Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Plakins: Goliaths that link cell junctions and the cytoskeleton

Key Points

  • Plakins comprise a family of gigantic proteins that crosslink the cytoskeleton and that connect the cytoskeleton to cell junctions. The prototypical plakins BPAG1 (bullous pemphigoid antigen-1), desmoplakin and plectin were originally described by their association with desmosomes and hemidesmosomes, which are specific cell junctions in the epithelium that are linked to intermediate filaments.

  • Plakins have important roles in the maintenance of epidermal tissue architecture. The characterization of shortstop and VAB-10 — the Drosophila melanogaster and Caenorhabditis elegans plakin orthologues, respectively — showed that the functions of plakins are evolutionarily conserved.

  • Genetic analyses in mice and inverterbrates have revealed further roles for plakins in non-epidermal cells such as neurons, as well as roles that involve actin and microtubules. These studies highlight the functional importance of plakins in integrating two different cytoskeletal networks, which is vital for specific cellular functions.

  • The plakin gene locus undergoes alterative splicing to encode numerous isoforms that show tissue-specific expression profiles. The isoforms have unique functions and display different domain organizations, some of which show similarity to the spectrin family of proteins.

  • Mutations in the plakin genes are linked to several hereditary disorders of the skin and muscular system in humans. For example, mutations in plectin are implicated in a disorder called epidermolysis bullosa simplex with muscular dystrophy. Mice that lack plectin also exhibit the disease phenotype.

  • Plakins are thought to organize and maintain multiprotein complexes in different cellular locations and to link them to the cytoskeleton. An important challenge for the future is to identify all the specific interaction partners of plakins in different cells.

Abstract

Plakins comprise a family of proteins that crosslink cytoskeletal filaments and attach them to membrane-associated complexes at cell junctions. They were originally found associated with intermediate filaments and were believed to function primarily in maintaining epithelial tissue integrity. However, new plakins with unique isoforms that are enormous in size have been identified in the past few years. These new plakins have highlighted further functions in all the cytoskeletal networks, as well as in non-epithelial cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell-adhesion complexes in mammals.
Figure 2: Domain architecture of plakins.
Figure 3: The mammalian and inverterbrate plakin isoforms.
Figure 4: Plakins in mammalian epithelia.
Figure 5: Muscle–epidermal junction in Drosophila melanogaster.
Figure 6: Muscle–cuticle attachment in Caenorhabditis elegans.
Figure 7: The structures of domains that are present in plakins.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Ruhrberg, C. & Watt, F. M. The plakin family: versatile organizers of cytoskeletal architecture. Curr. Opin. Genet. Dev. 7, 392–397 (1997).

    CAS  PubMed  Google Scholar 

  2. Leung, C. L., Green, K. J. & Liem, R. K. Plakins: a family of versatile cytolinker proteins. Trends Cell Biol. 12, 37–45 (2002).

    CAS  Google Scholar 

  3. Roper, K., Gregory, S. L. & Brown, N. H. The 'spectraplakins': cytoskeletal giants with characteristics of both spectrin and plakin families. J. Cell Sci. 115, 4215–4225 (2002).

    CAS  PubMed  Google Scholar 

  4. Stanley, J. R., Hawley-Nelson, P., Yuspa, S. H., Shevach, E. M. & Katz, S. I. Characterization of bullous pemphigoid antigen: a unique basement membrane protein of stratified squamous epithelia. Cell 24, 897–903 (1981).

    CAS  PubMed  Google Scholar 

  5. Skerrow, C. J. & Matoltsy, A. G. Chemical characterization of isolated epidermal desmosomes. J. Cell Biol. 63, 524–530 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Pytela, R. & Wiche, G. High molecular weight polypeptides (270,000–340,000) from cultured cells are related to hog brain microtubule-associated proteins but copurify with intermediate filaments. Proc. Natl Acad. Sci. USA 77, 4808–4812 (1980).

    CAS  PubMed  Google Scholar 

  7. O'Keefe, E. J., Erickson, H. P. & Bennett, V. Desmoplakin I and desmoplakin II. Purification and characterization. J. Biol. Chem. 264, 8310–8318 (1989).

    CAS  PubMed  Google Scholar 

  8. Stanley, J. R., Tanaka, T., Mueller, S., Klaus-Kovtun, V. & Roop, D. Isolation of complementary DNA for bullous pemphigoid antigen by use of patients' autoantibodies. J. Clin. Invest. 82, 1864–1870 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sawamura, D. et al. Bullous pemphigoid antigen (BPAG1): cDNA cloning and mapping of the gene to the short arm of human chromosome 6. Genomics 8, 722–726 (1990).

    CAS  PubMed  Google Scholar 

  10. Green, K. J. et al. Structure of the human desmoplakins. Implications for function in the desmosomal plaque. J. Biol. Chem. 265, 11406–11407 (1990).

    CAS  PubMed  Google Scholar 

  11. Wiche, G. et al. Cloning and sequencing of rat plectin indicates a 466-kD polypeptide chain with a three-domain structure based on a central alpha-helical coiled coil. J. Cell Biol. 114, 83–99 (1991).

    CAS  PubMed  Google Scholar 

  12. Wiche, G. Role of plectin in cytoskeleton organization and dynamics. J. Cell Sci. 111, 2477–2486 (1998).

    CAS  PubMed  Google Scholar 

  13. Green, K. J. & Gaudry, C. A. Are desmosomes more than tethers for intermediate filaments? Nature Rev. Mol. Cell Biol. 1, 208–216 (2000).

    CAS  Google Scholar 

  14. Getsios, S., Huen, A. C. & Green, K. J. Working out the strength and flexibility of desmosomes. Nature Rev. Mol. Cell Biol. 5, 271–281 (2004).

    CAS  Google Scholar 

  15. Borradori, L. & Sonnenberg, A. Structure and function of hemidesmosomes: more than simple adhesion complexes. J. Invest. Dermatol. 112, 411–418 (1999).

    CAS  PubMed  Google Scholar 

  16. Hahn, B. S. & Labouesse, M. Tissue integrity: hemidesmosomes and resistance to stress. Curr. Biol. 11, R858–R861 (2001).

    CAS  PubMed  Google Scholar 

  17. Steinbock, F. A. & Wiche, G. Plectin: a cytolinker by design. Biol. Chem. 380, 151–158 (1999).

    CAS  PubMed  Google Scholar 

  18. Ruhrberg, C., Hajibagheri, M. A., Parry, D. A. & Watt, F. M. Periplakin, a novel component of cornified envelopes and desmosomes that belongs to the plakin family and forms complexes with envoplakin. J. Cell Biol. 139, 1835–1849 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ruhrberg, C., Hajibagheri, M. A., Simon, M., Dooley, T. P. & Watt, F. M. Envoplakin, a novel precursor of the cornified envelope that has homology to desmoplakin. J. Cell Biol. 134, 715–729 (1996).

    CAS  PubMed  Google Scholar 

  20. Fujiwara, S., Kohno, K., Iwamatsu, A., Naito, I. & Shinkai, H. Identification of a 450-kDa human epidermal autoantigen as a new member of the plectin family. J. Invest. Dermatol. 106, 1125–1130 (1996).

    CAS  PubMed  Google Scholar 

  21. Spazierer, D. et al. Epiplakin gene analysis in mouse reveals a single exon encoding a 725-kDa protein with expression restricted to epithelial tissues. J. Biol. Chem. 278, 31657–31666 (2003).

    CAS  PubMed  Google Scholar 

  22. Walsh, E. P. & Brown, N. H. A screen to identify Drosophila genes required for integrin-mediated adhesion. Genetics 150, 791–805 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Prout, M., Damania, Z., Soong, J., Fristrom, D. & Fristrom, J. W. Autosomal mutations affecting adhesion between wing surfaces in Drosophila melanogaster. Genetics 146, 275–285 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Vactor, D. V., Sink, H., Fambrough, D., Tsoo, R. & Goodman, C. S. Genes that control neuromuscular specificity in Drosophila. Cell 73, 1137–1153 (1993).

    CAS  PubMed  Google Scholar 

  25. Gregory, S. L. & Brown, N. H. kakapo, a gene required for adhesion between and within cell layers in Drosophila, encodes a large cytoskeletal linker protein related to plectin and dystrophin. J. Cell Biol. 143, 1271–1282 (1998). This paper reports the cloning and characterization of the D. melanogaster plakin orthologue kakapo (now referred to as shortstop or shot ), and was the first to show that plakins have a conserved biological role in maintaining tissue architecture in the epidermis.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bosher, J. M. et al. The Caenorhabditis elegans vab-10 spectraplakin isoforms protect the epidermis against internal and external forces. J. Cell Biol. 161, 757–768 (2003). This was the first paper to characterize the only plakin that is present in C. elegans , and it describes the unique functions of two main isoforms in the epidermis.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hresko, M. C., Schriefer, L. A., Shrimankar, P. & Waterston, R. H. Myotactin, a novel hypodermal protein involved in muscle-cell adhesion in Caenorhabditis elegans. J. Cell Biol. 146, 659–672 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Leung, C. L., Sun, D., Zheng, M., Knowles, D. R. & Liem, R. K. Microtubule actin cross-linking factor (MACF): a hybrid of dystonin and dystrophin that can interact with the actin and microtubule cytoskeletons. J. Cell Biol. 147, 1275–1286 (1999). This was the first report of a mammalian plakin that, unlike the classic epithelial plakins, has spectrin repeats and a divergent carboxyl terminus that can interact with microtubules. The similarities with D. melanogaster Shot were evident from this report.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Leung, C. L., Zheng, M., Prater, S. M. & Liem, R. K. The BPAG1 locus: alternative splicing produces multiple isoforms with distinct cytoskeletal linker domains, including predominant isoforms in neurons and muscles. J. Cell Biol. 154, 691–697 (2001). This was the first report to show that the BPAG1 gene locus comprises novel exons that are spliced differently. Splicing produces isoforms that contain spectrin repeats (resembling those in MACF) and plakin repeats.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Okuda, T. et al. Molecular cloning of macrophin, a human homologue of Drosophila kakapo with a close structural similarity to plectin and dystrophin. Biochem. Biophys. Res. Commun. 264, 568–574 (1999).

    CAS  PubMed  Google Scholar 

  31. Sun, Y. et al. Molecular cloning and characterization of human trabeculin-α, a giant protein defining a new family of actin-binding proteins. J. Biol. Chem. 274, 33522–33530 (1999).

    CAS  PubMed  Google Scholar 

  32. Okumura, M., Yamakawa, H., Ohara, O. & Owaribe, K. Novel alternative splicings of BPAG1 (bullous pemphigoid antigen 1) including the domain structure closely related to MACF (microtubule actin cross-linking factor). J. Biol. Chem. 277, 6682–6687 (2002).

    CAS  PubMed  Google Scholar 

  33. Byers, T. J., Beggs, A. H., McNally, E. M. & Kunkel, L. M. Novel actin crosslinker superfamily member identified by a two step degenerate PCR procedure. FEBS Lett. 368, 500–504 (1995).

    CAS  PubMed  Google Scholar 

  34. Durbeej, M. & Campbell, K. P. Muscular dystrophies involving the dystrophin–glycoprotein complex: an overview of current mouse models. Curr. Opin. Genet. Dev. 12, 349–361 (2002).

    CAS  Google Scholar 

  35. Karakesisoglou, I., Yang, Y. & Fuchs, E. An epidermal plakin that integrates actin and microtubule networks at cellular junctions. J. Cell Biol. 149, 195–208 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Stradal, T., Kranewitter, W., Winder, S. J. & Gimona, M. CH domains revisited. FEBS Lett. 431, 134–137 (1998).

    CAS  PubMed  Google Scholar 

  37. Gimona, M., Djinovic-Carugo, K., Kranewitter, W. J. & Winder, S. J. Functional plasticity of CH domains. FEBS Lett. 513, 98–106 (2002).

    CAS  PubMed  Google Scholar 

  38. Korenbaum, E. & Rivero, F. Calponin homology domains at a glance. J. Cell Sci. 115, 3543–3545 (2002).

    CAS  PubMed  Google Scholar 

  39. Hartwig, J. H. Actin-binding proteins. 1: spectrin superfamily. Protein Profile 1, 706–778 (1994).

    CAS  PubMed  Google Scholar 

  40. Fontao, L. et al. The interaction of plectin with actin: evidence for cross-linking of actin filaments by dimerization of the actin-binding domain of plectin. J. Cell Sci. 114, 2065–2076 (2001).

    CAS  PubMed  Google Scholar 

  41. Yang, Y. et al. An essential cytoskeletal linker protein connecting actin microfilaments to intermediate filaments. Cell 86, 655–665 (1996).

    CAS  PubMed  Google Scholar 

  42. Lee, S. & Kolodziej, P. A. Short Stop provides an essential link between F-actin and microtubules during axon extension. Development 129, 1195–1204 (2002). This paper shows the functional importance of the D. melanogaster plakin Shot in the development of the proper neuronal architecture through its interaction with two different cytoskeletal networks.

    CAS  PubMed  Google Scholar 

  43. Way, M., Pope, B. & Weeds, A. G. Evidence for functional homology in the F-actin binding domains of gelsolin and alpha-actinin: implications for the requirements of severing and capping. J. Cell Biol. 119, 835–842 (1992).

    CAS  PubMed  Google Scholar 

  44. Winder, S. J. et al. Utrophin actin binding domain: analysis of actin binding and cellular targeting. J. Cell Sci. 108, 63–71 (1995).

    CAS  PubMed  Google Scholar 

  45. Yang, Y. et al. Integrators of the cytoskeleton that stabilize microtubules. Cell 98, 229–238 (1999).

    CAS  PubMed  Google Scholar 

  46. Geerts, D. et al. Binding of integrin α6β4 to plectin prevents plectin association with F-actin but does not interfere with intermediate filament binding. J. Cell Biol. 147, 417–434 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Litjens, S. H. et al. Specificity of binding of the plectin actin-binding domain to β4 integrin. Mol. Biol. Cell 14, 4039–4050 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Urbanikova, L., Janda, L., Popov, A., Wiche, G. & Sevcik, J. Purification, crystallization and preliminary X-ray analysis of the plectin actin-binding domain. Acta Crystallogr. D Biol. Crystallogr. 58, 1368–1370 (2002).

    PubMed  Google Scholar 

  49. Garcia-Alvarez, B., Bobkov, A., Sonnenberg, A. & de Pereda, J. M. Structural and functional analysis of the actin binding domain of plectin suggests alternative mechanisms for binding to F-actin and integrin β4 . Structure 11, 615–625 (2003). This paper reports the high-resolution crystal structure of the actin-binding domain of plectin and, using biophysical studies, shows that it undergoes a conformational change when it binds to F-actin, but not when it interacts with β 4 -integrin.

    CAS  PubMed  Google Scholar 

  50. Young, K. G., Pool, M. & Kothary, R. Bpag1 localization to actin filaments and to the nucleus is regulated by its N-terminus. J. Cell Sci. 116, 4543–4555 (2003).

    CAS  PubMed  Google Scholar 

  51. Virata, M. L., Wagner, R. M., Parry, D. A. & Green, K. J. Molecular structure of the human desmoplakin I and II amino terminus. Proc. Natl Acad. Sci. USA 89, 544–548 (1992).

    CAS  PubMed  Google Scholar 

  52. Letunic, I. et al. Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Res. 30, 242–244 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 30, 276–280 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lovejoy, B. et al. Crystal structure of a synthetic triple-stranded α-helical bundle. Science 259, 1288–1293 (1993).

    CAS  PubMed  Google Scholar 

  55. Rezniczek, G. A., de Pereda, J. M., Reipert, S. & Wiche, G. Linking integrin α6β4-based cell adhesion to the intermediate filament cytoskeleton: direct interaction between the β4 subunit and plectin at multiple molecular sites. J. Cell Biol. 141, 209–225 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Koster, J., Geerts, D., Favre, B., Borradori, L. & Sonnenberg, A. Analysis of the interactions between BP180, BP230, plectin and the integrin α6β4 important for hemidesmosome assembly. J. Cell Sci. 116, 387–399 (2003).

    CAS  PubMed  Google Scholar 

  57. Favre, B. et al. The hemidesmosomal protein bullous pemphigoid antigen 1 and the integrin β4 subunit bind to ERBIN. Molecular cloning of multiple alternative splice variants of ERBIN and analysis of their tissue expression. J. Biol. Chem. 276, 32427–32436 (2001).

    CAS  PubMed  Google Scholar 

  58. Green, K. J., Virata, M. L., Elgart, G. W., Stanley, J. R. & Parry, D. A. Comparative structural analysis of desmoplakin, bullous pemphigoid antigen and plectin: members of a new gene family involved in organization of intermediate filaments. Int. J. Biol. Macromol. 14, 145–153 (1992).

    CAS  PubMed  Google Scholar 

  59. Stappenbeck, T. S. et al. Functional analysis of desmoplakin domains: specification of the interaction with keratin versus vimentin intermediate filament networks. J. Cell Biol. 123, 691–705 (1993).

    CAS  PubMed  Google Scholar 

  60. Kouklis, P. D., Hutton, E. & Fuchs, E. Making a connection: direct binding between keratin intermediate filaments and desmosomal proteins. J. Cell Biol. 127, 1049–1060 (1994).

    CAS  PubMed  Google Scholar 

  61. Meng, J. J., Bornslaeger, E. A., Green, K. J., Steinert, P. M. & Ip, W. Two-hybrid analysis reveals fundamental differences in direct interactions between desmoplakin and cell type-specific intermediate filaments. J. Biol. Chem. 272, 21495–21503 (1997).

    CAS  PubMed  Google Scholar 

  62. Nikolic, B., Mac Nulty, E., Mir, B. & Wiche, G. Basic amino acid residue cluster within nuclear targeting sequence motif is essential for cytoplasmic plectin–vimentin network junctions. J. Cell Biol. 134, 1455–1467 (1996).

    CAS  PubMed  Google Scholar 

  63. Leung, C. L., Sun, D. & Liem, R. K. The intermediate filament protein peripherin is the specific interaction partner of mouse BPAG1-n (dystonin) in neurons. J. Cell Biol. 144, 435–446 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Karashima, T. & Watt, F. M. Interaction of periplakin and envoplakin with intermediate filaments. J. Cell Sci. 115, 5027–5037 (2002).

    CAS  PubMed  Google Scholar 

  65. Choi, H. J., Park-Snyder, S., Pascoe, L. T., Green, K. J. & Weis, W. I. Structures of two intermediate filament-binding fragments of desmoplakin reveal a unique repeat motif structure. Nature Struct. Biol. 9, 612–620 (2002). This study was the first attempt to understand plakin function using high-resolution structural analysis, and it describes the crystal structure of two plakin-repeat domains of desmoplakin.

    CAS  PubMed  Google Scholar 

  66. Gorina, S. & Pavletich, N. P. Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science 274, 1001–1005 (1996).

    CAS  PubMed  Google Scholar 

  67. Fontao, L. et al. Interaction of the bullous pemphigoid antigen 1 (BP230) and desmoplakin with intermediate filaments is mediated by distinct sequences within their COOH terminus. Mol. Biol. Cell 14, 1978–1992 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Roper, K. & Brown, N. H. Maintaining epithelial integrity: a function for gigantic spectraplakin isoforms in adherens junctions. J. Cell Biol. 162, 1305–1315 (2003).

    PubMed  PubMed Central  Google Scholar 

  69. Speicher, D. W. & Marchesi, V. T. Erythrocyte spectrin is comprised of many homologous triple helical segments. Nature 311, 177–180 (1984).

    CAS  PubMed  Google Scholar 

  70. Djinovic-Carugo, K., Gautel, M., Ylanne, J. & Young, P. The spectrin repeat: a structural platform for cytoskeletal protein assemblies. FEBS Lett. 513, 119–123 (2002).

    CAS  PubMed  Google Scholar 

  71. Winder, S. J., Gibson, T. J. & Kendrick-Jones, J. Low probability of dystrophin and utrophin coiled coil regions forming dimers. Biochem. Soc. Trans. 24, 280S (1996).

    CAS  PubMed  Google Scholar 

  72. Rybakova, I. N. & Ervasti, J. M. Dystrophin–glycoprotein complex is monomeric and stabilizes actin filaments in vitro through a lateral association. J. Biol. Chem. 272, 28771–28778 (1997).

    CAS  PubMed  Google Scholar 

  73. Liu, J. J. et al. BPAG1n4 is essential for retrograde axonal transport in sensory neurons. J. Cell Biol. 163, 223–229 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Sun, C. X., Robb, V. A. & Gutmann, D. H. Protein 4.1 tumor suppressors: getting a FERM grip on growth regulation. J. Cell Sci. 115, 3991–4000 (2002).

    CAS  PubMed  Google Scholar 

  75. Brancolini, C., Bottega, S. & Schneider, C. Gas2, a growth arrest-specific protein, is a component of the microfilament network system. J. Cell Biol. 117, 1251–1261 (1992).

    CAS  PubMed  Google Scholar 

  76. Zucman-Rossi, J., Legoix, P. & Thomas, G. Identification of new members of the Gas2 and Ras families in the 22q12 chromosome region. Genomics 38, 247–254 (1996).

    CAS  PubMed  Google Scholar 

  77. Goriounov, D., Leung, C. L. & Liem, R. K. Protein products of human Gas2-related genes on chromosomes 17 and 22 (hGAR17 and hGAR22) associate with both microfilaments and microtubules. J. Cell Sci. 116, 1045–1058 (2003).

    CAS  PubMed  Google Scholar 

  78. Sun, D., Leung, C. L. & Liem, R. K. Characterization of the microtubule binding domain of microtubule actin crosslinking factor (MACF): identification of a novel group of microtubule associated proteins. J. Cell Sci. 114, 161–172 (2001).

    CAS  PubMed  Google Scholar 

  79. Subramanian, A. et al. Shortstop recruits EB1/APC1 and promotes microtubule assembly at the muscle-tendon junction. Curr. Biol. 13, 1086–1095 (2003). This study was one of the first to identify novel interaction partners of plakins. It showed that the D. melanogaster plakin Shot forms a complex with EB1 and APC and organizes microtubules at specific cell junctions that are vital for withstanding tissue stress.

    CAS  PubMed  Google Scholar 

  80. Andra, K. et al. Targeted inactivation of plectin reveals essential function in maintaining the integrity of skin, muscle, and heart cytoarchitecture. Genes Dev. 11, 3143–3156 (1997). This paper shows that plectin -null mice recapitulate some of the phenotypes of a lethal form of EBS–MD, a hereditary skin disease in humans that is linked to mutations in the plectin gene.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Guo, L. et al. Gene targeting of BPAG1: abnormalities in mechanical strength and cell migration in stratified epithelia and neurologic degeneration. Cell 81, 233–243 (1995).

    CAS  PubMed  Google Scholar 

  82. Gao, F. B., Brenman, J. E., Jan, L. Y. & Jan, Y. N. Genes regulating dendritic outgrowth, branching, and routing in Drosophila. Genes Dev. 13, 2549–2561 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Prokop, A., Uhler, J., Roote, J. & Bate, M. The kakapo mutation affects terminal arborization and central dendritic sprouting of Drosophila motorneurons. J. Cell Biol. 143, 1283–1294 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lee, S., Harris, K. L., Whitington, P. M. & Kolodziej, P. A. short stop is allelic to kakapo, and encodes rod-like cytoskeletal-associated proteins required for axon extension. J. Neurosci. 20, 1096–1108 (2000).

    CAS  PubMed  Google Scholar 

  85. Rodriguez, O. C. et al. Conserved microtubule–actin interactions in cell movement and morphogenesis. Nature Cell Biol. 5, 599–609 (2003).

    CAS  PubMed  Google Scholar 

  86. Reuter, J. E. et al. A mosaic genetic screen for genes necessary for Drosophila mushroom body neuronal morphogenesis. Development 130, 1203–1213 (2003).

    CAS  PubMed  Google Scholar 

  87. Gallicano, G. I. et al. Desmoplakin is required early in development for assembly of desmosomes and cytoskeletal linkage. J. Cell Biol. 143, 2009–2022 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Gallicano, G. I., Bauer, C. & Fuchs, E. Rescuing desmoplakin function in extra-embryonic ectoderm reveals the importance of this protein in embryonic heart, neuroepithelium, skin and vasculature. Development 128, 929–941 (2001).

    CAS  PubMed  Google Scholar 

  89. Vasioukhin, V., Bowers, E., Bauer, C., Degenstein, L. & Fuchs, E. Desmoplakin is essential in epidermal sheet formation. Nature Cell Biol. 3, 1076–1085 (2001). By using a targeted gene-knockout analysis in mice, this study showed that desmoplakin is, surprisingly, not required for the assembly of desmosomes, but that it is needed for their ability to form strong adhesions and also for the stability of adherens junctions. Both of the latter properties are important for proper epidermal architecture.

    CAS  PubMed  Google Scholar 

  90. Kodama, A., Karakesisoglou, I., Wong, E., Vaezi, A. & Fuchs, E. ACF7: an essential integrator of microtubule dynamics. Cell 115, 343–354 (2003). This paper highlights the importance of plakins in integrating the cytoskeleton by showing that the absence of MACF (ACF7) disturbs microtubule dynamics in polarized cells, in part, due to the failure to link microtubules to the F-actin network.

    CAS  PubMed  Google Scholar 

  91. Maatta, A., DiColandrea, T., Groot, K. & Watt, F. M. Gene targeting of envoplakin, a cytoskeletal linker protein and precursor of the epidermal cornified envelope. Mol. Cell. Biol. 21, 7047–7053 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Brown, A., Bernier, G., Mathieu, M., Rossant, J. & Kothary, R. The mouse dystonia musculorum gene is a neural isoform of bullous pemphigoid antigen 1. Nature Genet. 10, 301–306 (1995). This paper was the first to highlight, using a forward genetics analysis, an unexpected role of plakins in non-epidermal tissues. It identified a BPAG1 isoform that is expressed in the nervous system, the absence of which causes neurodegeneration. See also Ref. 81 for a reverse genetics approach.

    CAS  PubMed  Google Scholar 

  93. Brown, A., Dalpe, G., Mathieu, M. & Kothary, R. Cloning and characterization of the neural isoforms of human dystonin. Genomics 29, 777–780 (1995).

    CAS  PubMed  Google Scholar 

  94. Armstrong, D. K. et al. Haploinsufficiency of desmoplakin causes a striate subtype of palmoplantar keratoderma. Hum. Mol. Genet. 8, 143–148 (1999).

    CAS  PubMed  Google Scholar 

  95. Norgett, E. E. et al. Recessive mutation in desmoplakin disrupts desmoplakin–intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum. Mol. Genet. 9, 2761–2766 (2000).

    CAS  PubMed  Google Scholar 

  96. Alcalai, R., Metzger, S., Rosenheck, S., Meiner, V. & Chajek-Shaul, T. A recessive mutation in desmoplakin causes arrhythmogenic right ventricular dysplasia, skin disorder, and woolly hair. J. Am. Coll. Cardiol. 42, 319–327 (2003).

    CAS  PubMed  Google Scholar 

  97. Whittock, N. V. et al. Striate palmoplantar keratoderma resulting from desmoplakin haploinsufficiency. J. Invest. Dermatol. 113, 940–946 (1999).

    CAS  PubMed  Google Scholar 

  98. Whittock, N. V. et al. Compound heterozygosity for non-sense and mis-sense mutations in desmoplakin underlies skin fragility/woolly hair syndrome. J. Invest. Dermatol. 118, 232–238 (2002).

    CAS  PubMed  Google Scholar 

  99. Pulkkinen, L. et al. Homozygous deletion mutations in the plectin gene (PLEC1) in patients with epidermolysis bullosa simplex associated with late-onset muscular dystrophy. Hum. Mol. Genet. 5, 1539–1546 (1996). This paper highlights the importance of plakins from a clinical point of view by showing that a hereditary disorder in humans is linked to mutations in the plectin gene.

    CAS  PubMed  Google Scholar 

  100. Koss-Harnes, D. et al. A site-specific plectin mutation causes dominant epidermolysis bullosa simplex Ogna: two identical de novo mutations. J. Invest. Dermatol. 118, 87–93 (2002).

    CAS  PubMed  Google Scholar 

  101. Charlesworth, A. et al. Identification of a lethal form of epidermolysis bullosa simplex associated with a homozygous genetic mutation in plectin. J. Invest. Dermatol. 121, 1344–1348 (2003).

    CAS  PubMed  Google Scholar 

  102. Lee, S. & Kolodziej, P. A. The plakin Short Stop and the RhoA GTPase are required for E-cadherin-dependent apical surface remodeling during tracheal tube fusion. Development 129, 1509–1520 (2002).

    CAS  PubMed  Google Scholar 

  103. Volk, T. Singling out Drosophila tendon cells: a dialogue between two distinct cell types. Trends Genet. 15, 448–453 (1999).

    CAS  PubMed  Google Scholar 

  104. Roper, K. & Brown, N. H. A spectraplakin is enriched on the fusome and organizes microtubules during oocyte specification in Drosophila. Curr. Biol. 14, 99–110 (2004).

    CAS  PubMed  Google Scholar 

  105. Nakayama, M., Kikuno, R. & Ohara, O. Protein–protein interactions between large proteins: two-hybrid screening using a functionally classified library composed of long cDNAs. Genome Res. 12, 1773–1784 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Mercurio, A. M., Rabinovitz, I. & Shaw, L. M. The α6β4 integrin and epithelial cell migration. Curr. Opin. Cell Biol. 13, 541–545 (2001).

    CAS  PubMed  Google Scholar 

  107. Rezniczek, G. A., Abrahamsberg, C., Fuchs, P., Spazierer, D. & Wiche, G. Plectin 5′-transcript diversity: short alternative sequences determine stability of gene products, initiation of translation and subcellular localization of isoforms. Hum. Mol. Genet. 12, 3181–3194 (2003). This study highlights the inherent complexity in trying to understand plakin function by showing that the gene for plectin encodes numerous isoforms that display tissue-specific expression and different subcellular localizations and functions.

    CAS  PubMed  Google Scholar 

  108. Bernier, G. et al. Acf7 (MACF) is an actin and microtubule linker protein whose expression predominates in neural, muscle, and lung development. Dev. Dyn. 219, 216–225 (2000).

    CAS  PubMed  Google Scholar 

  109. Hatsell, S. & Cowin, P. Deconstructing desmoplakin. Nature Cell Biol. 3, E270–E272 (2001).

    CAS  PubMed  Google Scholar 

  110. Kalinin, A., Marekov, L. N. & Steinert, P. M. Assembly of the epidermal cornified cell envelope. J. Cell Sci. 114, 3069–3070 (2001).

    CAS  PubMed  Google Scholar 

  111. Kalinin, A. E., Kajava, A. V. & Steinert, P. M. Epithelial barrier function: assembly and structural features of the cornified cell envelope. Bioessays 24, 789–800 (2002).

    CAS  PubMed  Google Scholar 

  112. Plenefisch, J. D., Zhu, X. & Hedgecock, E. M. Fragile skeletal muscle attachments in dystrophic mutants of Caenorhabditis elegans: isolation and characterization of the mua genes. Development 127, 1197–1207 (2000).

    CAS  PubMed  Google Scholar 

  113. Grum, V. L., Li, D., MacDonald, R. I. & Mondragon, A. Structures of two repeats of spectrin suggest models of flexibility. Cell 98, 523–535 (1999).

    CAS  PubMed  Google Scholar 

  114. Wang, Y., Geer, L. Y., Chappey, C., Kans, J. A. & Bryant, S. H. Cn3D: sequence and structure views for Entrez. Trends Biochem. Sci. 25, 300–302 (2000).

    CAS  PubMed  Google Scholar 

  115. DeLano, W. in The PyMOL homepage [online], <http://pymol.sourceforge.net> (2002).

    Google Scholar 

Download references

Acknowledgements

The authors are supported by grants from the National Institutes of Health and the Muscular Dystrophy Association. We thank K. Green and members of the Liem laboratory for their input in this manuscript. We apologize to many colleagues and authors whose work we could not cite here because of space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald K. H. Liem.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

BPAG1

BPAG2

desmoplakin

dystrophin

EB1

EGF

envoplakin

Epiplakin

ErbB2

Erbin

GAS2

GAR22

MACF

periplakin

plakoglobin

plakophilin-1

plakophilin-2

plectin

β4-integrin

Flybase

kakapo

OMIM

epidermolysis bullosa simplex

muscular dystrophy

palmoplantar keratoderma

WormBase

vab-10

Glossary

CELL POLARITY

The asymmetric distribution of proteins, lipids and/or their complexes within the cell.

BULLOUS PEMPHIGOID

A chronic autoimmune skin disorder that is characterized by the presence of large blisters.

STRATIFIED SQUAMOUS EPITHELIA

A multilayered (stratified) epithelium such as is seen in the epidermis of the skin. It is formed by relatively flat (squamous) cells.

DESMOSOMES

Specialized junctions between adjacent epithelial cells that are mediated by desmosomal cadherins (called desmocollins and desmogleins) and are linked to keratin intermediate filaments.

HEMIDESMOSOMES

Specialized junctions between epithelial cells and the extracellular matrix that are mediated by α6β4-integrins and are associated with keratin intermediate filaments.

CORNIFIED ENVELOPE

The outermost specialized layer of protein and lipid in terminally differentiating epidermal cells that has a protective barrier function.

SPECTRIN REPEATS

Repeats of bundles of three α-helices that are found in the spectrin superfamily of proteins. Members of this superfamily function to organize the cytoskeleton in the cytoplasm and at the plasma membrane.

SH3 DOMAIN

(Src-homology-3 domain). A protein–protein interaction domain that recognizes a unique proline-rich peptide motif. This domain is found in many proteins that are involved in signal transduction and membrane–cytoskeleton interactions.

ARMADILLO-REPEAT FAMILY

A family of proteins that contain a repeat structure called an 'arm repeat' and that carry out dual roles in cell adhesion and signal transduction.

EB1–APC COMPLEX

(Microtubule-plus-end-binding protein-1–adenomatous-polyposis-coli complex). A complex that is located at the plus end of microtubules and that has an important role in the dynamics and stability of microtubules.

ADHERENS JUNCTIONS

Actin-filament-associated, epithelial cell–cell junctions that have classical cadherins as their core component.

FOLLICULAR EPITHELIA

Refers to the thin layer of epithelial cells that surround the developing oocyte, which is a widely used model system to study the generation of cell polarity.

DYNEIN–DYNACTIN COMPLEX

Dynein is a minus-end-directed microtubule motor protein that is involved in several cellular processes such as cell division, migration and intracellular transport. Dynactin is an accessory complex of dynein that is important for the activation and interaction of dynein with its targets.

ERM PROTEINS

(ezrin, radixin and moesin proteins). Membrane-associated proteins of the Band-4.1 superfamily, which link the cytoskeleton to the plasma membrane and are found predominantly in actin-rich cortical structures such as microvilli and lamellopodia.

FERM DOMAIN

A clover-shaped structural feature that interacts with the cytoplasmic domain of transmembrane proteins and membrane lipids. Such domains are found in the amino terminus of the Band-4.1 superfamily of proteins that link the actin cytoskeleton to the plasma membrane.

MICROTUBULE PLUS END

Refers to the dynamic end of microtubules that alternates between periods of growth and shrinkage and that is directed towards the cell surface. The minus end is the less dynamic end that is associated with the centrosome in the cell interior.

AXONAL TERMINAL ARBORIZATION

An elaborate branching architecture at the end of an axon.

GROWTH CONE

A highly dynamic, motile structure at the tip of a growing axon.

EXTRA-EMBRYONIC TISSUES

The external embryonic structure that is integrated with the uterus, provides nourishment and support to the foetus, and is shed off during birth.

HYPERKERATOSIS

Refers to an abnormal thickening of the outer layer of the skin.

CELL CORTEX

The region underlying the plasma membrane that is rich in actin filaments and associated proteins.

NEUREGULIN SIGNALLING PATHWAY

A cell–cell signal-transduction system in which neuregulins function as ligands for the ErbB family of receptor tyrosine kinases. These receptors are involved in the development and function of several tissues such as the nervous system and heart.

Rho

A member of the family of small GTPases that includes Rac and Cdc42. Small GTPases participate in signalling pathways that modulate the cytoskeleton and regulate diverse cellular processes such as cell migration and cell adhesion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jefferson, J., Leung, C. & Liem, R. Plakins: Goliaths that link cell junctions and the cytoskeleton. Nat Rev Mol Cell Biol 5, 542–553 (2004). https://doi.org/10.1038/nrm1425

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1425

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing