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Meiosis is a specialized type of cell division that gener-
ates gametes with a haploid set of chromosomes. By
contrast, mitosis produces daughter cells with a chro-
mosome complement that is identical to that of the
progenitor cell. The generation of haploid gametes
requires both general cell-cycle regulators and meiosis-
specific proteins. In this review, we will discuss how the
mitotic cell-cycle machinery is modulated to bring
about the meiotic programme, with particular empha-
sis on the modifications that result in the specialized
meiotic chromosome-segregation programme (FIG. 1).
Although the meiotic programme is not, strictly speak-
ing, a cell cycle, in this review we will refer to the events
from the decision to enter the meiotic programme up
until the generation of gametes as the meiotic cell cycle,
because many of the key regulators of the mitotic cell
cycle control this process.

First, we will discuss the controls that regulate the
decision to embark on either the meiotic or the mitotic
cell cycle and how these regulatory pathways control
the G1–S-phase transition. We will then compare and
contrast the pre-meiotic and pre-mitotic S phases.
Next, we will summarize the aspects of meiotic G2
that are relevant to cell-cycle control, followed by a
detailed discussion of the controls that bring about the
unique pattern of chromosome segregation during
meiosis I and leave in place the tools to segregate chro-
mosomes during meiosis II. We will end with an
overview of the regulatory circuits that control the
specialized meiosis-I–meiosis-II transition and meio-
sis-II chromosome segregation. For some other
aspects of the meiotic cell cycle, such as the pairing of

HOMOLOGUES, meiotic recombination and developmen-
tal signals that control progression through meiosis,
the reader will be referred to recent reviews. Our dis-
cussion focuses primarily on studies that have been
conducted in the fission yeast (Schizosaccharomyces
pombe) and the budding yeast (Saccharomyces cere-
visiae), and for this reason, yeast nomenclature is used,
but for the corresponding gene and protein names in
other organisms, please see TABLES 1,2.

Regulation of the meiotic G1–S-phase transition
The decision to enter the meiotic cell cycle occurs in
response to cues that vary greatly among different
organisms. In multicellular organisms, extrinsic cues
from surrounding cells control the differentiation of
germline stem cells that will enter the meiotic cell
cycle. The molecular mechanisms that regulate this
differentiation process are largely unknown1–3. In bud-
ding and fission yeast, poor nutrient conditions are the
cue to embark on the meiotic cell cycle, which culmi-
nates in the production of spores4,5. The decision to
enter the meiotic cell cycle is made in G1 phase and
this affects the way in which the G1–S transition is
controlled.

In budding yeast, nutrient limitation culminates in
the expression of two principal regulators of meiotic
initiation, inducer of meiosis (IME)1 and IME2, which
promote entry into pre-meiotic S phase. These meiotic
regulators substitute for the CYCLIN-DEPENDENT KINASE

(CDK) Cdc28, which, when in complex with G1
cyclins (Clns), promotes entry into the mitotic cell cycle
(FIG. 2). Ime1 is a transcription factor that initiates a
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HOMOLOGUE

One member of a chromosome
pair (where each member of the
pair is derived from one parent)
in diploid organisms.

CYCLIN-DEPENDENT KINASE

(CDK). A protein kinase that
requires an associated cyclin
protein for activity.Various
CDK–cyclin complexes regulate
different stages of the cell cycle.
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APC/C

(Anaphase-promoting
complex/cyclosome). A
ubiquitin ligase which, together
with a ubiquitin-conjugating
enzyme, attaches ubiquitin
peptides to a substrate protein.
Ubiquitylated proteins are
recognized by the 26S
proteasome and are
subsequently degraded.

SYNAPTONEMAL COMPLEX 

(SC). A proteinaceous structure
that forms between two
homologues during meiotic G2,
which is defined by a state of low
CDK activity (when
chromosomes are condensed —
cytologically speaking, this is
prophase).

COHESIN

A protein complex that tethers
sister chromatids together.

SISTER CHROMATIDS

Chromosomes that have been
duplicated during S phase.

MITOTIC/MEIOTIC SPINDLE

A bipolar array of microtubules
that forms during mitosis and
meiosis to which chromosomes
attach and by which
chromosomes are segregated to
daughter cells.
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S phase in many respects. The same origins and replica-
tive machinery are used and replication forks progress at
similar rates17–20, at least in budding yeast. However,
despite the usage of the same replicative machinery and
regulators that control its activity during pre-mitotic
and pre-meiotic DNA replication, there are likely to be
differences between pre-mitotic and pre-meiotic DNA
replication. In all organisms analysed so far, pre-meiotic
S phase is substantially longer than pre-mitotic S phase21,
and factors such as the budding yeast gene MUM2 have
been found to be essential for pre-meiotic DNA replica-
tion, but not for pre-mitotic replication22.
Lengthening of S phase and the use of additional fac-
tors during pre-meiotic S phase — in comparison
with pre-mitotic S phase — might be necessary because
interactions between homologue pairs, which are neces-
sary for their faithful segregation during meiosis I, are
initiated during pre-meiotic S phase.

Several studies in yeast have established a require-
ment for passage through S phase to establish inter-
homologue interactions such as meiotic recombina-
tion23,24, pairing of homologues24 and the formation of
the SYNAPTONEMAL COMPLEX (SC)24. Meiotic recombination
begins with the deliberate introduction of DNA double-
strand breaks (DSBs) by the transesterase sporulation
protein (Spo)11 (REFS 25,26). This event requires DNA
replication and occurs after bulk DNA synthesis23,27.
Budding yeast clb5 clb6 mutants that fail to undergo
bulk pre-meiotic DNA synthesis15 generate DSBs and
SCs at levels that are proportional to the amount of
DNA synthesis in these mutants24. Furthermore, when
all origins of replication are deleted on the left arm of
chromosome III, this chromosome arm replicates late
during S phase and DSB formation is delayed to a simi-
lar degree23. In fission yeast, however, mutants that fail to
complete DNA synthesis were found to form DSBs at
appreciable levels28. This could be because DSB forma-
tion is controlled differently in the two yeasts or, alterna-
tively, it is possible that the observed DSBs correspond
to the replicated part of the genome.

The requirement for passage through S phase for
recombination and homologue pairing is explained by
the fact that COHESIN, the protein complex that holds
duplicated chromosomes (SISTER CHROMATIDS) together, has
an essential role in these processes29,30. At least in fission
yeast, cohesin must be laid down during S phase to sup-
port inter-homologue interactions31. Although it has
not been shown directly, there is likely to be a similar
situation in budding yeast. Passage through pre-mitotic
S phase has been shown to be essential for cohesin to be
functional32.

Meiotic G2
Meiotic G2 is defined by a state of low meiotic CDK
activity. During this cell-cycle stage, linkages between
homologue pairs are generated to ensure their co-align-
ment on the meiosis-I SPINDLE in preparation for segre-
gation during meiosis I. For chromosomes of most,
although not all, organisms, this linkage is brought about
by at least one CHIASMA, which is generated as a result of
meiotic recombination between the homologous

transcriptional programme that allows meiotic regula-
tors to be generated in a temporally defined manner6,7.
A key target of Ime1 is the IME2 gene, which encodes a
meiosis-specific kinase with homology to CDKs. Ime2
promotes entry into pre-meiotic S phase by carrying
out some of the functions of Cln–CDKs (FIG. 2).
Degradation of the S-phase CDK inhibitor, subunit
inhibitor of CDK (Sic)1, is dependent on IME2 (REF. 8).
Ime2 also inhibits the ubiquitin-dependent proteolysis
machinery that is defined by its ubiquitin ligase — the
anaphase-promoting complex/cyclosome (APC/C) —
thereby allowing the stabilization of cyclin B (Clb)
cyclins, which promote S phase and chromosome segre-
gation9 (FIG. 2).

In fission yeast, entry into the meiotic cell cycle is
prevented by the protein kinase Pat1. Pat1 blocks meio-
sis by phosphorylating the RNA-binding protein Mei2,
the activation of which is, in itself, sufficient to initiate the
meiotic programme10,11. In response to meiosis-induc-
ing conditions, a specific Pat1 inhibitor, Mei3, is
expressed — this releases the repression of Mei2 by Pat1
and initiates meiotic progression12,13. Mei2 cooperates
with a specific small RNA, meiRNA14; however, the
precise molecular function of Mei2 is unknown.

Pre-meiotic S phase
After cells have committed to the meiotic cell cycle, they
undergo pre-meiotic S phase. In budding yeast, pre-
mitotic as well as pre-meiotic DNA replication is trig-
gered by S-phase CDKs, which are composed of the two
B-type cyclins Clb5 and Clb6, and Cdc28 (REFS 8,15,16).
Pre-meiotic DNA replication resembles pre-mitotic

Figure 1 | The mitotic and meiotic cell cycles. a | In mitosis, diploid cells replicate chromosomes
during S phase and segregate sister chromatids during M phase, so that diploid daughter cells are
produced. b | In meiosis, two chromosome-segregation phases, meiosis I and meiosis II, follow a
single round of DNA replication during pre-meiotic S phase. During meiosis I, homologous
chromosomes (shown in red and blue) are segregated to opposite poles. Sister chromatids
segregate to opposite poles during meiosis II, which results in the formation of non-identical haploid
gametes. Please note that the lengths of the cell-cycle stages are not drawn to scale.
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activation and the continuation of the developmental
programme of meiosis (spore formation) by down-
regulating meiotic gene expression. CDKs are
inhibited by the recombination checkpoint through
activation of Saccharomyces Wee1 (Swe1), which
phosphorylates Cdc28 on Tyr19, thereby inhibiting its
activity 44. Furthermore, transcription of the meiotic
cyclins CLB1, CLB3 and CLB4 is prevented because
the transcription factor Ndt80, which transcribes a
large set of meiotic genes during G2, is inhibited, and
the repressor of these genes, suppressor of Mar1
(Sum)1, is active45–47. The downregulation of Ndt80-
dependent transcription also ensures that the devel-
opmental programme does not proceed, thereby
establishing a complete G2 arrest until all DNA dam-
age has been repaired.

The recombination checkpoint is not the only signal
that halts meiotic cell-cycle progression in G2. In the
female germline of most metazoans, developmental
signals induce a G2 arrest. Oocytes arrest in G2
(diplotene) until their maturation is triggered during
ovulation later in the life of the organism. The molecu-
lar mechanisms that control this cell-cycle arrest and
the resumption of meiosis are complex and, in part,
controversial, so we direct readers to reviews by experts
in this field48,49.

Meiosis I: a unique segregation event
Once recombination has been completed, cells enter the
meiotic divisions. Meiosis I is a unique type of chromo-
some-segregation event because it is the homologue
pairs that segregate from each other, rather than the
sister chromatids, as occurs in mitosis and meiosis II
(BOX 1; FIG. 1). For this specialized segregation to occur
and leave in place the tools to segregate sister chromatids
during meiosis II, the mitotic chromosome-segregation
machinery (summarized in BOX 1) must be modified in
three ways (FIG. 4). First, homologue pairs must be linked,

chromosomes. We will only discuss the relevance of
recombination to chromosome segregation and cell-
cycle progression (see REFS 33–35 for recent reviews on
the mechanistic details of meiotic recombination).

Meiotic recombination is initiated upon the intro-
duction of DSBs by Spo11 (REFS 25,26). These DSBs can
be processed to generate two types of recombination
product — either a crossover (CO), in which recipro-
cal exchange between homologue pairs has occurred,
or a non-crossover (NCO), in which reciprocal
exchange has not occurred. Recent studies in budding
yeast have shown the existence of two different recom-
bination pathways for the processing of DSBs. One
pathway generates only COs and an alternative path-
way, predominantly generates NCOs36,37 (FIG. 3). The
decision to generate a CO or an NCO is made soon
after DSB formation35,37–39. Importantly, only COs
result in the linking of homologue pairs. As these
linkages are essential for the proper segregation of
homologue pairs during meiosis I, elucidating the
mechanisms that ensure the presence of at least one
CO per pair of homologues will be crucial to under-
stand how homologue segregation is regulated.

Recombination causes severe DNA damage. It is
therefore essential that meiosis-I chromosome segre-
gation does not proceed until all damage has been
repaired. One or more surveillance mechanisms
ensure that this is the case40. The recombination, or
pachytene, checkpoint is one such surveillance mech-
anism. It is activated concomitant with, or shortly
after, DSB formation and delays entry into meiosis I
until all DSBs have been repaired. The checkpoint is
most well-characterized in budding yeast40,41 but is
likely to exist in other organisms, as mouse spermato-
cytes and oocytes that are deficient for the recombina-
tion factor Dmc1, and therefore fail to repair DSBs,
arrest in G242,43. The recombination checkpoint pre-
vents entry into meiosis I by preventing meiotic CDK

CHIASMA 

(plural: chiasmata). Cytological
manifestation of the point of
exchange or crossing over
between two homologues due to
meiotic recombination.

Table 1 | Conservation of the cohesin complex across species in mitosis and meiosis*

Developmental Sc Sp At Ce Dm Xl Mammals References
cycle

Mitosis Scc1(Mcd1) Rad21 - SCC-1/COH-2 DRAD21 XRAD21 RAD21/HR21sp/PW29 129–132,134, 
166–171

Scc3/Irr1 Psc3 - SCC-3 DSA XSA1, SA1/STAG1, 59,132,134,139,166,
XSA2 SA2/STAG2 167,169,170,178

Smc1 Psm1 - HIM-1/SMC-1 DSMC1 XSMC1 SMC1α/mSMCB 130–132,134,166,167,
169–172

Smc3 Psm3 - SMC-3 DSMC3 XSMC3 SMC3/mSMCD 130–132,134,166,167,
169–172

Meiosis Rec8‡ Rec8‡ SYN1–DIF1‡ REC-8‡ - - REC8‡, 30,56–58,173–177,180
RAD21/SCC1

Scc3 Psc3§, - SCC-3 - - SA2/STAG2 59,139,174,178–180
Rec11‡|| SA3/STAG3‡||

Smc1 Psm1 - SMC-1 - - SMC1β‡ 57,58,180,181

Smc3 Psm3 - SMC-3 - - SMC3 30,57,58,130,180

*Potential cohesin complexes in mitosis and meiosis are shown based on the available functional or cytological data. ‡Meiosis-specific proteins. §Proteins found to localize
only to centromeric regions. ||Proteins found to localize only to chromosome arms. At, Arabidopsis thaliana, Ce, Caenorhabditis elegans; COH-2, cohesin-2; Dm, Drosophila
melanogaster; HR21sp, Homo sapiens Rad21; PW29, Pokeweed agglutinin-binding protein-29; Rec, recombination protein; Sc, Saccharomyces cerevisiae; Sp,
Schizosaccharomyces pombe; SA/STAG, stromalin antigen; Scc, subunit of the cohesin complex; Smc, structural maintenance of chromosomes; Xl, Xenopus laevis.
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Meiosis I: loss of arm cohesion
As mentioned above, sister chromatids, which are gener-
ated during S phase, are held together by a protein com-
plex that is known as cohesin, which is thought to form a
ring around the duplicated DNA54. During the mitotic as
well as the meiotic cell cycle, cohesins must be assembled
onto the DNA during DNA replication for them to func-
tion as cohesion factors31,32 (BOX 1). During mitosis, cleav-
age of one of the cohesin subunits, Scc1(Mcd1)/Rad21
(the budding yeast protein subunit of the cohesin com-
plex (Scc)1 is encoded by the MCD1 gene; Rad21 is the
Scc1 homologue in fission yeast), by a protease that is
known as SEPARASE initiates mitotic chromosome segre-
gation (BOX 1).

During meiosis, the existence of two consecutive
rounds of chromosome segregation requires that cohe-
sion between sister chromatids is lost in a stepwise man-
ner. Loss of cohesion on chromosome arms in meiosis I
abolishes the linkage between homologue pairs and
allows them to separate to opposite poles of the meiosis-I
spindle. Cohesion between sister chromatids is, how-
ever, maintained around the centromeric regions to
ensure that they do not drift apart before anaphase II
and to promote the proper attachment of sister chro-
matids to the meiosis-II spindle. This stepwise loss of
cohesion requires some changes to the cohesin complex
itself and the way it is regulated.

A conserved modification of the meiotic cohesin
complex is the substitution of the Scc1(Mcd1)/Rad21

usually by chiasmata, to ensure their alignment on the
meiosis-I spindle. Second, some linkage (COHESION)

between sister chromatids must be maintained beyond
meiosis I to prevent their premature dissociation and
ensure their proper attachment to the meiosis-II spindle.
Third, sister chromatids have to attach to microtubules
that emanate from the same SPINDLE POLE in meiosis I, but
from opposite poles in meiosis II.

Chiasmata hold homologues together. Chiasmata are gen-
erated as a result of reciprocal recombination between
homologue pairs, and they hold the pairs together. This
allows the BIVALENT (a pair of recombined homologues) to
align correctly on the meiosis-I spindle (FIG. 4). The
importance of chiasmata for accurate meiosis-I chromo-
some segregation has been shown by the observation that
budding yeast and nematode worm (Caenorhabditis
elegans) mutants that lack SPO11 — and therefore do not
initiate meiotic recombination — randomly segregate
their homologues at meiosis I26,30,50. In fission yeast, the
inactivation of the Spo11 homologue, Rec12, results in
near-random segregation at meiosis I (REF. 51), and Spo11
is also essential to generate functional gametes in the
mouse52,53. Sister-chromatid cohesion on chromosome
arms, distal to chiasmata, stabilizes the homologue inter-
actions that are mediated by chiasmata. As described
below, the loss of chromosome-arm cohesion is the single
event that is required to allow homologues to segregate
from each other during meiosis I.

COHESION

The sticking together of two
sister chromatids.

SPINDLE POLE

The yeast equivalent of the
centrosome that nucleates
microtubules, including those
that will form the spindle.

BIVALENT

A pair of homologues that are
linked together following
meiotic G2, which is defined by a
state of low CDK activity (when
chromosomes are condensed —
cytologically speaking, this is
prophase).

SEPARASE

An enzyme that cleaves the
cohesin subunit Scc1 or Rec8
during mitosis and meiosis.

Table 2 | Gene names of key cell-cycle regulators

Generic name Sc Sp Ce Xl Dm Mammalian

G1 cyclin-dependent- CDC28–CLN1, cdc2–cig1, cdc2–puc1 - - - Cdk4–cyclin-D,
kinase complex CDC28–CLN2, Cdk6–cyclin-D,

CDC28–CLN3 Cdk2–cyclin-E

S-phase cyclin- CDC28–CLB5, cdc2–cig2 - - - Cdk2–cyclin-A,
dependent-kinase CDC28–CLB6 Cdk2–cyclin-E
complex

M-phase cyclin- CDC28–CLB1, cdc2–cdc13 - - - Cdk1–cyclin-B,
dependent-kinase CDC28–CLB2, Cdk1–cyclin-A
complex CDC28–CLB3,

CDC28–CLB4

- MIH1 cdc25 CDC-25 CDC25 String CDC25A,CDC25B,
CDC25C

- SWE1 wee1 WEE-1 WEE1 WEE WEE1

Separase ESP1 cut1 SEP-1 - Three Rows (THR),  ESPL1
Separase (SSE)

Securin PDS1 cut2 IFY-1 PTTG Pimples (PIM) PTTG1

- SPO11 rec12 SPO-11 - MEI-W68 SPO11

Shugoshin SGO1 sgo1 - - MEI-S332 -

Polo kinase CDC5 plo1 PLK-2 PLX1 POLO PLK1

Aurora kinase - - AIR-1 Aurora-A (Eg2) Aurora-A Aurora-A
IPL1 ark1 AIR-2 Aurora-B Aurora-B Aurora-B
- - - - - Aurora-C

- CDC14 clp1 CDC-14 - - CDC14A, CDC14B

- MAD2 mad2 MDF-2 MAD2 MAD2 MAD2L1, MAD2L2

AIR, Aurora/Ipl1-related kinase; ark1, aurora kinase-1; Cdk, cyclin-dependent kinase; Ce, Caenorhabditis elegans; CLB, cyclin B; CLN, cyclin; clp1, Cdc14-related protein
phosphatase-1; Dm, Drosophila melanogaster; ESP1, extra spindle poles-1; ESPL1, extra spindle poles-like-1; IFY-1, interactor of FZY-1; MAD2, mitotic arrest-deficient-2;
MDF-2, yeast mitosis-arrest-deficient related-2; MIH1, mitotic inducer homologue-1; PDS1, prevents the dissociation of sisters-1; PLK/plo/PLX/POLO, polo kinase; 
PTTG, pituitary tumor-transforming protein; Rec, recombination protein; Sc, Saccharomyces cerevisiae; SEP-1, separase-1; Sp, Schizosaccharomyces pombe; 
SGO1; shugoshin-1; SPO, sporulation protein; Swe1, Saccharomyces Wee1; Xl, Xenopus laevis.
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subunit is found in cohesin complexes around cen-
tromeres but is replaced on chromosome arms with a
meiosis-specific variant, Rec11 (REF. 59) (TABLE 1). This
specialization of arm cohesin could contribute to the
differential timing with which arm and centromeric
cohesins are lost in meiosis. Furthermore, Rec11, like
Rec8, has a role in meiotic recombination that cannot
be fulfilled by its mitotic counterpart30,60,61. Perhaps
these cohesin-subunit variants promote inter-homo-
logue invasion during recombination rather than inva-
sion into the sister chromatid (which is the way DSBs
are repaired during the mitotic cell cycle). They might
thereby facilitate the generation of chiasmata, which is
essential for meiosis-I chromosome segregation.

Meiosis I: regulators of cohesin loss
The role of separase. One possible mechanism to allow for
the differential loss of arm and centromeric cohesin
would be to restrict separase activity to meiosis II and
remove cohesins from chromosome arms in a separase-
independent manner during meiosis I, which is akin to
the non-proteolytic way in which cohesins are removed
from chromosome arms during prophase in mammalian
cells62,63 (BOX 1). However, elegant experiments in budding
and fission yeast showed that separase-dependent cleav-
age of Rec8 triggers the loss of cohesins, and therefore
chromosome segregation during meiosis I and meiosis II
(REFS 64,65).Whether the loss of cohesin by separase cleav-
age mediates the loss of arm cohesion in meiosis I and II
in other eukaryotes is not known.However,a function for
separase and its regulator, the ubiquitin ligase APC/C, in
the segregation of homologues during meiosis I has also
been shown in nematode worm66,67 and mouse
oocytes68,69, which indicates that separase-dependent
cleavage of Rec8 on chromosome arms is conserved.
Curiously, however, destruction of the separase inhibitor
SECURIN by the APC/C does not seem to be required for
meiosis-I chromosome segregation in frog (Xenopus
laevis) oocytes70,71, which suggests that different controls
may remove cohesins from chromosome arms in this
organism.

A role for Rec8. The fact that separase controls the loss
of cohesion during both meiosis I and meiosis II, at
least in budding and fission yeast, predicts that cohesin
complexes around centromeres must be resistant to
cleavage by separase during meiosis I. Factors that ‘pro-
tect’ centromeric Rec8 from cleavage have to be present
during meiosis I but removed before, or at, the onset of
anaphase II. One important factor in the protection
of centromeric cohesins is Rec8 itself. The replacement
of Rec8 with Scc1(Mcd1)/Rad21 leads to the loss of
cohesins along the entire length of chromosomes at the
onset of anaphase I in budding and fission yeast72,73.
This indicates that a property of Rec8 that is not shared
with Scc1(Mcd1)/Rad21 is important for its protection
at centromeres. One difference between Scc1(Mcd1)
and Rec8 in budding yeast is their relative dependence
on the Polo-like kinase Cdc5 for cleavage by separase.
Phosphorylation of Scc1(Mcd1) by Cdc5 facilitates
Scc1(Mcd1) cleavage, but is not essential74. By contrast,

subunit with a meiosis-specific variant, Rec8 (TABLE 1).
Rec8 is essential for sister-chromatid cohesion during
meiosis in budding yeast, fission yeast and nematode
worms30,31,55. Immunolocalization experiments showed
that Rec8 is lost from chromosome arms during meiosis I,
but retained around CENTROMERES until meiosis II in
yeast30,56, mice57 and rats58. In nematode worms, in
which the chromosomes are HOLOCENTRIC during mitosis,
but become functionally MONOCENTRIC during meiosis, an
equivalent, stepwise loss of cohesin occurs. In this
organism, Rec8 is partially lost during meiosis I, but
retained between the facultative centromere and the
nearest crossover until meiosis II (REF. 55).

In some organisms, there are several different
cohesin complexes, of which some are specific to meiosis
(TABLE 1). In fission yeast meiosis, the mitotic Psc3

CENTROMERE

The region of the DNA on which
the kinetochore assembles.

HOLOCENTRIC CHROMOSOME

A chromosome that has
centromeres distributed along its
length, which are known as
diffuse centromeres.

MONOCENTRIC CHROMOSOME

A chromosome with a single
centromere.

SECURIN

An inhibitor of separase that
keeps the protease inactive until
the onset of anaphase, at which
point securin is destroyed,
thereby liberating separase.

Figure 2 | Cyclin-dependent-kinase activity in meiosis and mitosis. a | During G1, G1
cyclin-dependent kinase (CDK) activity (red) rises and induces the destruction of Sic1 and the
inactivation of the anaphase-promoting complex/cyclosome (APC/C), thereby allowing entry into
the cell cycle and the accumulation of S-phase CDK activity (green). S-phase CDKs initiate DNA
replication163,164. Mitotic CDKs (blue) promote entry into mitosis. At the end of mitosis, mitotic
CDKs are inactivated, which allows for the disassembly of the mitotic spindle and entry into G1.
Inactivation of mitotic CDKs occurs through B-type-cyclin destruction165. b | During the meiotic
cell cycle, a G1-like CDK (red; Ime2 in budding yeast) controls entry into the cell cycle and
promotes the activation of S-phase CDKs (green; Cdc28–cyclin-B-5/6 (Clb5/6) in budding yeast)
by inducing Sic1 destruction and inactivation of the APC/C. Ime2 has a second peak in kinase
activity during the meiotic divisions and is required for the execution of  the meiotic divisions16. It is
not known if S-phase CDK activity declines after entry into meiosis I (dotted green line)77. Meiotic
CDKs (blue; Cdc28–Clb1/3/4 in budding yeast) direct chromosome segregation during meiosis I.
In the frog (Xenopus laevis), meiotic CDKs are partially inactivated between meiosis I and meiosis II,
which prevents further DNA replication and chromosome segregation113. Meiotic CDK activity
rises again to allow entry into meiosis II. Complete inactivation of meiotic CDKs triggers exit from
meiosis II. Please note that the lengths of the cell-cycle stages are not drawn to scale.
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impaired, although not completely deficient, in their
ability to retain Rec8 at centromeres during meiosis I
(REF. 30) and, when overproduced, Spo13 can prevent
cleavage of Rec8 or Scc1(Mcd1), despite the fact that
separase is active in these cells78,79. These results imply
that Spo13 prevents the loss of centromeric cohesion;
however, the question still remains how the region
around the centromere is singled out for protection in
meiosis I.

The fruitfly (Drosophila melanogaster) protein MEI-
S332 is ideally situated to function as a protein that pre-
vents cohesin removal around centromeres during
meiosis I. MEI-S332 localizes around centromeres but
dissociates from these chromosomal regions at
anaphase II, which corresponds to the time at which
centromeric cohesion is lost in meiosis II (REF. 80,81).
More importantly, in mei-S332 mutants, sister-chro-
matid cohesion is lost prematurely82. Recently, three
different genetic screens83–85 identified a coiled-coil pro-
tein, shugoshin (also known as Sgo1), that is distantly
related to MEI-S332. Subsequently, Sgo1 homologues
have been identified in almost all eukaryotes84,86. Like
MEI-S332, budding yeast Sgo1 associates with KINETO-

CHORES from G2 until metaphase II (REFS 83,85). In fission
yeast, however, most Sgo1 dissociates from centromeric
regions during anaphase I (REFS 84,86). The reason for
this difference in behaviour is, at present,unclear. In sgo1∆
mutants of both yeasts, however, Rec8 is not retained at
centromeric regions during meiosis I, and chromosomes
segregate randomly at meiosis II (REFS 83–85). A key ques-
tion is whether Sgo1 is required for the ability of the
cohesin complex to establish cohesion at the cen-
tromere, or whether Sgo1 functions as a ‘protector’ of
cohesin, which ensures that cohesion is not lost until
meiosis II. At least in fission yeast, Rec8 must be cleav-
able by separase to allow sister chromatids to separate
at meiosis II in an sgo1∆  mutant86. This finding sug-
gests that cohesion is established at the centromere in
the absence of SGO1, and that SGO1 regulates cohe-
sion by preventing premature separase-dependent
cleavage of Rec8 around centromeres. Elucidating the
mechanism by which Sgo1 does this remains an impor-
tant challenge for the future. Sgo1 could prevent access
of separase to substrates or could prevent phosphoryla-
tion of Rec8 by Cdc5, which would make Rec8 resistant
to cleavage.

Interestingly, MEI-S332 proteins also seem to
function during mitosis. MEI-S332 is present during
mitosis and might contribute to sister-chromatid
cohesion in mitosis87. Fission yeast Sgo1 does not
function in mitosis, but a second Sgo protein, which
is known as Sgo2, is required for accurate chromo-
some segregation in mitosis and, curiously, meiosis I
but not meiosis II (REFS 84,86). In budding yeast, Sgo1
is also present at kinetochores during mitosis until
the onset of anaphase and has an undefined role in
chromosome segregation83–85. Although it is present
during mitosis, Sgo1 does not prevent cohesin
removal from centromeric regions during anaphase.
This is probably due to the dissociation of Sgo1 from
kinetochores at the onset of anaphase83–85. Therefore,

Rec8 is absolutely dependent on Cdc5 for cleavage75,76,
although it is not known whether Cdc5-dependent
phosphorylation of Rec8 is important for cleavage. One
attractive hypothesis is that Cdc5 is inhibited from
phosphorylating cohesins around the centromere,
which leaves Rec8 refractory to cleavage by separase in
this region. Substituted Scc1(Mcd1) could, however,
still be cleaved as its dependence on Cdc5 phosphoryla-
tion is not absolute74,76. Alternatively, Rec8, but not
Scc1(Mcd1), might be able to interact with proteins
around centromeres that result in Rec8 being resistant
to cleavage by separase.

MEI-S332 and other factors. Several factors, in addition
to Rec8 itself, have been identified that control the step-
wise loss of cohesins from chromosomes. In budding
yeast, the meiosis-specific protein Spo13, which bears
no conserved motifs, is present during meiosis I, but not
meiosis II (REF. 77), and functions in the maintenance of
centromeric cohesion. Cells that lack SPO13 are

KINETOCHORE

A complex that is composed of a
large number of proteins that
mediate the attachment of
chromosomes to microtubules.

Figure 3 | The early crossover decision (ECD) model for meiotic recombination.
Recombination initiates with DNA double-strand breaks (DSBs). DNA cleavage is mediated by
the highly conserved sporulation protein (Spo)11 topoisomerase. Following DSB formation, the
DNA is resected from its 5′ end, a reaction that depends on a complex that comprises Rad50,
meiotic recombination protein (Mre)11 and X-ray-sensitive protein (Xrs)2. Next, 3′ single-stranded
DNA tails invade the intact homologous DNA duplex. This nascent 3′ interaction is unstable and it
is at this step of the process that the decision is made to follow the non-crossover (NCO; left) or
the crossover (CO) pathway (right). In the NCO pathway, the 3′ single-stranded tail initiates DNA
synthesis (shown in red) but the extended end is ejected. It then anneals with its partner and 
DNA synthesis is completed and followed by ligation. In the CO pathway, the nascent 3′
interaction is stabilized to form a single-end invasion (SEI) intermediate. The second 3′ end then
invades or anneals with the displaced strand of the SEI intermediate (second-end annealing).
DNA synthesis then ensues from both 3′ ends and is followed by ligation to form a double
Holliday junction (DHJ). The DHJ is then nicked as indicated by the arrows and resolved to form
two recombinant DNA molecules. Adapted from REF. 35. 
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to understand how Sgo1 association with kineto-
chores is regulated.

Meiosis I: centromeric cohesion
Some kinetochore proteins are important for defining
the domain of centromeric cohesion that is protected
during meiosis I (REFS 88–90). Fission yeast protein Bub1,
a protein kinase with a conserved function in the spindle
checkpoint (a checkpoint that monitors the attach-
ment of microtubules to kinetochores; see BOX 1), is
required for the retention of Rec8 at centromeres dur-
ing meiosis I (REF. 91). This requirement can be
explained by the failure of Sgo1 to localize to kineto-
chores in the bub1∆  mutant84. In budding yeast, two
kinetochore proteins, increased minichromosome loss
(Iml)3 and chromosome loss (Chl)4, are required for
the maintenance of centromeric cohesion in meiosis I
(REF. 85). However, not all kinetochore proteins are
involved in regulating centromeric cohesion85, which
argues that Iml3 and Chl4 have a direct role in the
establishment of cohesion, rather than simply protect-
ing the integrity of the kinetochore.

It is also clear that Rec8 is not protected from
removal solely at the centromere, but is also pro-
tected on the adjacent chromatin. Cohesins are also
maintained at pericentromeric heterochromatin,
which is required to preserve cohesion between sister
chromatids beyond meiosis I in organisms other than
budding yeast (budding yeast does not have pericen-
tromeric heterochromatin; FIG. 5)92,93. In fission yeast,
the recruitment and maintenance of Rec8–Psc3
cohesin complexes to pericentromeric heterochro-
matin depends on the heterochromatin-establish-
ment factors Swi6 and cryptic loci regulator (Clr)4
(REF. 59) (FIG. 5). However, the retention of Rec8–Psc3
complexes at the central core of the fission yeast cen-
tromere is independent of Clr4 or Swi6. This indi-
cates that cohesin complexes localize to centromeres
and pericentromeric regions through different mech-
anisms59. Sgo1 is localized to the pericentromeric
regions, rather than the central-core regions, so it is
ideally situated to protect precisely those Rec8 com-
plexes that preserve cohesion around centromeres84.
In the fruitfly, MEI-S332 localization depends on
functional centromeric chromatin but is separable
from kinetochore assembly94,95. How can we reconcile
the observations that pericentromeric heterochro-
matin and bona fide kinetochore proteins are both
important for the establishment of a domain where
cohesins are protected from removal? Perhaps in
analogy to the ability of the kinetochore to organize a
large domain of cohesion around itself 96, the kineto-
chore functions as a seed from which the protective
proteins are spread throughout the pericentromeric
region.

Meiosis I: kinetochore co-orientation
During mitosis, sister chromatids attach to microtubules
from opposite poles and are segregated away from each
other before cell division (FIG. 1). In mitosis and meiosis II,
kinetochores of sister chromatids (sister kinetochores)

during meiosis, other factors, for example, Spo13-
like molecules, must contribute to the ability of Sgo1
to protect centromeric cohesion during meiosis I.
Perhaps the key function of such meiosis-specific
factors is to inhibit the removal of Sgo1 from kineto-
chores during meiosis I, in which case it will be critical

Box 1 | Chromosome segregation during mitosis

The alignment of chromosomes on the metaphase spindle and their subsequent
segregation at anaphase depends on the establishment and dissolution of linkages
between sister chromatids. In mitosis, the cohesin complex, which consists of four
proteins (structural maintenance of chromosomes (Smc)1, Smc3, subunit of the cohesin
complex (Scc)1(Mcd1)/Rad21 and Scc3/Psc3 (the mammalian homologues of which are
SA1/SA2)), provides this sister-chromatid cohesion129–134 (TABLE 1). A fifth protein,
precocious dissociation of sisters (Pds)5, is also essential for cohesin function132,135–139.
Other factors function in the generation of cohesion by promoting the assembly of
cohesins on the DNA. First, deposition factors load cohesins onto DNA. Subsequently, for
these cohesins to be functional, other factors promote the capture of the two sister
chromatids, presumably within the cohesin ring32.

For sister chromatids to be separated at anaphase, cohesion is eliminated by the
proteolytic cleavage of Scc1(Mcd1)/Rad21 by the protease separase (Esp1 in budding
yeast or Cut1 in fission yeast)140–142. Separase is held inactive until the onset of anaphase
through its binding to the inhibitor protein securin (Pds1 in budding yeast or Cut2 in
fission yeast). Activation of separase occurs when the anaphase-promoting
complex/cyclosome (APC/C), together with Cdc20, targets securin for destruction by the
proteasome143–145 (see figure). In mammalian cells, the bulk of cohesin is removed from
chromosome arms during prophase in a separase-independent, but Aurora-B- and Polo-
kinase-dependent, manner62,63. However, a pool of cohesins is retained on chromosomes,
particularly around centromeres, which is sufficient to hold sister chromatids together.
Sister chromatids are allowed to separate during anaphase only when separase-mediated
cleavage of Scc1 occurs142. The spindle checkpoint prevents anaphase onset when
kinetochores are not attached to the mitotic spindle146. The checkpoint components
Mad2 and a BubR1-containing complex bind to the APC/CCdc20, which renders the
ubiquitin ligase inactive and prevents separase activation.
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functional studies indicated that it is a property of the
chromosome, rather than the microtubules or the cell-
cycle state, that ensures co-orientation of kinetochores
in meiosis I. Paliulis and Nicklas100 found that a homo-
logue pair that was taken from grasshopper cells in
meiosis I segregates in a meiosis-I-like manner when
introduced onto a meiosis-II spindle by micromanipu-
lation100. These observations imply that the kinetochore
is modified in meiosis I to ensure the co-orientation of
sister chromatids.

Which chromosomal events are important for sister-
kinetochore co-orientation? A physical linkage between
homologues does not seem to be important for the
monopolar attachment of sister kinetochores, at least in
budding and fission yeast. Abolition of the linkages

must attach to microtubules from opposite poles — a situ-
ation that is known as bi-orientation or AMPHITELIC attach-
ment (FIG. 4). In meiosis I, however, sister kinetochores
uniquely attach to microtubules from the same pole to
ensure their co-segregation (FIGS 4,6). This is known as
monopolar attachment, and sister kinetochores are said
to be mono-oriented (also, more recently, referred to as
co-oriented97) or to have SYNTELIC attachment. The molec-
ular mechanisms for this important modification in kine-
tochore attachment are beginning to be understood.

Cytological observations in several species indicated
that sister kinetochores are fused into a single unit dur-
ing meiosis I at the time of microtubule attachment, but
they resolve into two distinct structures before the onset
of anaphase-I chromosome segregation98,99. In addition,

AMPHITELIC

Connection of sister
kinetochores to microtubules
that emanate from opposite
spindle pole bodies.

SYNTELIC

Connection of sister
kinetochores to microtubules
that emanate from the same
spindle pole body.

Figure 4 | A model for meiotic chromosome segregation. Three factors contribute to the segregation of homologues at meiosis I.
First, homologues (shown in red and blue) are linked by at least one chiasma. Second, kinetochores attach to microtubules that
emanate from the same pole (co-orientation; indicated by the direction of the arrows on the sister kinetochores). Third, sister
chromatids are held together by cohesin rings (yellow). MEI-S332/Sgo1 (green) is shown around the centromere. During metaphase I,
chromosomes are aligned ready for segregation, but separase (pink) is kept inactive by securin (purple). At the onset of anaphase I,
APC/CCdc20 (red) becomes active and ubiquitylates securin, thereby targeting it for destruction. Active separase now cleaves the
Rec8 subunit of cohesin on the chromosome arms, which triggers the separation of homologues to opposite poles of the meiosis-I
spindle. Centromeric Rec8 is protected from cleavage, perhaps due to the presence of MEI-S332/Sgo1. At metaphase II,
kinetochores are bi-oriented and separase is once again inhibited by securin. MEI-S332/Sgo1 dissociates concomitant with, or
before, the re-activation of separase at the metaphase-II–anaphase-II transition. Finally, this MEI-S332/Sgo1 dissociation leaves
centromeric Rec8 free for cleavage by separase, which triggers the segregation of sister chromatids to opposite poles. Note that in
fission yeast, Sgo1 dissociates from kinetochores before metaphase II and in the frog (Xenopus laevis) removal of cohesin in meiosis I
seems to be separase independent71. Ub, ubiquitin.
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This question has been addressed in budding and fis-
sion yeast by the replacement of Rec8 with
Scc1(Mcd1)/Rad21, but contrasting results were
obtained. In budding yeast, Scc1(Mcd1) can adequately
support co-orientation, although it cannot support the
maintenance of centromeric cohesion (see above, and
REF. 72). In fission yeast, however, Rec8, but not Rad21,
can support sister-kinetochore co-orientation73. Perhaps
only Rec8-containing cohesin complexes can form
cohesion at centromeres during meiosis in fission yeast.

Meiosis I: factors required for co-orientation
The proteins that are involved in promoting co-orienta-
tion during meiosis I were first identified, and are most
well-characterized, in budding yeast. Mam1 (monopolar
microtubule attachment during meiosis I), Csm1 (chro-
mosome segregation in meiosis I) and Lrs4 (loss of
rDNA silencing-4), which, together, form the ‘MONOPOLIN’
complex, are required for sister-kinetochore mono-ori-
entation72,103. In the absence of MAM1, CSM1 or LRS4,
sister kinetochores attach to microtubules in a bipolar
manner in meiosis I (REFS 72, 103). Consistent with its role
in kinetochore co-orientation, Mam1 localizes to kineto-
chores during G2 and metaphase I, but dissociates from
kinetochores at the onset of anaphase I (REF. 72). Unlike
Mam1, Csm1 and Lrs4 are not meiosis specific as they
are also present during the mitotic cell cycle, when
they reside in the nucleolus103.During G2 and metaphase I
of the meiotic cell cycle, Csm1 and Lrs4 leave the nucleo-
lus and associate with kinetochores, together with Mam1.
These results indicate that a monopolin complex forms at
kinetochores during meiosis I and suppresses the bi-
orientation of sister kinetochores.

An important insight into how the monopolin com-
plex is regulated came from two studies on the budding
yeast Polo-like kinase Cdc5 (REF. 75,76). Depletion of Cdc5
during meiosis revealed that, in addition to its role in the
removal of cohesin76 and processing of recombination
intermediates75, CDC5 is required for the co-orientation
of sister kinetochores, which is probably due to a failure
to localize the monopolin complex to kinetochores75,76.
Cdc5 is required for both the release of Lrs4 from the
nucleolus75 and the efficient phosphorylation of Mam1
(REF. 75,76), which suggests that phosphorylation by Cdc5
regulates the function of the monopolin complex.

A homologue of the monopolin component Csm1,
Pcs1, has been identified in fission yeast103. In contrast to
Csm1, Pcs1 is found at both kinetochores and in nucleoli
during the mitotic cell cycle, and, surprisingly, Pcs1 is
required for accurate chromosome segregation during
mitosis and meiosis II, but not meiosis I.A likely expla-
nation for the defect in chromosome segregation in pcs1
mutants is the MEROTELIC attachment of a single chro-
matid103 (FIG. 6). How can the opposite functions of
Csm1 and Pcs1 be reconciled in terms of a common
biochemical activity? An attractive hypothesis stems
from the difference in the number of microtubules that
attach to each kinetochore in the two yeasts103. In bud-
ding yeast, each sister chromatid binds just a single
microtubule and so, merotelic attachment cannot
occur104. By contrast, fission yeast kinetochores (like the

between homologues (in spo11∆ or rec12∆ mutants)
does not significantly interfere with sister-kinetochore
co-orientation30,59,101, but Rec12 of fission yeast might
become important for monopolar attachment in situa-
tions where kinetochore orientation is unstable102.
Sister-chromatid cohesion is important for the co-ori-
entation of sister kinetochores in both budding and
fission yeast. In the absence of REC8, co-orientation
of sister kinetochores during meiosis I is lost and sister
chromatids segregate randomly30,56. Does this reflect a
specific requirement for the meiotic cohesins in co-
orientation, or simply a need for sister chromatids to
be held together by cohesion for them to co-orient?

MONOPOLIN COMPLEX

A protein complex that ensures
the syntelic attachment of sister
kinetochores during meiosis I.

MEROTELIC

Attachment of a single
kinetochore to microtubules
from both spindle-pole bodies.

Figure 5 | A model for the control of pericentromeric and centromeric cohesion in fission
yeast. Sister chromatids of one homologue are held together by cohesin rings (yellow).
Specialized nucleosomes that contain the histone variant centromere protein-1 (Cnp1; the fission
yeast orthologue of human CENP-A; orange) are present at the central-core regions. Outside the
centromeric and pericentromeric regions, on the chromosome arms, nucleosomes are
hypoacetylated (red), whereas the pericentromeric region is heterochromatic and nucleosomes
are acetylated (blue). These heterochromatic nucleosomes attract the heterochromatin-
establishment factor, Swi6. The inner centromere directs the assembly of the kinetochore, which
mediates the binding of microtubules (dark green). We postulate that binding of shugoshin (Sgo1),
and perhaps other cohesin protectors, to the pericentromeric region is controlled both by
heterochromatin-establishment factors and bona fide kinetochore proteins. The precise location
of Bub1 at the centromere is unknown. Adapted from REFS 31,59.
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Figure 6 | Kinetochore orientation in mitosis and meiosis. a | In mitosis and meiosis II, fission yeast Pcs1 prevents the
merotelic attachment of kinetochores to the microtubular spindle, perhaps by ‘clamping’ together adjacent microtubule-
binding sites on the kinetochore. Merotelic attachment (that is, the attachment of a single kinetochore to microtubules from
both poles) is avoided in budding yeast as there is only one microtubule-binding site per kinetochore104. Unattached
kinetochores trigger the activation of the spindle checkpoint, which inhibits anaphase-promoting-complex/cyclosome–Cdc20
(APC/CCdc20), thereby preventing the degradation of securin and the loss of cohesin (yellow). Syntelic (or monopolar)
attachments are destabilized by the Aurora-B kinase Ipl1, at least in budding yeast, which perhaps senses the lack of tension
across sister kinetochores. Only when stable amphitelic (or bipolar) attachments are generated does anaphase onset occur. 
b | In meiosis I, sister kinetochores must be co-oriented and homologues bi-oriented. In budding yeast, the monopolin
complex inhibits amphitelic attachment, perhaps by ‘clamping’ together microtubule-binding sites on adjacent 
sister kinetochores. The spindle checkpoint also functions in meiosis I and is presumably also activated in response to
unattached kinetochores. There must also be a mechanism in meiosis to ensure that homologues are bi-oriented. Such a
mechanism could correct homologue co-orientation by sensing the lack of tension across chiasmata and destabilize
microtubule attachments on one homologue (see question mark). Note that in contrast to mitosis and meiosis II, the 
correct microtubule attachment at meiosis I would not generate tension across sister kinetochores. It is not known whether Ipl1
is capable of destabilizing syntelic attachments in meiosis I, but if it is, Ipl1 must somehow be prevented from doing so,
perhaps by the monopolin complex. In budding yeast, the spindle-checkpoint component mitotic-arrest deficient (Mad)2 also
seems to have a role in correcting kinetochore orientation during meiosis I, although another spindle-checkpoint component,
Mad3, does not share this role (REFS 107,108).
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lead to activation of the spindle checkpoint and arrest in
metaphase I. Elegant experiments in grasshopper sper-
matocytes support this idea111. However, achiasmatic
mutants in budding yeast progress through both mei-
otic divisions despite the absence of tension on kineto-
chores112. Furthermore, cells that lack MAM1 orient
kinetochores in an exclusively bipolar manner72 despite
the presence of chiasmata, which should provide the
necessary tension to allow for at least some bivalents to
bi-orient on the meiosis-I spindle. These observations
indicate that, in addition to tension-sensing mecha-
nisms, other controls are involved in establishing
proper kinetochore–microtubule attachments during
meiosis I.

The meiosis-I–meiosis-II transition
In mitosis, DNA replication during S phase and chro-
mosome segregation in M phase alternate to maintain
the ploidy of daughter cells. This alternation of S and
M phases in mitosis is achieved through fluctuations
in mitotic CDK activity (FIG. 2). A particular curiosity
of the meiotic cell cycle is the lack of a DNA-replica-
tion phase between meiosis I and meiosis II. At the
meiosis-I–meiosis-II transition, conditions must be
established that both trigger meiotic spindle disas-
sembly (low CDK activity) and prevent the formation
of pre-replicative complexes (high CDK activity).
How are these two apparently opposite conditions
met by the cell-cycle machinery? Insights into this
question have been obtained from the yeast and frog
systems.

Work in frog oocytes has shown that an intermediate
level of CDK activity is retained between meiosis I and
meiosis II, and that this is necessary to prevent DNA
replication113,114. Even though complete CDK inactiva-
tion interferes with the meiotic cell-cycle programme,
the partial inactivation of CDKs that occurs during the
meiosis-I–meiosis-II transition seems not to be neces-
sary for this transition in frog oocytes. When APC/CCdc20

activity is inhibited and CDK activity remains elevated
between meiosis I and meiosis II, meiosis II occurs71.
Although this does not exclude a role for the APC/C in
the meiosis-I–meiosis-II transition (perhaps in cooper-
ation with an accessory factor that is different from
Cdc20), it does show that the levels of CDK activity do
not need to be substantially lowered. However, comple-
tion of meiosis I in the frog is inhibited by injection of
non-degradable cyclin B (REF. 115), which leaves open the
possibility that a subtle shift in the balance between
the rate of synthesis and degradation of cyclin B could
regulate the meiosis-I–meiosis-II transition, as has
been suggested for  the mouse116.

In budding yeast, lowering of the CDK activity dur-
ing the meiosis-I–meiosis-II transition is important.
Although some meiosis-II events can occur without
downregulation of CDK activity between meiosis I and
meiosis II, proper coordination of chromosome segre-
gation is lost, with disastrous consequences117,118. In
budding yeast, the protein phosphatase Cdc14 was
found to be required, as it is in mitosis, for the down-
regulation of B-type cyclins and exit from meiosis I

kinetochores of most other organisms) have several
microtubule-binding sites105, and therefore require a
mechanism to ensure that all binding sites on a kineto-
chore capture microtubules from the same pole to avoid
merotelic attachment. It has been suggested103 that Pcs1
provides this activity by ‘clamping’ together micro-
tubules from the same pole at the kinetochore. An anal-
ogous role for Csm1 during meiosis I can be envisioned.
It is likely that both sister kinetochores bind a micro-
tubule during meiosis I in budding yeast, and Csm1
might function to ‘clamp’ these two microtubule-bind-
ing sites together.

If Pcs1 is not required for meiosis I, which factors
ensure the co-orientation of kinetochores in fission yeast
meiosis I? Rec8 and Bub1 are two such factors73,91, but
other, as-yet-unknown proteins are likely to be involved
because haploid cells that are engineered to undergo
meiosis do not establish co-orientation,even though Rec8
is assembled onto the chromosomes102. Co-orientation
does, however, occur in these cells if they receive mating
pheromone. This indicates that mating-pheromone
signalling,which is one of the events that usually precedes
meiosis, triggers the expression of genes that are required
for sister-kinetochore co-orientation in fission yeast.

Meiosis I: allowing co-orientation
During mitosis, anaphase onset does not occur until all
pairs of sister chromatids have attached to the mitotic
spindle in a bipolar manner; that is, they are bi-oriented
(BOX 1; FIG. 6). Two factors contribute to establishing bipo-
lar attachment. First, the spindle checkpoint senses the
presence of unattached kinetochores and delays cell-
cycle progression until all kinetochores are attached
(reviewed in REF. 106; see also BOX 1). The spindle check-
point also functions during meiosis I, at least in yeast,
and is likely to sense attachment defects107,108. The second
factor that contributes to bipolar attachment in mitosis
in budding yeast is the Aurora-B-like protein kinase Ipl1,
which senses whether kinetochores are bi-oriented (per-
haps by sensing tension at the kinetochore that is exerted
by the pulling force of microtubules)109,110. If kineto-
chores are not bi-oriented, and therefore tension on
kinetochores is absent, Ipl1 severs these faulty micro-
tubule–kinetochore attachments. Unattached kineto-
chores are then sensed by the spindle checkpoint (BOX 1)

and anaphase onset is inhibited.
In contrast to mitosis, when co-oriented kinetochores

represent faulty attachments, co-oriented kinetochores are
the rule during meiosis I (FIG. 6). Sister kinetochores have
to be co-oriented for homologues to segregate away
from each other. How does this work? At least in bud-
ding yeast, the monopolin complex probably prevents
kinetochores from bi-orienting, perhaps by fusing sister
kinetochores by clamping together microtubule-bind-
ing sites on adjacent sister kinetochores. Linkages, such
as chiasmata, between homologues could create tension
at kinetochores. Bivalents attaching to microtubules that
emanate from the same pole would be detected due to
the absence of tension at kinetochores, and such attach-
ments would be severed — perhaps by an Ipl1-medi-
ated mechanism. Unattached kinetochores would then
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(REFS 117,118). In the absence of Cdc14 or its regulator, the
Cdc14 early anaphase release (FEAR) network, or in
the presence of a non-degradable version of B-type
cyclins, the meiosis-I spindle does not break down and
meiosis-II spindles do not form117,118. These results
indicate that CDK downregulation is critical for meio-
sis-I spindle disassembly. Surprisingly, however, other
meiosis-II events occur in the absence of CDK down-
regulation, which leads to a meiosis-II-like segregation
occurring on the meiosis-I spindle117,118. These observa-
tions indicate that, in budding yeast, downregulation of
meiotic CDKs between meiosis I and meiosis II is
important to ensure that chromosome segregation is
coupled to the meiotic spindle cycle117,118.

How is residual CDK activity retained between the
two meiotic divisions? Two mechanisms seem to con-
tribute to this in frog oocytes: first, the partial inhibition
of cyclin-B degradation upon exit from meiosis I; and
second, the increased synthesis of cyclin B upon entry
into meiosis II (REFS 71,119,120). Although the molecular
details are not known, both processes seem to be medi-
ated by the p90Rsk kinase, which functions downstream
of the Mos–mitogen-activated-protein-kinase (MAPK)
pathway71,113,121. p90Rsk is required for the partial inhibi-
tion of APC/C (REF. 120). The chromokinesin Xkid also
seems to have a role in the meiosis-I–meiosis-II transi-
tion, which is independent of its function in metaphase
chromosome alignment122. Furthermore, the retention
of CDK activity between meiosis I and meiosis II
depends on keeping two kinases, Wee1 and Myt1, inac-
tive, as they phosphorylate and thereby inhibit Cdc2.
Wee1 activity is inhibited because residual CDK activ-
ity is sufficient to overcome the low amount of Wee1
(REFS 114,123). Myt1 is kept inactive through phosphory-
lation by p90Rsk (REF. 124) and probably also by Plk1,
which functions downstream of the Mos–MAPK path-
way. In fission yeast, the mes1+ gene might be important
for retaining CDK activity between the two meiotic divi-
sions. In the absence of mes1+, cells complete meiosis I
but fail to enter meiosis II (REF. 125). This phenotype is
similar to that exhibited by budding yeast cells that lack
the B-type cyclins Clb1, Clb3 and Clb4 (REF. 126,127),
which raises the possibility that mes1+ somehow func-
tions to prevent complete CDK inactivation during the
meiosis-I–meiosis-II transition.

Meiosis II
The specialized meiosis-I chromosome segregation is
followed by a second chromosome-segregation phase,
meiosis II. How CDKs are reactivated to allow entry
into meiosis II is not known, although, at least in the frog,
it depends on the synthesis of new B-type cyclins119.
Meiosis-II chromosome segregation closely resembles
mitosis. Sister kinetochores are bi-oriented, which is pre-
sumably due to the fact that the monopolin complex is no
longer at kinetochores72,103. The centromeric cohesin
complex, which escaped cleavage in meiosis I, resists the
pulling force of the meiosis-II spindle before anaphase-II
onset and so prevents the premature separation of sister
chromatids (FIG. 4).At the onset of anaphase II, at least in
budding yeast, separase once again becomes active and, as

Box 2 | Cytostatic-factor-mediated meiotic arrests

Masui and Markert first described an activity, known as cytostatic factor (CSF), that
causes frog (Xenopus laevis) oocytes to arrest in metaphase II (REF. 147). CSF activity
comprises at least three, possibly redundant, pathways that converge on the
inhibition of the anaphase-promoting complex/cyclosome (APC/C), therefore
preventing the degradation of cyclin B. The Mos–mitogen-activated-protein-kinase
(MAPK) pathway is one of these pathways120. Mos is present from G2 until after
fertilization and is required for metaphase-II arrest in mouse oocytes148–150.
Furthermore, Mos, MAPK and p90Rsk behave like CSF in their ability to induce cell-
cycle arrest when injected into mitotically dividing embryonic cells121,151–153.
However, fruitfly (Drosophila melanogaster) Mos (DMOS) is not required for
metaphase-I arrest of oocytes154. Activated p90Rsk phosphorylates and activates the
APC/C inhibitor and spindle-checkpoint component Bub1, which inhibits APC/C
activity155. Two other spindle-checkpoint components, mitotic-arrest deficient
(Mad)1 and Mad2, are also required for Mos-mediated APC/C inhibition156.
Interestingly, CSF arrest occurs with all kinetochores attached to the spindle, a
situation in which the spindle checkpoint is normally silenced, which indicates a
more general role for spindle-checkpoint components in regulating APC/C activity.
The contribution of Myt1 in mediating the downstream effects of the Mos–MAPK
cascade is likely to be minor.

The second pathway that contributes to the inhibition of the APC/C involves cyclin-
dependent kinase (Cdk)2–cyclin-E. Cyclin-E levels rise before meiosis II (REF. 157) and
Cdk2–cyclin-E can inhibit the APC/C (REF. 155,158). The third pathway that mediates
APC/C inhibition in metaphase II is the APC/C inhibitor early meiotic induction (Emi)1
(REF. 159). Emi1 directly binds to the APC/C activator, Cdc20 (also known as Fizzy), and
inhibits it160. Depletion of Emi1 is sufficient to cause cyclin-B degradation and release
from the metaphase-II arrest, which indicates that Emi1 is a key factor in maintaining a
CSF arrest159.

Fertilization of the frog oocyte is associated with a rise in intracellular Ca2+ (REF. 161),
which is sensed by the calmodulin-dependent kinase (CaMKII)162. The targets of CaMKII
in triggering release from CSF-mediated arrest are not known, although both Mad1 and
Emi1, but not Mos, need to be inactivated before release from the metaphase-II arrest can
occur70,159. Components shown in blue are involved in establishing CSF arrest, and those
in red need to be inactivated before release from the arrest. MEK, MAPK and ERK
(extracellular signal-regulated kinase) kinase. The figure is adapted from REF. 159.
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establishment of specialized interactions between
chromosomes, coupled with modifications of the cell-
cycle machinery. Errors in these pathways result in
defective chromosome segregation, which accounts for
many birth defects and the majority of miscarriages in
humans. It is worth noting that, in humans, up to 10%
of all conceptions are estimated to be aneuploid128.
Most chromosome-missegregation events in human
meiosis occur as a result of improper segregation of
homologues during meiosis I (REF. 128). An important
goal for the future is to understand how the controls
that regulate this unique chromosome-segregation
event are put in place. Only then can we begin to
understand what goes wrong.

there is no longer protection at the centromere, cleaves
the remaining Rec8, which triggers the separation of sister
chromatids to opposite poles.

Meiosis-II chromosome segregation, like the onset
of meiosis I, is under developmental control. In most, if
not all, vertebrates including frogs, mice and humans,
oocytes arrest in metaphase II awaiting fertilization.
The controls that bring about this cell-cycle arrest are
summarized in BOX 2 (for recent reviews, see REFS 48,49).

Concluding remarks
During meiosis, parental chromosomes are shuffled
and sorted into gametes for transmission to the next
generation. The process of meiosis depends on the

CSF

(cytostatic factor).
A cytoplasmic factor that is
responsible for the arrest of
oocytes at meiosis II.
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MEIOSIS: CELLCYCLE CONTROLS SHUFFLE AND DEAL 
Adèle L. Marston & Angelika Amon   
Nature Reviews Molecular Cell Biology 5, 983–997 (2004); doi:10.1038/nrm1526 

On page 984 of this article, in Figure 1b, the homologous chromosomes were incorrectly shaded at the transition 
between meiosis I and meiosis II. A corrected version of the figure is shown below. The online versions of this article 
have been corrected.
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