Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Imaging gene expression in single living cells

Abstract

Technical advances in the field of live-cell imaging have introduced the cell biologist to a new, dynamic, subcellular world. The static world of molecules in fixed cells has now been extended to the time dimension. This allows the visualization and quantification of gene expression and intracellular trafficking events of the studied molecules and the associated enzymatic processes in individual cells, in real time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynamics of mRNA molecules in the cytoplasm of mammalian cells.
Figure 2: Analysis of ASH1-particle movement in yeast.

Similar content being viewed by others

References

  1. Gerlich, D. & Ellenberg, J. 4D imaging to assay complex dynamics in live specimens. Nature Cell Biol. 5, S14–S19 (2003).

    Google Scholar 

  2. Zimmermann, T., Rietdorf, J. & Pepperkok, R. Spectral imaging and its applications in live cell microscopy. FEBS Lett. 546, 87–92 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Patterson, G., Day, R. N. & Piston, D. Fluorescent protein spectra. J. Cell Sci. 114, 837–838 (2001).

    CAS  PubMed  Google Scholar 

  4. Peercy, P. S. The drive to miniaturization. Nature 406, 1023–1026 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Carrington, W. A., Fogarty, K. & Fay, F. S. 3D fluorescence imaging of single cells using image restoration (eds Foskett, K. & Grinstein, S.) (Wiley–Liss Inc., New York, 1990).

    Google Scholar 

  6. Wallace, W., Schaefer, L. H. & Swedlow, J. R. A workingperson's guide to deconvolution in light microscopy. Biotechniques 31, 1076–1097 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Carrington, W. A. et al. Superresolution three-dimensional images of fluorescence in cells with minimal light exposure. Science 268, 1483–1487 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Hell, S. W. Toward fluorescence nanoscopy. Nature Biotechnol. 21, 1347–1355 (2003).

    Article  CAS  Google Scholar 

  9. Dyba, M., Jakobs, S. & Hell, S. W. Immunofluorescence stimulated emission depletion microscopy. Nature Biotechnol. 21, 1303–1304 (2003).

    Article  CAS  Google Scholar 

  10. Zhang, J., Campbell, R. E., Ting, A. Y. & Tsien, R. Y. Creating new fluorescent probes for cell biology. Nature Rev. Mol. Cell Biol. 3, 906–918 (2002).

    Article  CAS  Google Scholar 

  11. Chan, W. C. et al. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 13, 40–46 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Femino, A. M., Fay, F. S., Fogarty, K. & Singer, R. H. Visualization of single RNA transcripts in situ. Science 280, 585–590 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Levsky, J. M., Shenoy, S. M., Pezo, R. C. & Singer, R. H. Single-cell gene expression profiling. Science 297, 836–840 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. de Krom, M., van de Corput, M., von Lindern, M., Grosveld, F. & Strouboulis, J. Stochastic patterns in globin gene expression are established prior to transcriptional activation and are clonally inherited. Mol. Cell 9, 1319–1326 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Raser, J. M. & O'Shea, E. K. Control of stochasticity in eukaryotic gene expression. Science 304, 1811–1814 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Biggar, S. R. & Crabtree, G. R. Cell signaling can direct either binary or graded transcriptional responses. EMBO J. 20, 3167–3176 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Levsky, J. M. & Singer, R. H. Gene expression and the myth of the average cell. Trends Cell Biol. 13, 4–6 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Brown, K. E. et al. Expression of α- and β-globin genes occurs within different nuclear domains in haemopoietic cells. Nature Cell Biol. 3, 602–606 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Simpson, J. C., Neubrand, V. E., Wiemann, S. & Pepperkok, R. Illuminating the human genome. Histochem. Cell Biol. 115, 23–29 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Patterson, G. H. & Lippincott-Schwartz, J. Selective photolabeling of proteins using photoactivatable GFP. Methods 32, 445–450 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Politz, J. C., Tuft, R. A., Pederson, T. & Singer, R. H. Movement of nuclear poly(A) RNA throughout the interchromatin space in living cells. Curr. Biol. 9, 285–291 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Lippincott-Schwartz, J., Snapp, E. & Kenworthy, A. Studying protein dynamics in living cells. Nature Rev. Mol. Cell Biol. 2, 444–456 (2001).

    Article  CAS  Google Scholar 

  25. Sako, Y. & Yanagida, T. Single-molecule visualization in cell biology. Nature Rev. Mol. Cell Biol. 4, SS1–SS5 (2003).

    Google Scholar 

  26. Dahan, M. et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302, 442–445 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Seisenberger, G. et al. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science 294, 1929–1932 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Watanabe, N. & Mitchison, T. J. Single-molecule speckle analysis of actin filament turnover in lamellipodia. Science 295, 1083–1086 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Ueda, M., Sako, Y., Tanaka, T., Devreotes, P. & Yanagida, T. Single-molecule analysis of chemotactic signaling in Dictyostelium cells. Science 294, 864–867 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Schutz, G. J., Kada, G., Pastushenko, V. P. & Schindler, H. Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J. 19, 892–901 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sako, Y., Minoghchi, S. & Yanagida, T. Single-molecule imaging of EGFR signalling on the surface of living cells. Nature Cell Biol. 2, 168–172 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Phair, R. D. & Misteli, T. High mobility of proteins in the mammalian cell nucleus. Nature 404, 604–609 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Lever, M. A., Th'ng, J. P., Sun, X. & Hendzel, M. J. Rapid exchange of histone H1.1 on chromatin in living human cells. Nature 408, 873–876 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Kimura, H. & Cook, P. R. Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B. J. Cell Biol. 153, 1341–1353 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gerlich, D. et al. Global chromosome positions are transmitted through mitosis in mammalian cells. Cell 112, 751–764 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Walter, J., Schermelleh, L., Cremer, M., Tashiro, S. & Cremer, T. Chromosome order in HeLa cells changes during mitosis and early G1, but is stably maintained during subsequent interphase stages. J. Cell Biol. 160, 685–697 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Manders, E. M. et al. Four-dimensional imaging of chromatin dynamics during the assembly of the interphase nucleus. Chromosome Res. 11, 537–547 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Robinett, C. C. et al. In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol. 135, 1685–1700 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Janicki, S. M. et al. From silencing to gene expression: real-time analysis in single cells. Cell 116, 683–698 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Heun, P., Laroche, T., Shimada, K., Furrer, P. & Gasser, S. M. Chromosome dynamics in the yeast interphase nucleus. Science 294, 2181–2186 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Tsukamoto, T. et al. Visualization of gene activity in living cells. Nature Cell Biol. 2, 871–878 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Chubb, J. R., Boyle, S., Perry, P. & Bickmore, W. A. Chromatin motion is constrained by association with nuclear compartments in human cells. Curr. Biol. 12, 439–445 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Ainger, K. et al. Transport and localization of exogenous myelin basic protein mRNA microinjected into oligodendrocytes. J. Cell Biol. 123, 431–441 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Glotzer, J. B., Saffrich, R., Glotzer, M. & Ephrussi, A. Cytoplasmic flows localize injected oskar RNA in Drosophila oocytes. Curr. Biol. 7, 326–337 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Politz, J. C., Browne, E. S., Wolf, D. E. & Pederson, T. Intranuclear diffusion and hybridization state of oligonucleotides measured by fluorescence correlation spectroscopy in living cells. Proc. Natl Acad. Sci. USA 95, 6043–6048 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Carmo-Fonseca, M. et al. In vivo detection of snRNP-rich organelles in the nuclei of mammalian cells. EMBO J. 10, 1863–1873 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Molenaar, C., Abdulle, A., Gena, A., Tanke, H. J. & Dirks, R. W. Poly(A)+ RNAs roam the cell nucleus and pass through speckle domains in transcriptionally active and inactive cells. J. Cell Biol. 165, 191–202 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bratu, D. P., Cha, B. J., Mhlanga, M. M., Kramer, F. R. & Tyagi, S. Visualizing the distribution and transport of mRNAs in living cells. Proc. Natl Acad. Sci. USA 100, 13308–13313 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Calapez, A. et al. The intranuclear mobility of messenger RNA binding proteins is ATP dependent and temperature sensitive. J. Cell Biol. 159, 795–805 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Theurkauf, W. E. & Hazelrigg, T. I. In vivo analyses of cytoplasmic transport and cytoskeletal organization during Drosophila oogenesis: characterization of a multi-step anterior localization pathway. Development 125, 3655–3666 (1998).

    CAS  PubMed  Google Scholar 

  51. Bertrand, E. et al. Localization of ASH1 mRNA particles in living yeast. Mol. Cell 2, 437–445 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Fusco, D. et al. Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr. Biol. 13, 161–167 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shav-Tal, Y. et al. Dynamics of single mRNPs in nuclei of living cells. Science 304, 1797–1800 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Platani, M., Goldberg, I., Lamond, A. I. & Swedlow, J. R. Cajal body dynamics and association with chromatin are ATP-dependent. Nature Cell Biol. 4, 502–508 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Singer, R. H. RNA localization: visualization in real-time. Curr. Biol. 13, R673–R675 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Rook, M. S., Lu, M. & Kosik, K. S. CaMKIIα 3′ untranslated region-directed mRNA translocation in living neurons: visualization by GFP linkage. J. Neurosci. 20, 6385–6393 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Forrest, K. M. & Gavis, E. R. Live imaging of endogenous RNA reveals a diffusion and entrapment mechanism for nanos mRNA localization in Drosophila. Curr. Biol. 13, 1159–1168 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Basyuk, E. et al. Retroviral genomic RNAs are transported to the plasma membrane by endosomal vesicles. Dev. Cell 5, 161–174 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Cahalan, M. D., Parker, I., Wei, S. H. & Miller, M. J. Two-photon tissue imaging: seeing the immune system in a fresh light. Nature Rev. Immunol. 2, 872–880 (2002).

    Article  CAS  Google Scholar 

  60. Condeelis, J. & Segall, J. E. Intravital imaging of cell movement in tumours. Nature Rev. Cancer 3, 921–930 (2003).

    Article  CAS  Google Scholar 

  61. Dundr, M. et al. A kinetic framework for a mammalian RNA polymerase in vivo. Science 298, 1623–1626 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Tumbar, T. & Belmont, A. S. Interphase movements of a DNA chromosome region modulated by VP16 transcriptional activator. Nature Cell Biol. 3, 134–139 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Stenoien, D. L. et al. Ligand-mediated assembly and real-time cellular dynamics of estrogen receptor α-coactivator complexes in living cells. Mol. Cell. Biol. 21, 4404–4412 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. McNally, J. G., Muller, W. G., Walker, D., Wolford, R. & Hager, G. L. The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 287, 1262–1265 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Becker, M. et al. Dynamic behavior of transcription factors on a natural promoter in living cells. EMBO Rep. 3, 1188–1194 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Phair, R. D., Gorski, S. A. & Misteli, T. Measurement of dynamic protein binding to chromatin in vivo, using photobleaching microscopy. Methods Enzymol. 375, 393–414 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Phair, R. D. & Misteli, T. Kinetic modelling approaches to in vivo imaging. Nature Rev. Mol. Cell Biol. 2, 898–907 (2001).

    Article  CAS  Google Scholar 

  68. Carrero, G., McDonald, D., Crawford, E., de Vries, G. & Hendzel, M. J. Using FRAP and mathematical modeling to determine the in vivo kinetics of nuclear proteins. Methods 29, 14–28 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Cole, N. B. et al. Diffusional mobility of Golgi proteins in membranes of living cells. Science 273, 797–801 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank B. Ovryn for critical reading of the manuscript. R.H.S is supported by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Singer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Entrez

α-globin

β-globin

Saccharomyces genome database

ASH1

she1

Swiss-Prot

GFP

lacI

MS2

FURTHER INFORMATION

Approaches for live-cell imaging, Bioptechs

Imaging in cell biology supplement, Nature Publishing Group

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shav-Tal, Y., Singer, R. & Darzacq, X. Imaging gene expression in single living cells. Nat Rev Mol Cell Biol 5, 855–862 (2004). https://doi.org/10.1038/nrm1494

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1494

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing