Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Do inducers of apoptosis trigger caspase-independent cell death?

Abstract

Apoptotic cell death is mediated by molecular pathways that culminate in the activation of a family of cysteine proteases, known as the caspases, which orchestrate the dismantling and clearance of the dying cell. However, mounting evidence indicates that a cell that has been treated with an apoptotic inducer can also initiate a suicide programme that does not rely on caspase activation. Here, we present recent findings and discuss the physiological relevance of caspase-independent cell death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphological differences between cells that undergo apoptosis versus CICD.
Figure 2: Can untimely cell death give you a big head?
Figure 3: CICD is deadlier than apoptosis.

Similar content being viewed by others

References

  1. Savill, J. & Fadok, V. Corpse clearance defines the meaning of cell death. Nature 407, 784–788 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Danial, N. N. & Korsmeyer, S. J. Cell death: critical control points. Cell 116, 205–219 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Shaham, S., Reddien, P. W., Davies, B. & Horvitz, H. R. Mutational analysis of the Caenorhabditis elegans cell-death gene ced-3. Genetics 153, 1655–1671 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Shaham, S. & Horvitz, H. R. Developing Caenorhabditis elegans neurons may contain both cell-death protective and killer activities. Genes Dev. 10, 578–591 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Chautan, M., Chazal, G., Cecconi, F., Gruss, P. & Golstein, P. Interdigital cell death can occur through a necrotic and caspase-independent pathway. Curr. Biol. 9, 967–970 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Amarante-Mendes, G. P. et al. Anti-apoptotic oncogenes prevent caspase-dependent and independent commitment for cell death. Cell Death Differ. 5, 298–306 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Deshmukh, M., Kuida, K. & Johnson, E. M. Jr. Caspase inhibition extends the commitment to neuronal death beyond cytochrome c release to the point of mitochondrial depolarization. J. Cell Biol. 150, 131–143 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Soengas, M. S. et al. Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 284, 156–159 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Marsden, V. S. et al. Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature 419, 634–637 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Doyle, A. C. The adventure of the Sussex vampire. Strand Magazine (1924).

  11. Honarpour, N., Gilbert, S. L., Lahn, B. T., Wang, X. & Herz, J. Apaf-1 deficiency and neural tube closure defects are found in fog mice. Proc. Natl Acad. Sci. USA 98, 9683–9687 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hakem, R. et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94, 339–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Kuida, K. et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94, 325–337 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Kuida, K. et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384, 368–372 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Cecconi, F., Alvarez-Bolado, G., Meyer, B. I., Roth, K. A. & Gruss, P. Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94, 727–737 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Li, M. O., Sarkisian, M. R., Mehal, W. Z., Rakic, P. & Flavell, R. A. Phosphatidylserine receptor is required for clearance of apoptotic cells. Science 302, 1560–1563 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, X. et al. Cell corpse engulfment mediated by C. elegans phosphatidylserine receptor through CED-5 and CED-12. Science 302, 1563–1566 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Bose, J. et al. The phosphatidylserine receptor has essential functions during embryogenesis but not in apoptotic cell removal. J. Biol. 3, 15 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schulze-Osthoff, K. et al. Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J. Biol. Chem. 267, 5317–5323 (1992).

    CAS  PubMed  Google Scholar 

  20. Cauwels, A., Janssen, B., Waeytens, A., Cuvelier, C. & Brouckaert, P. Caspase inhibition causes hyperacute tumor necrosis factor-induced shock via oxidative stress and phospholipase A2. Nature Immunol. 4, 387–393 (2003).

    Article  CAS  Google Scholar 

  21. Vercammen, D. et al. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J. Exp. Med. 187, 1477–1485 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kawahara, A., Ohsawa, Y., Matsumura, H., Uchiyama, Y. & Nagata, S. Caspase-independent cell killing by Fas-associated protein with death domain. J. Cell Biol. 143, 1353–1360 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Holler, N. et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nature Immunol. 1, 489–495 (2000).

    Article  CAS  Google Scholar 

  24. Yu, L. et al. Regulation of an ATG7–beclin 1 program of autophagic cell death by caspase-8. Science 304, 1500–1502 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Wei, M. C. et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xiang, J., Chao, D. T. & Korsmeyer, S. J. BAX-induced cell death may not require interleukin 1β-converting enzyme-like proteases. Proc. Natl Acad. Sci. USA 93, 14559–14563 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arnoult, D. et al. Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. EMBO J. 22, 4385–4399 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Skov, S., Klausen, P. & Claesson, M. H. Ligation of major histocompatability complex (MHC) class I molecules on human T cells induces cell death through PI-3 kinase-induced c-Jun NH2-terminal kinase activity: a novel apoptotic pathway distinct from Fas-induced apoptosis. J. Cell Biol. 139, 1523–1531 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schwartz, L. M., Smith, S. W., Jones, M. E. & Osborne, B. A. Do all programmed cell deaths occur via apoptosis? Proc. Natl Acad. Sci. USA 90, 980–984 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Miller, D. K. et al. Purification and characterization of active human interleukin-1β-converting enzyme from THP.1 monocytic cells. J. Biol. Chem. 268, 18062–18069 (1993).

    CAS  PubMed  Google Scholar 

  31. Thornberry, N. A. et al. A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes. Nature 356, 768–774 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Susin, S. A. et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441–446 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Joza, N. et al. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410, 549–554 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Park, M. T. et al. Phytosphingosine in combination with ionizing radiation enhances apoptotic cell death in radiation-resistant cancer cells through ROS-dependent and -independent AIF release. Blood 14 Oct 2004 (10.1182/blood-2004-07-2938).

  35. Vahsen, N. et al. AIF deficiency compromises oxidative phosphorylation. EMBO J. 23, 4679–4689 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Klein, J. A. et al. The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature 419, 367–374 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Tiranti, V. et al. Chromosomal localization of mitochondrial transcription factor A (TCF6), single-stranded DNA-binding protein (SSBP), and endonuclease G (ENDOG), three human housekeeping genes involved in mitochondrial biogenesis. Genomics 25, 559–564 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Cote, J. & Ruiz-Carrillo, A. Primers for mitochondrial DNA replication generated by endonuclease G. Science 261, 765–769 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, J. et al. Endonuclease G is required for early embryogenesis and normal apoptosis in mice. Proc. Natl Acad. Sci. USA 100, 15782–15787 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, L. Y., Luo, X. & Wang, X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95–99 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Suzuki, Y. et al. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol. Cell 8, 613–621 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Jones, J. M. et al. Loss of Omi mitochondrial protease activity causes the neuromuscular disorder of mnd2 mutant mice. Nature 425, 721–727 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Martins, L. M. et al. Neuroprotective role of the reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol. Cell. Biol. 24, 9848–9862 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Owing to space restrictions, we could not include all pertinent references and we apologize to researchers whose efforts could not be acknowledged. We would like to thank N. Waterhouse for kindly sharing bright-field and electron micrographs.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

Bak

Bax

caspase-3

caspase-9

ced-3

cps-6

Swiss-Prot

AIF

APAF1

BCL2

tBID

caspase-8

cathepsin B

EndoG

CD95

FADD

FASL

HTRA2

PSR

RIP

TNFR1

XIAP

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chipuk, J., Green, D. Do inducers of apoptosis trigger caspase-independent cell death?. Nat Rev Mol Cell Biol 6, 268–275 (2005). https://doi.org/10.1038/nrm1573

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1573

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing