Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

In search of the holy replicator

Abstract

After 40 years of searching for the eukaryotic replicator sequence, it is time to abandon the concept of 'the' replicator as a single genetic entity. Here I propose a 'relaxed replicon model' in which a positive initiator–replicator interaction is facilitated by a combination of several complex features of chromatin. An important question for the future is whether the positions of replication origins are simply a passive result of local chromatin structure or are actively localized to coordinate replication with other chromosomal activities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The replicon model.
Figure 2: Relaxed replicon model.

References

  1. Jacob, F., Brenner, S. & Cuzin, F. On the regulation of DNA replication in bacteria. Cold Spring Harb. Symp. Quant. Biol. 28, 329–348 (1964).

    Google Scholar 

  2. Chakraborty, T., Yoshinaga, K., Lother, H. & Messer, W. Purification of the E. coli dnaA gene product. EMBO J. 1, 1545–1549 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bell, S. P. & Stillman, B. ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357, 128–134 (1992).

    CAS  Google Scholar 

  4. Timmis, K., Cabello, F. & Cohen, S. N. Cloning, isolation, and characterization of replication regions of complex plasmid genomes. Proc. Natl Acad. Sci. USA 72, 2242–2246 (1975).

    CAS  Google Scholar 

  5. Yasuda, S. & Hirota, Y. Cloning and mapping of the replication origin of Escherichia coli. Proc. Natl Acad. Sci. USA 74, 5458–5462 (1977).

    CAS  Google Scholar 

  6. Fujita, M. Q., Yoshikawa, H. & Ogasawara, N. Structure of the dnaA region of Pseudomonas putida: conservation among three bacteria, Bacillus subtilis, Escherichia coli and P. putida. Mol. Gen. Genet. 215, 381–387 (1989).

    CAS  Google Scholar 

  7. Taylor, J. H. Rates of chain growth and units of replication in DNA of mammalian chromosomes. J. Mol. Biol. 31, 579–594 (1968).

    CAS  Google Scholar 

  8. Huberman, J. A. & Riggs, A. D. On the mechanism of DNA replication in mammalian chromosomes. J. Mol. Biol. 32, 327–341 (1968).

    CAS  Google Scholar 

  9. Stambrook, P. J. & Flickinger, R. A. Changes in chromosomal DNA replication patterns in developing frog embryos. J. Exp. Zool. 174, 101–113 (1970).

    CAS  Google Scholar 

  10. Callan, H. G. Replication of DNA in the chromosomes of eukaryotes. Proc. R. Soc. Lond. B 181, 19–41 (1972).

    CAS  Google Scholar 

  11. Blumenthal, A. B., Kriegstein, H. J. & Hogness, D. S. The units of DNA replication in Drosophila melanogaster chromosomes. Cold Spring Harb. Symp. Quant. Biol. 38, 205–223 (1974).

    CAS  Google Scholar 

  12. Taylor, J. H. Increase in DNA replication sites in cells held at the beginning of S phase. Chromosoma 62, 291–300 (1977).

    CAS  Google Scholar 

  13. Hand, R. Eucaryotic DNA: organization of the genome for replication. Cell 15, 317–325 (1978).

    CAS  Google Scholar 

  14. Mueller, G. C. & Kajiwara, K. Early- and late-replicating deoxyribonucleic acid complexes in HeLa nuclei. Biochim. Biophys. Acta 114, 108–115 (1966).

    CAS  Google Scholar 

  15. Balazs, I., Brown, E. H. & Schildkraut, C. L. The temporal order of replication of some DNA cistrons. Cold Spring Harb. Symp. Quant. Biol. 38, 239–245 (1973).

    Google Scholar 

  16. Struhl, K., Stinchcomb, D. T., Scherer, S. & Davis, R. W. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc. Natl Acad. Sci. USA 76, 1035–1039 (1979).

    CAS  Google Scholar 

  17. Huberman, J. A., Spotila, L. D., Nawotka, K. A., El-Assouli, S. M. & Davis, L. R. The in vivo replication origin of the yeast 2 microns plasmid. Cell 51, 473–481 (1987).

    CAS  Google Scholar 

  18. Brewer, B. J. & Fangman, W. L. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 51, 463–471 (1987).

    CAS  Google Scholar 

  19. Huberman, J. A., Zhu, J., Davis, L. R. & Newlon, C. S. Close association of a DNA replication origin and an ARS element on chromosome III of the yeast Saccharomyces cerevisiae. Nucleic Acids Res. 16, 6373–6384 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Celniker, S. E., Sweder, K., Srienc, F., Bailey, J. E. & Campbell, J. L. Deletion mutations affecting autonomously replicating sequence ARS1 of Saccharomyces cerevisiae. Mol. Cell. Biol. 4, 2455–2466 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Marahrens, Y. & Stillman, B. A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science 255, 817–823 (1992).

    CAS  Google Scholar 

  22. Harland, R. M. & Laskey, R. A. Regulated replication of DNA microinjected into eggs of Xenopus laevis. Cell 21, 761–771 (1980).

    CAS  Google Scholar 

  23. Mechali, M. & Kearsey, S. Lack of specific sequence requirement for DNA replication in Xenopus eggs compared with high sequence specificity in yeast. Cell 38, 55–64 (1984).

    CAS  Google Scholar 

  24. Heintz, N. H. & Hamlin, J. L. An amplified chromosomal sequence that includes the gene for dihydrofolate reductase initiates replication within specific restriction fragments. Proc. Natl Acad. Sci. USA 79, 4083–4087 (1982).

    CAS  Google Scholar 

  25. Gilbert, D. & Cohen, S. N. Autonomous replication in mouse cells: a correction. Cell 56, 143–144 (1989).

    CAS  Google Scholar 

  26. Masukata, H., Satoh, H., Obuse, C. & Okazaki, T. Autonomous replication of human chromosomal DNA fragments in human cells. Mol. Biol. Cell 4, 1121–1132 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Krysan, P. J. & Calos, M. P. Replication initiates at multiple locations on an autonomously replicating plasmid in human cells. Mol. Cell. Biol. 11, 1464–1472 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Burhans, W. C., Vassilev, L. T., Caddle, M. S., Heintz, N. H. & DePamphilis, M. L. Identification of an origin of bidirectional DNA replication in mammalian chromosomes. Cell 62, 955–965 (1990).

    CAS  Google Scholar 

  29. Vaughn, J. P., Dijkwel, P. A. & Hamlin, J. L. Replication initiates in a broad zone in the amplified CHO dihydrofolate reductase domain. Cell 61, 1075–1087 (1990).

    CAS  Google Scholar 

  30. Gilbert, D. M. Making sense of eukaryotic DNA replication origins. Science 294, 96–100 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kobayashi, T., Rein, T. & DePamphilis, M. Identification of primary initiation sites for DNA replication in the hamster DHFR gene initiation zone. Mol. Cell. Biol. 18, 3266–3277 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Dijkwel, P. A., Wang, S. & Hamlin, J. L. Initiation sites are distributed at frequent intervals in the Chinese hamster dihydrofolate reductase origin of replication but are used with very different efficiencies. Mol. Cell. Biol. 22, 3053–3065 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hyrien, O. & Mechali, M. Plasmid replication in Xenopus eggs and egg extracts: a 2D gel electrophoretic analysis. Nucleic Acids Res. 20, 1463–1469 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Mahbubani, H. M., Paull, T., Elder, J. K. & Blow, J. J. DNA replication initiates at multiple sites on plasmid DNA in Xenopus egg extracts. Nucleic Acids Res. 20, 1457–1462 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gilbert, D. M., Miyazawa, H. & DePamphilis, M. L. Site-specific initiation of DNA replication in Xenopus egg extract requires nuclear structure. Mol. Cell. Biol. 15, 2942–2954 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hyrien, O., Maric, C. & Mechali, M. Transition in specification of embryonic metazoan DNA replication origins. Science 270, 994–997 (1995).

    CAS  Google Scholar 

  37. Sasaki, T., Sawado, T., Yamaguchi, M. & Shinomiya, T. Specification of regions of DNA replication initiation during embryogenesis in the 65-kilobase DNApolα-dE2F locus of Drosophila melanogaster. Mol. Cell. Biol. 19, 547–555 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Vashee, S. et al. Sequence-independent DNA binding and replication initiation by the human origin recognition complex. Genes Dev. 17, 1894–1908 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu, J. -R. & Gilbert, D. M. A distinct G1 step required to specify the Chinese hamster DHFR replication origin. Science 271, 1270–1272 (1996).

    CAS  Google Scholar 

  40. Danis, E. et al. Specification of a DNA replication origin by a transcription complex. Nature Cell Biol. 6, 721–730 (2004).

    CAS  Google Scholar 

  41. Kitsberg, D., Selig, S., Keshet, J. & Cedar, H. Replication structure of the human β-globin gene domain. Nature 368, 588–590 (1993).

    Google Scholar 

  42. Aladjem, M. et al. Participation of the human β-globin locus control region in initiation of DNA replication. Science 270, 815–819 (1995).

    CAS  Google Scholar 

  43. Kalejta, R. F. et al. Distal sequences, but not ori-β/OBR-1, are essential for initiation of DNA replication in the Chinese hamster DHFR origin. Mol. Cell 2, 797–806 (1998).

    CAS  Google Scholar 

  44. Mesner, L. D., Li, X., Dijkwel, P. A. & Hamlin, J. L. The dihydrofolate reductase origin of replication does not contain any nonredundant genetic elements required for origin activity. Mol. Cell. Biol. 23, 804–814 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Handeli, S., Klar, A., Meuth, M. & Cedar, H. Mapping replication units in animal cells. Cell 57, 909–920 (1989).

    CAS  Google Scholar 

  46. Aladjem, M. I., Rodewald, L. W., Kolman, J. L. & Wahl, G. M. Genetic dissection of a mammalian replicator in the human β-globin locus. Science 281, 1005–1009 (1998).

    CAS  Google Scholar 

  47. Paixao, S. et al. Modular structure of the human lamin B2 replicator. Mol. Cell. Biol. 24, 2958–2967 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, L. et al. The human β-globin replication initiation region consists of two modular independent replicators. Mol. Cell. Biol. 24, 3373–3386 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, G., Malott, M. & Leffak, M. Multiple functional elements comprise a mammalian chromosomal replicator. Mol. Cell. Biol. 23, 1832–1842 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Altman, A. L. & Fanning, E. Defined sequence modules and an architectural element cooperate to promote initiation at an ectopic mammalian chromosomal replication origin. Mol. Cell. Biol. 24, 4138–4150 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gavin, K., Hidaka, M. & Stillman, B. Conserved initiator proteins in eukaryotes. Science 270, 1667–1671 (1995).

    CAS  Google Scholar 

  52. Lee, D. G. & Bell, S. P. Architecture of the yeast origin recognition complex bound to origins of DNA replication. Mol. Cell. Biol. 17, 7159–7168 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Chuang, R. Y. & Kelly, T. J. The fission yeast homologue of Orc4p binds to replication origin DNA via multiple AT-hooks. Proc. Natl Acad. Sci. USA 96, 2656–2661 (1999).

    CAS  Google Scholar 

  54. Remus, D., Beall, E. L. & Botchan, M. R. DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC–DNA binding. EMBO J. 23, 897–907 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Aparicio, O. M., Weinstein, D. M. & Bell, S. P. Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell 91, 59–69 (1997).

    CAS  Google Scholar 

  56. Ogawa, Y., Takahashi, T. & Masukata, H. Association of fission yeast Orp1 and Mcm6 proteins with chromosomal replication origins. Mol. Cell. Biol. 19, 7228–7236 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bielinsky, A. K. et al. Origin recognition complex binding to a metazoan replication origin. Curr. Biol. 11, 1427–1431 (2001).

    CAS  Google Scholar 

  58. Austin, R. J., Orr-Weaver, T. L. & Bell, S. P. Drosophila ORC specifically binds to ACE3, an origin of DNA replication control element. Genes Dev. 13, 2639–2649 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Abdurashidova, G. et al. Localization of proteins bound to a replication origin of human DNA along the cell cycle. EMBO J. 22, 4294–4303 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Wyrick, J. J. et al. Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature 402, 418–421 (1999).

    CAS  PubMed  Google Scholar 

  61. Breier, A. M., Chatterji, S. & Cozzarelli, N. R. Prediction of Saccharomyces cerevisiae replication origins. Genome Biol. 5, R22 (2004).

    PubMed  PubMed Central  Google Scholar 

  62. Keller, C., Ladenburger, E. M., Kremer, M. & Knippers, R. The origin recognition complex marks a replication origin in the human TOP1 gene promoter. J. Biol. Chem. 277, 31430–31440 (2002).

    CAS  Google Scholar 

  63. Schepers, A. et al. Human origin recognition complex binds to the region of the latent origin of DNA replication of Epstein–Barr virus. EMBO J. 20, 4588–4602 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Royzman, I., Austin, R. J., Bosco, G., Bell, S. P. & Orr-Weaver, T. L. ORC localization in Drosophila follicle cells and the effects of mutations in dE2F and dDP. Genes Dev. 13, 827–840 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bosco, G., Du, W. & Orr-Weaver, T. L. DNA replication control through interaction of E2F-RB and the origin recognition complex. Nature Cell Biol. 3, 289–295 (2001).

    CAS  Google Scholar 

  66. Beall, E. L., Bell, M., Georlette, D. & Botchan, M. R. Dm-myb mutant lethality in Drosophila is dependent upon mip130: positive and negative regulation of DNA replication. Genes Dev. 18, 1667–1680 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Aggarwal, B. D. & Calvi, B. R. Chromatin regulates origin activity in Drosophila follicle cells. Nature 430, 372–376 (2004).

    CAS  Google Scholar 

  68. Saha, S., Shan, Y., Mesner, L. D. & Hamlin, J. L. The promoter of the Chinese hamster ovary dihydrofolate reductase gene regulates the activity of the local origin and helps define its boundaries. Genes Dev. 18, 397–410 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Muller, M., Lucchini, R. & Sogo, J. M. Replication of yeast rDNA initiates downstream of transcriptionally active genes. Mol. Cell 5, 767–777 (2000).

    CAS  Google Scholar 

  70. Maric, C., Benard, M. & Pierron, G. Developmentally regulated usage of Physarum DNA replication origins. EMBO Rep. 4, 474–478 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Haase, S. B., Heinzel, S. S. & Calos, M. P. Transcription inhibits the replication of autonomously replicating plasmids in human cells. Mol. Cell. Biol. 14, 2516–2524 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Harvey, K. J. & Newport, J. CpG methylation of DNA restricts prereplication complex assembly in Xenopus egg extracts. Mol. Cell. Biol. 23, 6769–6779 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Rein, T., Kobayashi, T., Malott, M., Leffak, M. & DePamphilis, M. L. DNA methylation at mammalian replication origins. J. Biol. Chem. 274, 25792–25800 (1999).

    CAS  Google Scholar 

  74. Delgado, S., Gomez, M., Bird, A. & Antequera, F. Initiation of DNA replication at CpG islands in mammalian chromosomes. EMBO J. 17, 2426–2435 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Simpson, R. T. Nucleosome positioning can affect the function of a cis-acting DNA element in vivo. Nature 343, 387–389 (1990).

    CAS  Google Scholar 

  76. Lipford, J. R. & Bell, S. P. Nucleosomes positioned by ORC facilitate the initiation of DNA replication. Mol. Cell 7, 21–30 (2001).

    CAS  Google Scholar 

  77. Pasero, P., Bensimon, A. & Schwob, E. Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus. Genes Dev. 16, 2479–2484 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Prioleau, M. N., Gendron, M. C. & Hyrien, O. Replication of the chicken β-globin locus: early-firing origins at the 5′ HS4 insulator and the ρ- and βA-globin genes show opposite epigenetic modifications. Mol. Cell. Biol. 23, 3536–3549 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lunyak, V. V., Ezrokhi, M., Smith, H. S. & Gerbi, S. A. Developmental changes in the Sciara II/9A initiation zone for DNA replication. Mol. Cell. Biol. 22, 8426–8437 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhou, J. et al. The origin of a developmentally regulated Igh replicon is located near the border of regulatory domains for Igh replication and expression. Proc. Natl Acad. Sci. USA 99, 13693–13698 (2002).

    CAS  Google Scholar 

  81. Anglana, M., Apiou, F., Bensimon, A. & Debatisse, M. Dynamics of DNA replication in mammalian somatic cells: nucleotide pool modulates origin choice and interorigin spacing. Cell 114, 385–394 (2003).

    CAS  Google Scholar 

  82. Norio, P. & Schildkraut, C. L. Plasticity of DNA replication initiation in Epstein–Barr virus episomes. PLoS Biol. 2, E152 (2004).

    PubMed  PubMed Central  Google Scholar 

  83. Tsurimoto, T., Melendy, T. & Stillman, B. Sequential initiation of lagging and leading strand synthesis by two different polymerase complexes at the SV40 DNA replication origin. Nature 346, 534–539 (1990).

    CAS  PubMed  Google Scholar 

  84. Weinberg, D. H. et al. Reconstitution of simian virus 40 DNA replication with purified proteins. Proc. Natl Acad. Sci. USA 87, 8692–8696 (1990).

    CAS  Google Scholar 

  85. Bergsma, D. J., Olive, D. M., Hartzell, S. W. & Subramanian, K. N. Territorial limits and functional anatomy of the simian virus 40 replication origin. Proc. Natl Acad. Sci. USA 79, 381–385 (1982).

    CAS  Google Scholar 

  86. Dhar, S. K. et al. Replication from oriP of Epstein–Barr virus requires human ORC and is inhibited by geminin. Cell 106, 287–296 (2001).

    CAS  Google Scholar 

  87. Norio, P., Schildkraut, C. L. & Yates, J. L. Initiation of DNA replication within oriP is dispensable for stable replication of the latent Epstein–Barr virus chromosome after infection of established cell lines. J. Virol. 74, 8563–8574 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Santocanale, C. & Diffley, J. ORC- and Cdc6-dependent complexes at active and inactive chromosomal replication origins in Saccharomyces cerevisiae. EMBO J. 15, 6671–6679 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Palacios DeBeer, M. A., Müller, U. & Fox, C. A. Differential DNA affinity specifies roles for the origin recognition complex in budding yeast heterochromatin. Genes Dev. 17, 1817–1822 (2003).

    PubMed  PubMed Central  Google Scholar 

  90. Santocanale, C., Sharma, K. & Diffley, J. F. Activation of dormant origins of DNA replication in budding yeast. Genes Dev. 13, 2360–2364 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Vujcic, M., Miller, C. A. & Kowalski, D. Activation of silent replication origins at autonomously replicating sequence elements near the HML locus in budding yeast. Mol. Cell. Biol. 19, 6098–6109 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Walter, J. & Newport, J. W. Regulation of replicon size in Xenopus egg extracts. Science 275, 993–995 (1997).

    CAS  PubMed  Google Scholar 

  93. Beall, E. L. et al. Role for a Drosophila Myb-containing protein complex in site-specific DNA replication. Nature 420, 833–837 (2002).

    CAS  Google Scholar 

  94. Ehrenhofer-Murray, A., Gossen, M., Pak, D., Botchan, M. & Rine, J. Separation of origin recognition complex functions by cross-species complementation. Science 270, 1671–1674 (1995).

    CAS  Google Scholar 

  95. Abdurashidova, G. et al. Start sites of bidirectional DNA synthesis at the human lamin B2 origin. Science 287, 2023–2026 (2000).

    CAS  Google Scholar 

  96. Schaarschmidt, D., Baltin, J., Stehle, I. M., Lipps, H. J. & Knippers, R. An episomal mammalian replicon: sequence-independent binding of the origin recognition complex. EMBO J. 23, 191–201 (2004).

    CAS  Google Scholar 

Download references

Acknowledgements

I would like to apologize to those whose work was not cited due to space limitations. I would also like to thank R. Cross, C. Cvetic, J. Huberman, P. Kane, T. Melendy, C. Schildkraut, J. Walter and R. West for critical reading of the manuscript. D.M.G. is supported by the National Institutes of Health, the National Science Foundation and American Cancer Society.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez

DHFR

dnaA

HBB

oriC

Flybase

Myb

Rpd3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilbert, D. In search of the holy replicator. Nat Rev Mol Cell Biol 5, 848–855 (2004). https://doi.org/10.1038/nrm1495

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1495

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing