoon Chung
    • , Paul K. Crane
    • , Carlos Cruchaga
    • , L. Adrienne Cupples
    • , Jean-François Dartigues
    • , Stéphanie Debette
    • , Jean-François Deleuze
    • , Lucinda Fulton
    • , Stacey B. Gabriel
    • , Emmanuelle Genin
    • , Richard A. Gibbs
    • , Alison Goate
    • , Benjamin Grenier-Boley
    • , Namrata Gupta
    • , Jonathan L. Haines
    • , Aki S. Havulinna
    • , Seppo Helisalmi
    • , Mikko Hiltunen
    • , Daniel P. Howrigan
    • , M. Arfan Ikram
    • , Jaakko Kaprio
    • , Jan Konrad
    • , Amanda Kuzma
    • , Eric S. Lander
    • , Mark Lathrop
    • , Terho Lehtimäki
    • , Honghuang Lin
    • , Kari Mattila
    • , Richard Mayeux
    • , Donna M. Muzny
    • , Waleed Nasser
    • , Benjamin Neale
    • , Kwangsik Nho
    • , Gaël Nicolas
    • , Devanshi Patel
    • , Margaret A. Pericak-Vance
    • , Markus Perola
    • , Bruce M. Psaty
    • , Olivier Quenez
    • , Farid Rajabli
    • , Richard Redon
    • , Christiane Reitz
    • , Anne M. Remes
    • , Veikko Salomaa
    • , Chloe Sarnowski
    • , Helena Schmidt
    • , Michael Schmidt
    • , Reinhold Schmidt
    • , Hilkka Soininen
    • , Timothy A. Thornton
    • , Giuseppe Tosto
    • , Christophe Tzourio
    • , Sven J. van der Lee
    • , Cornelia M. van Duijn
    • , Badri Vardarajan
    • , Weixin Wang
    • , Ellen Wijsman
    • , Richard K. Wilson
    • , Daniela Witten
    • , Kim C. Worley
    • , Xiaoling Zhang
    • , Celine Bellenguez
    • , Jean-Charles Lambert
    • , Mitja I. Kurki
    • , Aarno Palotie
    • , Mark Daly
    • , Eric Boerwinkle
    • , Kathryn L. Lunetta
    • , Anita L. Destefano
    • , Josée Dupuis
    • , Eden R. Martin
    • , Gerard D. Schellenberg
    • , Sudha Seshadri
    • , Adam C. Naj
    • , Myriam Fornage
    •  & Lindsay A. Farrer

    Molecular Psychiatry (2018)

  • 4.

    Deleting the mouse Hsd17b1 gene results in a hypomorphic Naglu allele and a phenotype mimicking a lysosomal storage disease

    • Heli Jokela
    • , Janne Hakkarainen
    • , Laura Kätkänaho
    • , Pirjo Pakarinen
    • , Suvi T. Ruohonen
    • , Manuel Tena-Sempere
    • , Fu-Ping Zhang
    •  & Matti Poutanen

    Scientific Reports (2017)

  • 5.

    CASC2c as an unfavorable prognosis factor interacts with miR-101 to mediate astrocytoma tumorigenesis

    • Changhong Liu
    • , Yingnan Sun
    • , Xiaoling She
    • , Chaofeng Tu
    • , Xiping Cheng
    • , Lin Wang
    • , Zhibin Yu
    • , Peiyao Li
    • , Qing Liu
    • , Honghui Yang
    • , Guiyuan Li
    •  & Minghua Wu

    Cell Death & Disease (2017)