Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular mechanisms of caspase regulation during apoptosis

Key Points

  • The molecular mechanism of activation for a representative effector caspase, caspase-7, is revealed by the conformational changes of the active site that take place after the activation cleavage. The essence of this mechanism is the provision of the L2′ loop, which is released by the activation cleavage and provides crucial support for the conformation of the active site.

  • The molecular mechanism of inhibitor of apoptosis (IAP)-mediated inhibition of an effector caspase primarily involves the occupation of the caspase active site by an extended peptide fragment that immediately precedes the second baculoviral IAP repeat (BIR) domain, BIR2, of XIAP, c-IAP1 or c-IAP2.

  • The BIR3 domain of XIAP inhibits caspase-9, an initiator caspase, by sequestering caspase-9 in a monomeric state, so that the L2′ loop cannot be provided by the adjacent monomer and the active site cannot be productively formed. This inhibition is dependent on, and initiated by, the binding between a conserved surface groove of the BIR3 domain of XIAP and the N-terminal tetrapeptide (Ala-Thr-Pro-Phe) of the small subunit of caspase-9.

  • The viral protein p35 inhibits a caspase through the formation of a covalent thioester bond between the catalytic residue Cys360 of caspase-8 and Asp87 of p35, which follows caspase-mediated cleavage of the reactive-site loop of p35 after Asp87.

  • The XIAP-mediated inhibition of caspase-9 can be countered effectively by SMAC/DIABLO, which uses its N-terminal tetrapeptide (Ala-Val-Pro-Ile) to compete with caspase-9 for binding to the same conserved surface groove of the BIR3 domain of XIAP. In Drosophila melanogaster, the caspase-9 orthologue Dronc is suppressed by Diap1 through an interaction that involves an internal peptide fragment of Dronc and the conserved surface groove of the BIR2 domain of Diap1. The pro-apoptotic proteins Reaper, Hid, Grim and Sickle use their N-terminal peptide fragments (which are similar to the SMAC/DIABLO tetrapeptide) to compete with Dronc for binding to the same conserved surface groove, thereby removing the Diap1-mediated negative regulation of Dronc.

  • The exact mechanisms for the removal of effector-caspase inhibition remain to be defined. The prevailing model, which is supported by biochemical data, is that the binding of effector caspases by SMAC/DIABLO creates steric hindrance that dissociates the interaction between IAPs and the effector caspases.

  • To gain a comprehensive picture of the molecular mechanisms of caspase regulation, future efforts should be directed at understanding the activation of initiator caspases and caspase pathways in Drosophila melanogaster and Caenorhabditis elegans.

Abstract

Caspases, which are the executioners of apoptosis, comprise two distinct classes, the initiators and the effectors. Although general structural features are shared between the initiator and the effector caspases, their activation, inhibition and release of inhibition are differentially regulated. Biochemical and structural studies have led to important advances in understanding the underlying molecular mechanisms of caspase regulation. This article reviews these latest advances and describes our present understanding of caspase regulation during apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Apoptotic caspases in mammals, fruitflies and nematodes.
Figure 2: A conserved apoptotic pathway in nematodes, mammals and fruitflies.
Figure 3: Structural features of caspases.
Figure 4: Molecular mechanism of procaspase-7 activation.
Figure 5: IAPs in mammals and fruitflies.
Figure 6: Molecular mechanism of IAP-mediated inhibition of effector caspases.
Figure 7: Molecular mechanism of XIAP-mediated inhibition of caspase-9.
Figure 8: Molecular mechanism of p35-mediated inhibition of caspase-8.
Figure 9: SMAC/DIABLO-mediated removal of caspase-9 inhibition by XIAP.
Figure 10: Molecular mechanism of RHG-mediated removal of Dronc suppression by Diap1.

Similar content being viewed by others

References

  1. Horvitz, H. R. Worms, life, and death (Nobel Lecture). Chembiochem. 4, 697–711 (2003).

    CAS  PubMed  Google Scholar 

  2. Jacobson, M. D., Weil, M. & Raff, M. C. Programmed cell death in animal development. Cell 88, 347–354 (1997).

    CAS  PubMed  Google Scholar 

  3. Danial, N. N. & Korsmeyer, S. J. Cell death: critical control points. Cell 116, 205–219 (2004).

    CAS  PubMed  Google Scholar 

  4. Wang, X. The expanding role of mitochondria in apoptosis. Genes Dev. 15, 2922–2933 (2001).

    CAS  PubMed  Google Scholar 

  5. Abrams, J. M. An emerging blueprint for apoptosis in Drosophila. Trends Cell Biol. 9, 435–440 (1999).

    CAS  PubMed  Google Scholar 

  6. Thompson, C. B. Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456–1462 (1995).

    CAS  PubMed  Google Scholar 

  7. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  8. Yuan, J. & Yankner, B. A. Apoptosis in the nervous system. Nature 407, 802–809 (2000).

    CAS  PubMed  Google Scholar 

  9. Green, D. R. & Evan, G. I. A matter of life and death. Cancer Cell 1, 19–30 (2002).

    CAS  PubMed  Google Scholar 

  10. Vaux, D. L. & Flavell, R. A. Apoptosis genes and autoimmunity. Curr. Opin. Immunol. 12, 719–724 (2000).

    CAS  PubMed  Google Scholar 

  11. Kerr, J. F. F., Wylie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Shi, Y. Mechanisms of caspase inhibition and activation during apoptosis. Mol. Cell 9, 459–470 (2002).

    CAS  PubMed  Google Scholar 

  13. Thornberry, N. A. & Lazebnik, Y. Caspases: enemies within. Science 281, 1312–1316 (1998).

    CAS  PubMed  Google Scholar 

  14. Alnemri, E. S. et al. Human ICE/CED-3 protease nomenclature. Cell 87, 171 (1996).

    CAS  PubMed  Google Scholar 

  15. Thornberry, N. A. et al. A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes. Nature 356, 768–774 (1992).

    CAS  PubMed  Google Scholar 

  16. Cerreti, D. P. et al. Molecular cloning of the interleukin-1β converting enzyme. Science 256, 97–100 (1992). References 15 and 16 report the identification of the first caspase.

    Google Scholar 

  17. Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M. & Horvitz, H. R. The C. elegans cell death gene Ced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme. Cell 75, 641–652 (1993). Describes the cloning of the first apoptotic caspase, the nematode protein CED-3.

    CAS  PubMed  Google Scholar 

  18. Xue, D., Shaham, S. & Horvitz, H. R. The Caenorhabditis elegans cell-death protein CED-3 is a cysteine protease with substrate specificities similar to those of the human CPP32 protease. Genes Dev. 10, 1073–1083 (1996).

    CAS  PubMed  Google Scholar 

  19. Kumar, S. & Doumanis, J. The fly caspases. Cell Death Differ. 7, 1039–1044 (2000).

    CAS  PubMed  Google Scholar 

  20. Ahmad, M. et al. Spodoptera frugiperda caspase-1, a novel insect death protease that cleaves the nuclear immunophilin FKBP46, is the target of the baculovirus antiapoptotic protein p35. J. Biol. Chem. 272, 1421–1424 (1997).

    CAS  PubMed  Google Scholar 

  21. Madeo, F. et al. A caspase-related protease regulates apoptosis in yeast. Mol. Cell 9, 911–917 (2002).

    CAS  PubMed  Google Scholar 

  22. Budihardjo, I., Oliver, H., Lutter, M., Luo, X. & Wang, X. Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell Dev. Biol. 15, 269–290 (1999).

    CAS  PubMed  Google Scholar 

  23. Fesik, S. W. Insights into programmed cell death through structural biology. Cell 103, 273–282 (2000).

    CAS  PubMed  Google Scholar 

  24. Fesik, S. W. & Shi, Y. Controlling caspases. Science 294, 1477–1478 (2001).

    CAS  PubMed  Google Scholar 

  25. Shi, Y. A structural view of mitochondria-mediated apoptosis. Nature Struct. Biol. 8, 394–401 (2001).

    CAS  PubMed  Google Scholar 

  26. Earnshaw, W. C., Martins, L. M. & Kaufmann, S. H. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68, 383–424 (1999).

    CAS  PubMed  Google Scholar 

  27. Adams, J. M. & Cory, S. Apoptosomes: engines for caspase activation. Curr. Opin. Cell Biol. 14, 715–720 (2002).

    CAS  PubMed  Google Scholar 

  28. Shi, Y. Apoptosome: the cellular engine for the activation of caspase-9. Structure 10, 285–288 (2002).

    CAS  PubMed  Google Scholar 

  29. Li, P et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997). Reports the requirement of cytochrome c and dATP for the activation of the initiator caspase, caspase-9.

    CAS  PubMed  Google Scholar 

  30. Jiang, X. & Wang, X. Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J. Biol. Chem. 275, 31199–31203 (2000).

    CAS  PubMed  Google Scholar 

  31. Rodriguez, J. & Lazebnik, Y. Caspase-9 and Apaf-1 form an active holoenzyme. Genes Dev. 13, 3179–3184 (1999). Formulates the concept of a holoenzyme for the initiator caspase, caspase-9.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zou, H., Li, Y., Liu, X. & Wang, X. An APAF-1–cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 274, 11549–11556 (1999).

    CAS  PubMed  Google Scholar 

  33. Saleh, A., Srinivasula, S. M., Acharya, S., Fishel, R. & Alnemri, E. S. Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J. Biol. Chem. 274, 17941–17945 (1999).

    CAS  PubMed  Google Scholar 

  34. Nagata, S. Fas ligand-induced apoptosis. Annu. Rev. Genet. 33, 29–55 (1999).

    CAS  PubMed  Google Scholar 

  35. Peter, M. E. & Krammer, P. H. The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ. 10, 26–35 (2003).

    CAS  PubMed  Google Scholar 

  36. Luo, X., Budihardjo, I., Zou, H., Slaughter, C. & Wang, X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481–490 (1998).

    CAS  PubMed  Google Scholar 

  37. Li, H., Zhu, H., Xu, C. & Yuan, J. Cleavage of BID by caspase-8 mediates the mitochondrial damage in the fas pathway of apoptosis. Cell 94, 491–501 (1998).

    CAS  PubMed  Google Scholar 

  38. Yang, X., Chang, H. Y. & Baltimore, D. Essential role of CED-4 oligomerization in CED-3 activation and apoptosis. Science 281, 1355–1357 (1998).

    CAS  PubMed  Google Scholar 

  39. Hengartner, M. O. & Horvitz, H. R. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76, 665–676 (1994).

    CAS  PubMed  Google Scholar 

  40. Conradt, B. & Horvitz, H. R. The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 93, 519–529 (1998).

    CAS  PubMed  Google Scholar 

  41. Cory, S. & Adams, J. M. The Bcl2 family: regulators of the cellular life-or-death switch. Nature Rev. Cancer 2, 647–656 (2002).

    CAS  Google Scholar 

  42. Rodriguez, A et al. Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway. Nature Cell Biol. 1, 272–279 (1999).

    CAS  PubMed  Google Scholar 

  43. Kanuka, H. et al. Control of the cell death pathway by Dapaf-1, a Drosophila Apaf-1/CED-4-related caspase activator. Mol. Cell 4, 757–769 (1999).

    CAS  PubMed  Google Scholar 

  44. Zhou, L., Song, Z., Tittel, J. & Steller, H. HAC-1, a Drosophila homolog of Apaf-1 and CED-4 functions in developmental and radiation-induced apoptosis. Mol. Cell 4, 745–755 (1999).

    CAS  PubMed  Google Scholar 

  45. Rodriguez, A., Chen, P., Oliver, H. & Abrams, J. M. Unrestrained caspase-dependent cell death caused by loss of Diap1 function requires the Drosophila Apaf-1 homolog, Dark. EMBO J. 21, 2189–2197 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Walker, N. P et al. Crystal structure of the cysteine protease interleukin-1β-converting enzyme: a (p20/p10)2 homodimer. Cell 78, 343–352 (1994).

    CAS  PubMed  Google Scholar 

  47. Wilson, K. P et al. Structure and mechanism of interleukin-1β converting enzyme. Nature 370, 270–275 (1994). References 46 and 47 report the first crystal structure of a caspase.

    CAS  PubMed  Google Scholar 

  48. Schweizer, A., Briand, C. & Grutter, M. G. Crystal structure of caspase-2, apical initiator of the intrinsic apoptotic pathway. J. Biol. Chem. 278, 42441–42447 (2003).

    CAS  PubMed  Google Scholar 

  49. Rotonda, J. et al. The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nature Struct. Biol. 3, 619–625 (1996).

    CAS  PubMed  Google Scholar 

  50. Mittl, P. R. et al. Structure of recombinant human CPP32 in complex with the tetrapeptide acetyl-Asp-Val-Ala-Asp fluoromethyl ketone. J. Biol. Chem. 272, 6539–6547 (1997).

    CAS  PubMed  Google Scholar 

  51. Wei, Y. et al. The structures of caspases-1, -3, -7 and -8 reveal the basis for substrate and inhibitor selectivity. Chem. Biol. 7, 423–432 (2000).

    CAS  PubMed  Google Scholar 

  52. Watt, W. et al. The atomic-resolution structure of human caspase-8, a key activator of apoptosis. Structure 7, 1135–1143 (1999).

    CAS  PubMed  Google Scholar 

  53. Blanchard, H. et al. The three dimersional structure of caspase-8: an initiator enzyme in apoptosis. Structure 7, 1125–1133 (1999).

    CAS  PubMed  Google Scholar 

  54. Renatus, M., Stennicke, H. R., Scott, F. L., Liddington, R. C. & Salvesen, G. S. Dimer formation drives the activation of the cell death protease caspase 9. Proc. Natl Acad. Sci. USA 98, 14250–14255 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Forsyth, C. M., Lemongello, D., LaCount, D. J., Friesen, P. D. & Fisher, A. J. Crystal structure of an invertebrate caspase. J. Biol. Chem. 279, 7001–7008 (2004).

    CAS  PubMed  Google Scholar 

  56. Chai, J. et al. Crystal structure of a procaspase-7 zymogen: mechanisms of activation and substrate binding. Cell 107, 399–407 (2001).

    CAS  PubMed  Google Scholar 

  57. Riedl, S. J. et al. Structural basis for the activation of human procaspase-7. Proc. Natl Acad. Sci. USA 98, 14790–14795 (2001). References 56 and 57 describe the activation mechanism for an effector caspase, caspase-7.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Srinivasula, S. M. et al. Generation of constitutively active recombinant caspase-3 and-6 by rearrangement of their subunits. J. Biol. Chem. 273, 10107–10111 (1998).

    CAS  PubMed  Google Scholar 

  59. Wang, S., Hawkins, C., Yoo, S., Muller, H. -A. & Hay, B. The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 98, 453–463 (1999).

    CAS  PubMed  Google Scholar 

  60. Hawkins, C. J. et al. The Drosophila caspase DRONC cleaves following glutamate or aspartate and is regulated by DIAP1, HID, and GRIM. J. Biol. Chem. 275, 27084–27093 (2000).

    CAS  PubMed  Google Scholar 

  61. Yan, N. et al. Molecular mechanisms of DrICE inhibition by DIAP1 and removal of inhibition by Reaper, Hid, and Grim. Nature Struct. Mol. Biol. 11, 420–428 (2004).

    CAS  Google Scholar 

  62. Thornberry, N. A. et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem. 272, 17907–17911 (1997).

    CAS  PubMed  Google Scholar 

  63. Ni, C. -Z., Li, C., Wu, J. C., Spada, A. P. & Ely, K. R. Conformational restrictions in the active site of unliganded human caspase-3. J. Mol. Recognit. 16, 121–124 (2003).

    CAS  PubMed  Google Scholar 

  64. Deveraux, Q. L. & Reed, J. C. IAP family proteins — suppressors of apoptosis. Genes Dev. 13, 239–252 (1999).

    CAS  PubMed  Google Scholar 

  65. Salvesen, G. S. & Duckett, C. S. IAP proteins: blocking the road to death's door. Nature Rev. Mol. Cell Biol. 3, 401–410 (2002).

    CAS  Google Scholar 

  66. Miller, L. K. An exegesis of IAPs: salvation and surprises from BIR motifs. Trends Cell Biol. 9, 323–328 (1999).

    CAS  PubMed  Google Scholar 

  67. Hay, B. A. Understanding IAP function and regulation: a view from Drosophila. Cell Death Differ. 7, 1045–1056 (2000).

    CAS  PubMed  Google Scholar 

  68. Maier, J. K et al. The neuronal apoptosis inhibitory protein is a direct inhibitor of caspases 3 and 7. J. Neurosci. 22, 2035–2043 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Chai, J. et al. Molecular mechanism of Reaper/Grim/Hid-mediated suppression of DIAP1-dependent Dronc ubiquitination. Nature Struct. Biol. 10, 892–898 (2003). Describes the mechanism by which the RHG proteins antagonize the Diap1-mediated suppression of Dronc in fruitflies.

    CAS  PubMed  Google Scholar 

  70. Sun, C. et al. NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature 401, 818–822 (1999).

    CAS  PubMed  Google Scholar 

  71. Hinds, M. G., Norton, R. S., Vaux, D. L. & Day, C. L. Solution structure of a baculoviral inhibitor of apoptosis (IAP) repeat. Nature Struct. Biol. 6, 648–651 (1999).

    CAS  PubMed  Google Scholar 

  72. Ambrosini, G., Adida, C. & Altieri, D. C. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nature Med. 3, 917–921 (1997).

    CAS  PubMed  Google Scholar 

  73. Ashhab, Y., Alian, A., Polliack, A., Panet, A. & Yehuda, D. B. Two splicing variants of a new inhibitor of apoptosis gene with different biological properties and tissue distribution pattern. FEBS Lett. 495, 56–60 (2001).

    CAS  PubMed  Google Scholar 

  74. Kasof, G. M. & Gomes, B. C. Livin, a novel inhibitor of apoptosis protein family member. J. Biol. Chem. 276, 3238–3246 (2001).

    CAS  PubMed  Google Scholar 

  75. Vucic, D., Stennicke, H. R., Pisabarro, M. T., Salvesen, G. S. & Dixit, V. M. ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Curr. Biol. 10, 1359–1366 (2000).

    CAS  PubMed  Google Scholar 

  76. Riedl, S. J. et al. Structural basis for the inhibition of caspase-3 by XIAP. Cell 104, 791–800 (2001).

    CAS  PubMed  Google Scholar 

  77. Chai, J. et al. Structural basis of caspase-7 inhibiton by XIAP. Cell 104, 769–780 (2001).

    CAS  PubMed  Google Scholar 

  78. Huang, Y. et al. Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell 104, 781–790 (2001). References 76–78 report the mechanism of effector-caspase inhibition by XIAP.

    CAS  PubMed  Google Scholar 

  79. Sun, C. et al. NMR structure and mutagenesis of the third BIR domain of the inhibitor of apoptosis protein XIAP. J. Biol. Chem. 275, 33777–33781 (2000).

    CAS  PubMed  Google Scholar 

  80. Shiozaki, E. N. et al. Mechanism of XIAP-mediated inhibition of caspase-9. Mol. Cell 11, 519–527 (2003). Describes the mechanism of caspase-9 inhibition by XIAP.

    CAS  PubMed  Google Scholar 

  81. Srinivasula, S. M. et al. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO mediates opposing effects on caspase activity and apoptosis. Nature 409, 112–116 (2001). Reports the mechanism by which SMAC/DIABLO antagonizes XIAP-mediated inhibition of caspase-9.

    Google Scholar 

  82. Bump, N. J. et al. Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35. Science 269, 1885–1888 (1995).

    CAS  PubMed  Google Scholar 

  83. Zhou, Q. et al. Interaction of the baculovirus anti-apoptotic protein p35 with caspases. Specificity, kinetics, and characterization of the caspase/p35 complex. Biochemistry 37, 10757–10765 (1998).

    CAS  PubMed  Google Scholar 

  84. Riedl, S. J., Renatus, M., Snipas, S. J. & Salvesen, G. S. Mechanism-based inactivation of caspases by the apoptotic suppressor p35. Biochemistry 40, 13274–13280 (2001).

    CAS  PubMed  Google Scholar 

  85. Xu, G. et al. Covalent inhibition revealed by the crystal structure of the caspase-8/p35 complex. Nature 410, 494–497 (2001). Describes the mechanism of caspase inhibition by the viral protein p35.

    CAS  PubMed  Google Scholar 

  86. Zoog, S. J., Schiller, J. J., Wetter, J. A., Chejanovsky, N. & Friesen, P. D. Baculovirus apoptotic suppressor P49 is a substrate inhibitor of initiator caspases resistant to P35 in vivo. EMBO J. 21, 5130–5140 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Pei, Z. et al. Characterization of the apoptosis suppressor protein P49 from the Spodoptera littoralis nucleopolyhedrovirus. J. Biol. Chem. 277, 48677–48684 (2002).

    CAS  PubMed  Google Scholar 

  88. Jabbour, A. M et al. The p35 relative, p49, inhibits mammalian and Drosophila caspases including DRONC and protects against apoptosis. Cell Death Differ. 9, 1311–1320 (2002).

    CAS  PubMed  Google Scholar 

  89. Huntington, J. A., Read, R. J. & Carrell, R. W. Structure of a serpin–protease complex shows inhibition by deformation. Nature 407, 923–926 (2000).

    CAS  PubMed  Google Scholar 

  90. Shi, Y. A conserved tetrapeptide motif: potentiating apoptosis through IAP-binding. Cell Death Differ. 9, 93–95 (2002).

    CAS  PubMed  Google Scholar 

  91. Du, C., Fang, M., Li, Y. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation during apoptosis. Cell 102, 33–42 (2000).

    CAS  PubMed  Google Scholar 

  92. Verhagen, A. M. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43–53 (2000).

    CAS  PubMed  Google Scholar 

  93. Wu, G. et al. Structural basis of IAP recognition by Smac/DIABLO. Nature 408, 1008–1012 (2000).

    CAS  PubMed  Google Scholar 

  94. Liu, Z. et al. Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 408, 1004–1008 (2000). References 93 and 94 report the molecular mechanism of IAP recognition by SMAC/DIABLO.

    CAS  PubMed  Google Scholar 

  95. Chai, J. et al. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406, 855–862 (2000). Reports that the seven N-terminal amino acids of mature SMAC/DIABLO is sufficient to counter XIAP-mediated inhibition of caspase-9.

    CAS  PubMed  Google Scholar 

  96. Suzuki, Y. et al. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol. Cell 8, 613–621 (2001).

    CAS  PubMed  Google Scholar 

  97. Hegde, R. et al. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein–caspase interaction. J. Biol. Chem. 277, 432–438 (2002).

    CAS  PubMed  Google Scholar 

  98. Martin, L. M. et al. The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a Reaper-like motif. J. Biol. Chem. 277, 439–444 (2002).

    Google Scholar 

  99. van Loo, G. et al. The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ. 9, 20–26 (2002).

    CAS  PubMed  Google Scholar 

  100. Verhagen, A. M. et al. HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J. Biol. Chem. 277, 445–454 (2002).

    CAS  PubMed  Google Scholar 

  101. Li, W. et al. Structural insights into the pro-apoptotic function of mitochondrial serine protease HtrA2/Omi. Nature Struct. Biol. 9, 436–441 (2002).

    CAS  PubMed  Google Scholar 

  102. Tenev, T., Zachariou, A., Wilson, R., Paul, A. & Meier, P. Jafrac2 is an IAP antagonist that promotes cell death by liberating Dronc from DIAP1. EMBO J. 21, 5118–5129 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Wu, J. -W., Cocina, A. E., Chai, J., Hay, B. A. & Shi, Y. Structural analysis of a functional DIAP1 fragment bound to Grim and Hid peptides. Mol. Cell 8, 95–104 (2001).

    CAS  PubMed  Google Scholar 

  104. Meier, P., Silke, J., Leevers, S. J. & Evan, G. I. The Drosophila caspase DRONC is regulated by DIAP1. EMBO J. 19, 598–611 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wilson, R. et al. The DIAP1 RING finger mediates ubiquitination of Dronc and is indispensable for regulating apoptosis. Nature Cell Biol. 4, 445–450 (2002).

    CAS  PubMed  Google Scholar 

  106. Muro, I., Hay, B. A. & Clem, R. J. The Drosophila DIAP1 protein is required to prevent accumulation of a continuously generated, processed form of the apical caspase DRONC. J. Biol. Chem. 277, 49644–49650 (2002).

    CAS  PubMed  Google Scholar 

  107. Goyal, L., McCall, K., Agapite, J., Hartwieg, E. & Steller, H. Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J. 19, 589–597 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Yoo, S. J. et al. Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nature Cell Biol. 4, 416–424 (2002).

    CAS  PubMed  Google Scholar 

  109. Ryoo, H. D., Bergmann, A., Gonen, H., Ciechanover, A. & Steller, H. Regulation of Drosophila IAP1 degradation and apoptosis by reaper and ubcD1. Nature Cell Biol. 4, 432–438 (2002).

    CAS  PubMed  Google Scholar 

  110. Holley, C. L., Olson, M. R., Colon-Ramos, D. A. & Kornbluth, S. Reaper eliminates IAP proteins through stimulated IAP degradation and generalized translational inhibition. Nature Cell Biol. 4, 439–444 (2002).

    CAS  PubMed  Google Scholar 

  111. Huang, Y., Rich, R. L., Myszka, D. G. & Wu, H. Requirement of both the second and third BIR domains for the relief of X-linked inhibitor of apoptosis protein (XIAP)-mediated caspase inhibition by Smac. J. Biol. Chem. 278, 49517–49522 (2003).

    CAS  PubMed  Google Scholar 

  112. Ditzel, M. et al. Degradation of DIAP1 by the N-end rule pathway is essential for regulating apoptosis. Nature Cell Biol. 5, 467–473 (2003).

    CAS  PubMed  Google Scholar 

  113. Shi, Y. Caspase activation: revisiting the induced proximity model. Cell 117, 855–858 (2004).

    CAS  PubMed  Google Scholar 

  114. Boatright, K. M. et al. A unified model for apical caspase activation. Mol. Cell 11, 529–541 (2003).

    CAS  PubMed  Google Scholar 

  115. Donepudi, M., Mac Sweeney, A., Briand, C. & Grutter, M. G. Insights into the regulatory mechanism for caspase-8 activation. Mol. Cell 11, 543–549 (2003).

    CAS  PubMed  Google Scholar 

  116. Salvesen, G. S. & Dixit, V. M. Caspase activation: the induced-proximity model. Proc. Natl Acad. Sci. USA 96, 10964–10967 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Muzio, M., Stockwell, B. R., Stennicke, H. R., Salvesen, G. S. & Dixit, V. M. An induced proximity model for caspase-8 activation. J. Biol. Chem. 273, 2926–2930 (1998).

    CAS  PubMed  Google Scholar 

  118. Yang, X., Chang, H. Y. & Baltimore, D. Autoproteolytic activation of pro-caspases by oligomerization. Mol. Cell 1, 319–325 (1998).

    CAS  PubMed  Google Scholar 

  119. Srinivasula, S. M., Ahmad, M., Fernandes-Alnemri, T. & Alnemri, E. S. Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol. Cell 1, 949–957 (1998).

    CAS  PubMed  Google Scholar 

  120. MacCorkle, R. A., Freeman, K. W. & Spencer, D. M. Synthetic activation of caspases: artificial death switches. Proc. Natl Acad. Sci. USA 95, 3655–3660 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Boatright, K. M. & Salvesen, G. S. Mechanisms of caspase activation. Curr. Opin. Cell Biol. 15, 725–731 (2003).

    CAS  PubMed  Google Scholar 

  122. Horvitz, H. R. Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res. 59, 1701–1706 (1999).

    Google Scholar 

  123. Hengartner, M. O. Programmed cell death in invertebrates. Curr. Opin. Genet. Dev. 6, 34–38 (1996).

    CAS  PubMed  Google Scholar 

  124. Kraulis, P. J. Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Google Scholar 

  125. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins: Struct. Funct. Genet. 11, 281–296 (1991).

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank N. Yan for help with figure preparation and members of the Shi laboratory for discussion. This research is supported by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yigong Shi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

ced-3

ced-4

ced-9

egl-1

Flybase

Damm

Dcp1

Decay

Diap2

Dredd

Drice

Dronc

Grim

Hid

Reaper

Sickle

Strica

Thread

Swiss-Prot

AIF

APAF1

Apollon

BAK

BCL2

BID

caspase-2

caspase-3

caspase-6

caspase-7

caspase-8

caspase-9

caspase-10

c-IAP1

c-IAP2

CrmA

cytochrome c

DIABLO

EndoG

FADD

Fas

FasL

HTRA2

ICE

ILP2

ML-IAP

NAIP

p35

XIAP

FURTHER INFORMATION

Nature Reviews poster 'Apoptosis Pathways and Drug Targets'

The PyMOL Molecular Graphics System

Glossary

PRODOMAIN

The N-terminal amino-acid sequence of a caspase. Unlike other proteases, the removal of the prodomain is not required for the activation of caspases. Rather, the presence of the prodomain is indispensable to the activation of initiator caspases.

ZYMOGEN

The proteolytically inactive precursor of a protease.

APOPTOSOME

A large protein complex that comprises cytochrome c and APAF1, and forms in the presence of ATP or dATP. The apoptosome recruits pro-caspase-9 and results in the allosteric activation of caspase-9.

DEATH LIGAND

An extracellular growth factor that triggers an apoptotic response in cells.

DEATH RECEPTOR

The cell-surface receptor for the death ligand. A death receptor contains an extracellular ligand-binding domain and an intracellular death domain.

BH3-ONLY

BCL2 homology (BH) domain-3 only. Sequence alignment among the BCL2-family proteins has identified four BH domains, BH1–BH4. The BH3-only members are pro-apoptotic.

BCL2 FAMILY

A family of proteins that all contain at least one BCL2 homology (BH) region. The family is divided into anti-apoptotic multidomain proteins (such as BCL2 and BCL-XL), which contain four BH domains (BH1, BH2, BH3, BH4), pro-apoptotic multidomain proteins (for example, BAX and BAK), which contain BH1, BH2 and BH3, and the pro-apoptotic BH3-only protein family (such as BID, BIM and PUMA).

SERPIN

A family of serine-protease inhibitors. Serpin inactives protease by deformation of the active site.

RHG PROTEINS

Named after the fruitfly Reaper, Hid and Grim proteins. The name now refers to a larger family of pro-apoptotic proteins in fruitflies that share an N-terminal inhibitor of apoptosis (IAP)-binding tetrapeptide motif.

N-END RULE

A ubiquitin-dependent pathway that targets proteins for degradation through their destabilizing N-terminal residues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riedl, S., Shi, Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5, 897–907 (2004). https://doi.org/10.1038/nrm1496

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1496

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing