Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Cell motility under the microscope: Vorsprung durch Technik

Abstract

The fashion today is to disparage technology-led research but our view is that cell biologists, in particular, should be proud of their 'progress through technology'. The 'cell theory' itself, arguably the oldest cornerstone in the theoretical foundations of biology, emerged because Hooke, van Leeuwenhoek and others had, more than a century earlier, pioneered the enabling technology — the microscope. We develop this theme with reference to our own field of research: the locomotion of cultured tissue cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Possibly the first illustration of cell motility.
Figure 2: Metchnikoff's drawing of phagocytes at a site of inflammation.
Figure 3: A mechanical intervalometer.
Figure 4: Fluorescence localization after photobleaching (FLAP).

References

  1. Inwood, S. The man who knew too much: the strange and inventive life of Robert Hooke 1635–1703 (Macmillan, London, UK, 2002).

    Google Scholar 

  2. Hooke, R. Micrographia: or some physiological descriptions of minute bodies made by magnifying glasses with observations and inquiries thereupon. (Printed by Jo. Martyn and Ja. Allestry, printers to the Royal Society, London, UK, 1665).

    Book  Google Scholar 

  3. Ford, B. J. First steps in experimental microscopy, Leeuwenhoek as practical scientist. The Microscope 43, 47–57 (1995).

    Google Scholar 

  4. Schliwa, M. The evolving complexity of cytoplasmic structure. Nature Rev. Mol. Cell Biol. 3, 291–295 (2002).

    Article  CAS  Google Scholar 

  5. Remak, R. Neurologische Erläuterungen. Arch. Anat. Physiol. wiss Med. 1844, 463–472 (1844).

    Google Scholar 

  6. Frixione, E. Sigmund Freud's contribution to the history of the neuronal cytoskeleton. J. Histor. Neurosci. 12, 12–24 (2003).

    Article  Google Scholar 

  7. Tauber, A. I. Metchnikoff and the phagocytosis theory. Nature Rev. Mol. Cell Biol. 4, 897–901 (2003).

    Article  CAS  Google Scholar 

  8. Abercrombie, M. Ross Granville Harrison 1870–1959. Biographical Memoirs of Fellows of The Royal Society 7, 111–126 (1961).

    Google Scholar 

  9. Harrison, R. G. Observations on the living developing nerve fiber. Anat. Rec. 1, 116–118 (1907).

    Article  Google Scholar 

  10. Canti, R. G. Cinematograph demonstration of living tissue cells growing in vitro. Arch. Exper. Zellforsch. 6, 86–97 (1928).

    Google Scholar 

  11. Dunn, G. A. Transmitted-light interference microscopy: a technique born before its time. Proc. RMS 33, 189–196 (1998).

    Google Scholar 

  12. Zernike, F. How I discovered phase contrast. Science 121, 345–349 (1955).

    Article  CAS  PubMed  Google Scholar 

  13. Allen, R. D., David, G. B. & Nomarski, G. The Zeiss–Nomarski differential interference equipment for transmitted-light microscopy. Z. Wiss. Mikrosk. 69, 193–221 (1969).

    CAS  PubMed  Google Scholar 

  14. Allen, R. D. & Kamiya, N. (eds) Primitive motile systems in cell biology. (Academic Press, New York & London, 1964).

    Google Scholar 

  15. Curtis, A. S. G. The adhesion of cells to glass: a study by interference reflection microscopy. J. Cell Biol. 19, 199–215 (1964).

    Article  Google Scholar 

  16. Abercrombie, M. & Dunn, G. A. Adhesions of fibroblasts to substratum during contact inhibition observed by interference reflection microscopy. Exp. Cell Res. 92, 57–62 (1975).

    Article  CAS  PubMed  Google Scholar 

  17. Izzard, C. S. & Lochner, L. R. Cell-to-substrate contacts in living fibroblasts: an interference reflexion study with an evaluation of the technique. J. Cell Sci. 21, 129–159 (1976).

    CAS  PubMed  Google Scholar 

  18. Lazarides, E. & Weber, K. Actin antibody: the specific visualization of actin filaments in non-muscle cells. Proc. Natl Acad. Sci. USA 71, 2268–2272 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ploem, J. S. A study of filters and light sources in immunofluorescence microscopy. Ann. NY Acad. Sci. 177, 414–429 (1971).

    Article  CAS  PubMed  Google Scholar 

  20. Taylor, D. L. & Wang, Y. Molecular cytochemistry: incorporation of fluorescently labeled actin into living cells. Proc. Natl Acad. Sci. USA 75, 857–861 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Allen, R. D., Allen, N. S. & Travis, J. L. Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: a new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromia laticollaris. Cell Motil. 1, 291–302 (1981).

    Article  CAS  PubMed  Google Scholar 

  22. Inoué, S. Video Microscopy (Plenum Press, New York, USA, 1986).

    Book  Google Scholar 

  23. Minsky, M. Memoir on inventing the confocal scanning microscope. Scanning 10, 128–138 (1988).

    Article  Google Scholar 

  24. Amos, W. B. & White, J. G. How the confocal laser scanning microscope entered biological research. Biol. Cell 95, 335–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G. & Cormier, M. J. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111, 229–233 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Pelham, R. J. Jr & Wang, Y. High resolution detection of mechanical forces exerted by locomoting fibroblasts on the substrate. Mol. Biol. Cell 10, 935–945 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Galbraith, C. G., Yamada, K. M. & Sheetz, M. P. The relationship between force and focal complex development. J. Cell Biol. 159, 695–705 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zicha, D., Dunn, G. A. & Brown, A. F. A new direct-viewing chemotaxis chamber. J. Cell Sci. 99, 769–775 (1991).

    PubMed  Google Scholar 

  29. Allen, W. E., Jones, G. E., Pollard, J. & Ridley, A. J. Rho, Rac and Cdc42 regulate actin organisation and cell adhesion in macrophages. J. Cell Sci. 110, 707–720 (1997).

    CAS  PubMed  Google Scholar 

  30. Allen, W. E., Zicha, D., Ridley, A. J. & Jones, G. E. A role for Cdc42 in macrophage chemotaxis. J. Cell Biol. 141, 1147–1157 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Pollard, T. D., Blanchoin, L. & Mullins, R. D. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29, 545–576 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E. & Webb, W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Reits, E. A. & Neefjes, J. J. From fixed to FRAP: measuring protein mobility and activity in living cells. Nature Cell Biol. 3, 145–147 (2001).

    Article  Google Scholar 

  35. Mitchison, T. J., Sawin, K. E., Theriot, J. A., Gee, K. & Mallavarapu, A. Caged fluorescent probes. Methods Enzymol. 291, 63–78 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Patterson, G. H. & Lippincott-Schwartz J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297, 1873–1877 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Dunn, G. A., Dobbie, I. M., Monypenny J., Holt, M. R. & Zicha, D. Fluorescence localization after photobleaching (FLAP): a new method for studying protein dynamics in living cells. J. Microsc. 205, 109–112 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Zicha, D. et al. Rapid actin transport during cell protrusion. Science 300, 142–145 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Waterman-Storer, C. M. & Salmon, E. D. Actomyosin-based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling. J. Cell Biol. 139, 417–434 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Watanabe, N. & Mitchison, T. J. Single-molecule speckle analysis of actin filament turnover in lamellipodia. Science 295, 1083–1086 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Miki, M., O'Donoghue, S. I. & dos Remedios, C. G. Structure of actin observed by fluorescence resonance energy transfer spectroscopy. J. Muscle Res. Cell Motil. 13, 132–145 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. Lanni, F., Waggoner, A. S. & Taylor, D. L. Structural organization of interphase 3T3 fibroblasts studied by total internal reflection fluorescence microscopy. J. Cell Biol. 100, 1091–1102 (1985).

    Article  CAS  PubMed  Google Scholar 

  43. Schwille, P., Haupts, U., Maiti, S. & Webb, W. W. Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys. J. 77, 2251–2265 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zipfel, W. R., Williams, R. M. & Webb, W. W. Nonlinear magic: multiphoton microscopy in the biosciences. Nature Biotechnol. 21, 1369–1377 (2003).

    Article  CAS  Google Scholar 

  45. Condeelis, J. & Segall J. E. Intravital imaging of cell movement in tumours. Nature Rev. Cancer 12, 921–930 (2003).

    Article  Google Scholar 

  46. Dickinson, M. E., Murray, B. A., Haynes, S. M., Waters, C. W. & Longmuir K. J. Using electroporation and lipid-mediated transfection of GFP-expressing plasmids to label embryonic avian cells for vital confocal and two-photon microscopy. Differentiation 5, 172–180 (2002).

    Article  Google Scholar 

  47. Bastiaens, P. I. & Pepperkok, R. Observing proteins in their natural habitat: the living cell. Trends Biochem. Sci. 25, 631–637 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Metchnikoff, E. Lectures on the Comparative Pathology of Inflammation. (Reprinted by Dover, New York, 1968). (Translated by F. A. Starling and E. H. Starling.)

    Google Scholar 

  49. Schwann, T. A. H. Mikroskopische Untersuchungen über die Übereinstimmung in der Struktur und dem Wachsthum der Thiere und Pflanzen (Sander, Berlin, Germany, 1839).

    Google Scholar 

  50. Coons, A. H. & Kaplan, M. H. Localization of antigens in tissue cells. Improvements in a method for the detection of antigen by means of fluorescent antibody. J. Exp. Med. 91, 1–13 (1950).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in our laboratory is funded by the Medical Research Council and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Imaging in Cell Biology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunn, G., Jones, G. Cell motility under the microscope: Vorsprung durch Technik. Nat Rev Mol Cell Biol 5, 667–672 (2004). https://doi.org/10.1038/nrm1439

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1439

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing