Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Developmental cell biology

Making digit patterns in the vertebrate limb

Key Points

  • Experiments on the limb buds of chick embryos led to the identification of the polarizing region and the characterization of signalling properties that lead to the morphogen-gradient model.

  • The specification of positional values involves several signalling molecules, such as sonic hedgehog (SHH) and GLI.

  • SHH has been identified as the polarizing-region morphogen, whereas the downstream signalling molecule bone morphogenic protein-2 (BMP2) might only be able to specify positional values in cells already 'primed' by SHH.

  • Sophisticated fate maps in mouse embryos revealed that the length of time that cells are exposed to the highest concentrations of SHH might contribute to digit patterning. This led to a detailed model for specification of positional values for each mouse digit, which integrates both concentration and length of exposure to SHH.

  • Probable candidates for genes that could encode antero–posterior positional values are the homeobox (Hox) genes and orthologues of fruitfly wing-patterning genes.

  • Evidence from studies on chick legs indicates that the morphogenesis of each individual digit involves local interactions. Signalling molecules in digit primordia, such as BMPs and fibroblast growth factors (FGFs), give rise to the final digit morphology.

Abstract

The vertebrate limb has been a premier model for studying pattern formation — a striking digit pattern is formed in human hands, with a thumb forming at one edge and a little finger at the other. Classic embryological studies in different model organisms combined with new sophisticated techniques that integrate gene-expression patterns and cell behaviour have begun to shed light on the mechanisms that control digit patterning, and stimulate re-evaluation of the current models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The three main axes of the human hand.
Figure 2: Models for specifying antero–posterior positional values in the chick wing and the mouse limb.
Figure 3: Cell–cell signalling in the digital plate.

Similar content being viewed by others

References

  1. Wolpert, L. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47 (1969).

    Article  CAS  Google Scholar 

  2. Wolpert, L. Positional information revisited. Development 107, (Suppl.) 3–12 (1989).

    PubMed  Google Scholar 

  3. Saunders, J. W. & Gasseling, M. T. in Epithelial–mesenchymal interactions (eds Fleischmeyer, R. & Billingham, R. E.) 78–97 (Williams & Wilkins, Baltimore, USA, 1968).

    Google Scholar 

  4. Tickle, C., Summerbell, D. & Wolpert, L. Positional signalling and specification of digits in chick limb morphogenesis. Nature 254, 199–202 (1975).

    Article  CAS  Google Scholar 

  5. Saunders, J. W. in Limb and somite morphogenesis (eds Ede, D. A., Hinchliffe, J. R. & Balls, M.) 1–24 (Cambridge Univ. Press, Cambridge, UK, 1977).

    Google Scholar 

  6. Logan, M. Finger or toe: the molecular basis of limb identity. Development 130, 6401–6410 (2003).

    Article  CAS  Google Scholar 

  7. Altabef, M., Clarke, J. D. & Tickle, C. Dorso–ventral ectodermal compartments and origin of apical ectodermal ridge in developing chick limb. Development 124, 4547–4556 (1997).

    CAS  PubMed  Google Scholar 

  8. Martin, G. R. The roles of FGFs in early development of vertebrate limbs. Genes Dev. 12, 1571–1586 (1998).

    Article  CAS  Google Scholar 

  9. Tickle, C., Shellswell, G., Crawley, A. & Wolpert, L. Positional signalling by mouse limb polarising region in the chick wing bud. Nature 259, 396–397 (1976).

    Article  CAS  Google Scholar 

  10. Honig, L. S. & Summerbell, D. Maps of strength of positional signalling activity in the developing chick wing bud. J. Embryol. Exp. Morphol. 87, 163–174 (1985).

    CAS  PubMed  Google Scholar 

  11. Bowen, J., Hinchliffe, J. R., Horder, T. J. & Reeve, A. M. The fate map of the chick forelimb-bud and its bearing on hypothesized developmental control mechanisms. Anat. Embryol. 179, 269–283 (1989).

    Article  CAS  Google Scholar 

  12. Vargesson, N. et al. Cell fate in the chick limb bud and relationship to gene expression. Development 124, 1909–1918 (1997).

    CAS  PubMed  Google Scholar 

  13. Zwilling, E. & Hansborough, L. Interaction between limb bud ectoderm and mesoderm in the chick embryo. III Experiments with polydactylous limbs. J. Exp. Zool. 132, 219–239 (1956).

    Article  Google Scholar 

  14. Cooke, J. & Summerbell, D. Cell cycle and experimental pattern duplication in the chick wing during embryonic development. Nature 287, 697–701 (1980).

    Article  CAS  Google Scholar 

  15. Tickle, C., Lee, J. & Eichele, G. A quantitative analysis of the effect of all-trans-retinoic acid on the pattern of chick wing development. Dev. Biol. 109, 82–95 (1985).

    Article  CAS  Google Scholar 

  16. Riddle, R. D., Johnson, R. L., Laufer, E. & Tabin, C. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401–1416 (1993).

    Article  CAS  Google Scholar 

  17. Niederreither, K., Vermot, J., Schuhbar, B., Chambon, P. & Dolle, P. Embryonic retinoic acid synthesis is required for forelimb growth and antero–posterior patterning in the mouse. Development 129, 3563–3574 (2002).

    CAS  PubMed  Google Scholar 

  18. Mercader, N. et al. Opposing RA and FGF signals control proximodistal vertebrate limb development through regulation of Meis genes. Development 127, 3961–3970 (2000).

    CAS  PubMed  Google Scholar 

  19. Gritli-Linde, A., Lewis, P., McMahon, A. P. & Linde, A. The whereabouts of a morphogen: direct evidence for short- and graded long-range activity of hedgehog signaling peptides. Dev. Biol. 236, 364–386 (2001).

    Article  CAS  Google Scholar 

  20. Zeng, X. et al. A freely diffusible form of Sonic hedgehog mediates long-range signalling. Nature 411, 716–720 (2001).

    Article  CAS  Google Scholar 

  21. Yang, Y. et al. Relationship between dose, distance and time in Sonic Hedgehog-mediated regulation of anteroposterior polarity in the chick limb. Development 124, 4393–4404 (1997). The effects of SHH application to chick wing buds were characterized in terms of dose and time. The results directly showed the promotion of anterior to posterior positional values.

    CAS  PubMed  Google Scholar 

  22. Chiang, C. et al. Manifestation of the limb prepattern: limb development in the absence of sonic hedgehog function. Dev. Biol. 236, 421–435 (2001).

    Article  CAS  Google Scholar 

  23. Hooper, J. E. & Scott, M. P. Communicating with hedgehogs. Nature Rev. Mol. Cell Biol. 6, 306–317 (2005).

    Article  CAS  Google Scholar 

  24. Litingtung, Y., Dahn, R. D., Li, Y. N., Fallon, J. F. & Chiang, C. Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature 418, 979–983 (2002).

    Article  CAS  Google Scholar 

  25. Welscher, P. T. et al. Progression of vertebrate limb development through SHH-mediated counteraction of GLI3. Science 298, 827–830 (2002).

    Article  Google Scholar 

  26. Wang, B., Fallon, J. F. & Beachy, P. A. Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell 100, 423–434 (2000).

    Article  CAS  Google Scholar 

  27. Huangfu, D. et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426, 83–87 (2003).

    Article  CAS  Google Scholar 

  28. Liu, A., Wang, B. & Niswander, L. A. Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development 132, 3103–3111 (2005).

    Article  CAS  Google Scholar 

  29. Zuniga, A., Haramis, A. P., McMahon, A. P. & Zeller, R. Signal relay by BMP antagonism controls the SHH/FGF4 feedback loop in vertebrate limb buds. Nature 401, 598–602 (1999).

    Article  CAS  Google Scholar 

  30. Duprez, D. M., Kostakopoulou, K., Francis-West, P. H., Tickle, C. & Brickell, P. M. Activation of Fgf-4 and HoxD gene expression by BMP-2 expressing cells in the developing chick limb. Development 122, 1821–1828 (1996).

    CAS  Google Scholar 

  31. Drossopoulou, G. et al. A model for anteroposterior patterning of the vertebrate limb based on sequential long- and short-range Shh signalling and Bmp signalling. Development 127, 1337–1348 (2000).

    CAS  PubMed  Google Scholar 

  32. Tumpel, S. et al. Regulation of Tbx3 expression by anteroposterior signalling in vertebrate limb development. Dev. Biol. 250, 251–262 (2002).

    Article  Google Scholar 

  33. Coelho, C. N. & Kosher, R. A. A gradient of gap junctional communication along the anterior–posterior axis of the developing chick limb bud. Dev. Biol. 148, 529–535 (1991).

    Article  CAS  Google Scholar 

  34. Allen, F., Tickle, C. & Warner, A. The role of gap junctions in patterning of the chick limb bud. Development 108, 623–634 (1990).

    CAS  PubMed  Google Scholar 

  35. Harfe, B. D. et al. Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell 118, 517–528 (2004). The fate of the cells that express SHH at different stages in mouse limb development was analysed. A model for the specification of mouse digits that integrates both the concentration and the length of exposure to SHH was proposed.

    Article  CAS  Google Scholar 

  36. Ahn, S. & Joyner, A. L. Dynamic changes in the response of cells to positive hedgehog signaling during mouse limb patterning. Cell 118, 505–516 (2004). Detailed analysis of the fate of cells that express GLI1 at different stages during mouse limb development in response to SHH showed that cells that respond to SHH at late stages contribute to digits.

    Article  CAS  Google Scholar 

  37. Haramis, A. G., Brown, J. M. & Zeller, R. The limb deformity mutation disrupts the SHH/FGF-4 feedback loop and regulation of 5′ HoxD genes during limb pattern formation. Development 121, 4237–4245 (1995).

    CAS  Google Scholar 

  38. Michos, O. et al. Gremlin-mediated BMP antagonism induces the epithelial–mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis. Development 131, 3401–3410 (2004).

    Article  CAS  Google Scholar 

  39. Shapiro, M. D., Hanken, J. & Rosenthal, N. Developmental basis of evolutionary digit loss in the australian lizard Hemiergis. J. Exp. Zoolog. B Mol. Dev. Evol. 297, 48–56 (2003).

    Article  Google Scholar 

  40. Smith, J. C. Evidence for a positional memory in the development of the chick wing bud. J. Embryol. Exp. Morphol. 52, 105–113 (1979).

    CAS  PubMed  Google Scholar 

  41. Amano, T. & Tamura, K. Region-specific expression of mario reveals pivotal function of the anterior nondigit region on digit formation in chick wing bud. Dev. Dyn. 233, 326–336 (2005).

    Article  Google Scholar 

  42. Welten, M. C. M., Verbeek, F. J., Meijer, A. H. & Richardson, M. K. Gene expression and digit homology in the chicken embryo wing. Evol. Dev. 7, 18–28 (2005).

    Article  CAS  Google Scholar 

  43. Summerbell, D., Lewis, J. H. & Wolpert, L. Positional information in chick limb morphogenesis. Nature 244, 492–496 (1973).

    Article  CAS  Google Scholar 

  44. Dudley, A. T., Ros, M. A. & Tabin, C. J. A re-examination of proximodistal patterning during vertebrate limb development. Nature 418, 539–544 (2002).

    Article  CAS  Google Scholar 

  45. Dolle, P., Izpisua-Belmonte, J.-C., Falkenstein, H., Renucci, A. & Duboule, D. Coordinate expression of the murine Hox-5 complex homeobox-containing genes during limb pattern formation. Nature 342, 767–772 (1989).

    Article  CAS  Google Scholar 

  46. Kmita, M., Tarchini, B., Zakany, J., Logan, M., Tabin, C. J. & Duboule, D. Early developmental arrest of mammalian limbs lacking HoxA/HoxD gene function. Nature 435, 1113–1116 (2005).

    Article  CAS  Google Scholar 

  47. Izpisua-Belmonte, J. C., Tickle, C., Dolle, P., Wolpert, L. & Duboule, D. Expression of the homeobox Hox-4 genes and the specification of position in chick wing development. Nature 350, 585–589 (1991).

    Article  CAS  Google Scholar 

  48. Morgan, B. A., Izpisua-Belmonte, J. C., Duboule, D. & Tabin, C. J. Targeted misexpression of Hox-4.6 in the avian limb bud causes apparent homeotic transformations. Nature 358, 236–239 (1992).

    Article  CAS  Google Scholar 

  49. Knezevic, V. et al. Hoxd-12 differentially affects preaxial and postaxial chondrogenic branches in the limb and regulates Sonic hedgehog in a positive feedback loop. Development 124, 4523–4536 (1997).

    CAS  PubMed  Google Scholar 

  50. Zakany, J., Kmita, M. & Duboule, D. A dual role for Hox genes in limb anterior–posterior asymmetry. Science 304, 1669–1672 (2004).

    Article  CAS  Google Scholar 

  51. Wellik, D. M. & Capecchi, M. R. Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science 301, 363–367 (2003).

    Article  CAS  Google Scholar 

  52. Ingham, P. W. & Fietz, M. J. Quantitative effects of hedgehog and decapentaplegic activity on the patterning of the Drosophila wing. Curr. Biol. 5, 432–440 (1995).

    Article  CAS  Google Scholar 

  53. De Celis, J. F. Pattern formation in the Drosophila wing: the development of the veins. Bioessays 25, 443–451 (2003).

    Article  CAS  Google Scholar 

  54. Lecuit, T. et al. Two distinct mechanisms for long-range patterning by Decapentaplegic in the Drosophila wing. Nature 381, 387–392 (1996).

    Article  CAS  Google Scholar 

  55. Farrell, E. R., Tosh, G., Church, E. & Munsterberg, A. E. Cloning and expression of CSAL2, a new member of the spalt gene family in chick. Mech. Dev. 102, 227–230 (2001).

    Article  CAS  Google Scholar 

  56. Zulch, A., Becker, M. B. & Gruss, P. Expression pattern of Irx1 and Irx2 during mouse digit development. Mech. Dev. 106, 159–162 (2001).

    Article  CAS  Google Scholar 

  57. Suzuki, T., Takeuchi, J., Koshiba-Takeuchi, K. & Ogura, T. Tbx genes specify posterior digit identity through shh and BMP signaling. Dev. Cell 6, 43–53 (2004).

    Article  CAS  Google Scholar 

  58. Rallis, C., Del Buono, J. & Logan, M. P. Tbx3 can alter limb position along the rostrocaudal axis of the developing embryo. Development 132, 1961–1970 (2005).

    Article  CAS  Google Scholar 

  59. Bamshad, M. et al. Mutations in human TBX3 alter limb, apocrine, and genetical development in ulnar-mammary syndrome. Nature Genet. 16, 311–316 (1997).

    Article  CAS  Google Scholar 

  60. Briscoe, J., Pierani, A., Jessell, T. M. & Ericson, J. A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101, 435–445 (2000).

    Article  CAS  Google Scholar 

  61. Dahn, R. D. & Fallon, J. F. Interdigital regulation of digit identity and homeotic transformation by modulated BMP signaling. Science 289, 438–441 (2000). Series of grafting experiments and bead implants showing that morphogenesis of digit primordia is surprisingly plastic.

    Article  CAS  Google Scholar 

  62. Sanz-Ezquerro, J. J. & Tickle, C. Fgf signaling controls the number of phalanges and tip formation in developing digits. Curr. Biol. 13, 1830–1836 (2003).

    Article  CAS  Google Scholar 

  63. Spitz, F., Gonzalez, F. & Duboule, D. A global control region defines a chromosomal regulatory landscape containing the HoxD cluster. Cell 113, 405–417 (2003).

    Article  CAS  Google Scholar 

  64. Smith, J. C. The time required for positional signalling in the chick wing bud. J. Embryol. Exp. Morphol. 60, 321–328 (1980).

    CAS  PubMed  Google Scholar 

  65. Honig, L. S. Positional signal transmission in the developing chick limb. Nature 291, 72–73 (1981).

    Article  CAS  Google Scholar 

  66. Tickle, C. The number of polarizing region cells required to specify additional digits in the developing chick wing. Nature 289, 295–298 (1981).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank M. Fisher and M. Towers for useful discussions, as well as M. Fisher for producing Fig. 2 and A. Bain for producing Fig. 1. I would also like to acknowledge A. Blake for her help with preparing the manuscript and the Medical Research Council and The Royal Society for supporting my research.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Flybase

dpp

Hh

Iroquois

Omb

Spalt

Swiss-Prot

BMP2

GLI1

GLI2

GLI3

SHH

FURTHER INFORMATION

Cheryll Tickle's homepage

Glossary

Mesenchyme

A loose meshwork of cells found in vertebrate embryos, which is usually derived from the mesoderm, the middle of the three germ layers.

Ectoderm

The epithelium that is derived from the outer of the three germ layers of the embryo and will give rise to the epidermis of the skin.

Positional information

The instructions that are interpreted by cells to determine their differentiation with respect to their position within the embryo.

Morphogen

A diffusible chemical substance that carries information in embryos, for example, cell position.

Tbx family

Related transcription factors that contain a T-Box.

Apical ectodermal ridge

Thickening of the ectoderm rim at the tip of a developing limb bud in a vertebrate embryo. It is required for bud outgrowth.

Polarizing activity

The ability of cells, tissue or defined chemicals to induce the formation of extra digits from the anterior region of a chick limb bud.

Fate map

A diagram that is obtained experimentally by tracing marked cells and shows the structures that derive from cells in different regions of an embryo.

Digital plate

Broad region that forms late during limb development at the distal end of the bud and contains the digit primordia.

Humerus

The single bone in the upper arm, initially laid down in cartilage.

Polydactylous

Having more than the normal number of digits.

Intraflagellar transport proteins

Proteins that associate with, or in, a flagellum or cilium and the associated basal body.

Reaction–diffusion mechanism

Self-organizing system that consists of two or more interacting chemical substances and spontaneously generates spatial patterns.

Gap-junctional communication

Mechanism of direct cell–cell communication in which small molecules pass through aligned gap junctions on neighbouring cells and not extracellularly.

β-galactosidase

β-Galactosidase is a commonly used reporter molecule, which can be readily visualized.

Paralogous

A sequence, or gene, that originates from a common ancestral sequence, or gene, by a duplication event. For example, as seen in Hoxd gene clusters and designated by a number from 1–13.

Mammary-ulnar syndrome

Rare human congenital condition that is characterized by specific defects in both mammary glands and limbs.

Haploinsufficiency

Defines a genetic condition in which the defect is seen in heterozygous individuals.

Phalanx

(plural phalanges). One of the series of small bones that make up the fingers and toes in vertebrates.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tickle, C. Making digit patterns in the vertebrate limb. Nat Rev Mol Cell Biol 7, 45–53 (2006). https://doi.org/10.1038/nrm1830

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1830

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing