Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protein import into chloroplasts

Key Points

  • Protein import into chloroplasts occurs post-translationally across two membranes. The molecular machines that facilitate this movement are called the TOC and TIC translocons, and they are located in the outer- and inner-chloroplast-envelope membranes, respectively.

  • The TOC core complex consists of three functionally distinct subunits — a GTP-dependent receptor (TOC34), a β-barrel-type translocation channel (TOC75) and a GTP-dependent molecular motor (TOC159).

  • Translocation across the TIC complex is driven by ATP hydrolysis, which is probably required for the action of molecular chaperones, and import across the TIC complex might be regulated by redox control.

  • Chloroplasts are endosymbiotic organelles with an ancestral cyanobacterium origin. The TOC75 import channel is clearly of bacterial origin and could have been the initial import site.

  • Many TOC and TIC translocon subunits are coded for by several genes, which seem to be differentially expressed. The model plant Arabidopsis thaliana can be used for genetic approaches that can help us elucidate the function of individual isoforms.

Abstract

Chloroplasts are organelles of endosymbiotic origin, and they transferred most of their genetic information to the host nucleus during this process. They therefore have to import more than 95% of their protein complement post-translationally from the cytosol. In vivo results from the model plant Arabidopsis thaliana — together with biochemical, biophysical and structural data from other plants — now allow us to outline the mechanistic details of the molecular machines that facilitate this translocation. It has become clear that chloroplasts evolved a unique translocation system, which is inherited, in part, from their bacterial ancestors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein-import pathways into chloroplasts.
Figure 2: The chloroplast translocon complexes.
Figure 3: Model of the Arabidopsis thaliana TOC33 and TOC34 receptor cycles.
Figure 4: Working hypothesis for the action of TOC159.

Similar content being viewed by others

References

  1. Cavalier-Smith, T. Membrane heredity and early chloroplast evolution. Trends Plant Sci. 5, 174–182 (2000).

    CAS  PubMed  Google Scholar 

  2. Rujan, T. et al. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc. Natl Acad. Sci. USA 99, 429–441 (2002).

    Google Scholar 

  3. Pfanner, N. & Geissler, A. Versatility of the mitochondrial protein import machinery. Nature Rev. Mol. Cell. Biol. 2, 339–349 (2001).

    CAS  Google Scholar 

  4. Kunau, W. H. Peroxisomes: the extended shuttle to the peroxisome matrix. Curr. Biol. 11, R659–R662 (2001).

    CAS  PubMed  Google Scholar 

  5. Neuhaus, J. & Rogers, J. C. Sorting of proteins to vacuoles in plant cells. Plant Mol. Biol. 38, 127–144 (1998).

    CAS  PubMed  Google Scholar 

  6. Leister, D. Chloroplast research in the genomic age. Trends Genet. 19, 46–47 (2003).

    Google Scholar 

  7. Race, H. L., Herrmann, R. G. & Martin, W. Why have organelles retained genomes? Trends Genet. 15, 364–370 (1999).

    CAS  PubMed  Google Scholar 

  8. Mori, H. & Cline, K. Post-translational protein translocation into thylakoids by the Sec and ΔpH-dependent pathways. Biochim. Biophys. Acta 1541, 80–90 (2001).

    CAS  PubMed  Google Scholar 

  9. Vothknecht, U. & Westhoff, P. Biogenesis and origin of thylakoid membranes. Biochim. Biophys. Acta 1541, 91–101 (2001).

    CAS  PubMed  Google Scholar 

  10. Eichacker, L. A. & Henry, R. Function of a chloroplast SRP in thylakoid protein export. Biochim. Biophys. Acta 1541, 120–134 (2001).

    CAS  PubMed  Google Scholar 

  11. Van Dooren, D. D., Schwartzbach, S. D., Osafine, T. & McFadden, G. I. Translocation of proteins across the multiple membranes of complex plastids. Biochim. Biophys. Acta 1541, 34–53 (2001).

    CAS  PubMed  Google Scholar 

  12. Svesnikova, N., Soll, J. & Schleiff, E. Toc34 is a preprotein receptor regulated by GTP and phosphorylation. Proc. Natl Acad. Sci. USA 97, 4973–4978 (2000).

    Google Scholar 

  13. Young, M. E., Keegstra, K. & Froehlich, J. E. GTP promotes the formation of early-import intermediates but is not required during the translocation step of protein import into chloroplasts. Plant Physiol. 121, 237–243 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jackson-Constan, D., Akita, M. & Keegstra, K. Molecular chaperones involved in chloroplast protein import. Biochim. Biophys. Acta 1541, 102–113 (2001).

    CAS  PubMed  Google Scholar 

  15. Attardi, G. & Schatz, G. A. Biogenesis of mitochondria. Annu. Rev. Cell Biol. 4, 289–333 (1988).

    CAS  PubMed  Google Scholar 

  16. Deshaies, R. J., Koch, B. D., Werner-Washburne, M., Craig, E. & Schekmann, R. A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 332, 800–805 (1988).

    CAS  PubMed  Google Scholar 

  17. Zimmermann, R., Sagstetter, M., Lewis, M. J. & Pelham, H. R. B. Seventy-kDa heat shock proteins and an additional component from reticulocyte lysate stimulate import of M13 procoat protein into microsomes. EMBO J. 7, 2875–2880 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Waegemann, K., Paulsen, H. & Soll, J. Translocation of proteins into isolated chloroplasts requires cytosolic factors to obtain import competence. FEBS Lett. 261, 89–92 (1990).

    CAS  Google Scholar 

  19. Keegstra, K. & Froehlich, J. E. Protein import into chloroplasts. Curr. Opin. Plant Biol. 2, 471–476 (1999).

    CAS  PubMed  Google Scholar 

  20. Bauer, J., Hiltbrunner, A. & Kessler, F. Molecular biology of chloroplast biogenesis: gene expression, protein import and intraorganellar sorting. Cell Mol. Life Sci. 58, 420–433 (2001).

    CAS  PubMed  Google Scholar 

  21. Soll, J. Protein import into chloroplasts. Curr. Opin. Plant Biol. 5, 529–535 (2002).

    CAS  PubMed  Google Scholar 

  22. Chen, X. & Schnell, D. J. Protein import into chloroplasts. Trends Cell Biol. 9, 222–227 (1999).

    CAS  PubMed  Google Scholar 

  23. Bruce, B. D. The paradox of plastid transit peptides: conservation of function despite divergence in primary structure. Biochim. Biophys. Acta 1541, 2–21 (2001).

    CAS  PubMed  Google Scholar 

  24. Miras, S. et al. Non-canonical transit peptide for import into the chloroplast. J. Biol. Chem. 277, 47770–47778 (2002). An example of inner-chloroplast-envelope proteins that lack a cleavable transit peptide and are still targeted to chloroplasts.

    CAS  PubMed  Google Scholar 

  25. Emanuelsson, O. & von Heijne, G. Prediction of organellar targeting signals. Biochim. Biophys. Acta 1541, 114–119 (2001).

    CAS  PubMed  Google Scholar 

  26. Waegemann, K. & Soll, J. Phosphorylation of the transit sequence of chloroplast precursor proteins. J. Biol. Chem. 271, 6545–6554 (1996). Shows that different chloroplast preproteins contain a common phosphorylation site for a cytosolic protein kinase.

    CAS  PubMed  Google Scholar 

  27. May, T. & Soll, J. 14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants. Plant Cell 12, 53–63 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kessler, F., Blobel, G., Patel, H. A. & Schnell, D. J. Identification of two GTP-binding proteins in the chloroplast protein import machinery. Science 266, 1035–1039 (1994). Contains the initial description of TOC34 and TOC159.

    CAS  PubMed  Google Scholar 

  29. Hirsch, S., Muckel, E., Heemeyer, F., von Heijine, G. & Soll, J. A receptor component of the chloroplast protein translocation machinery. Science 266, 1989–1992 (1994).

    CAS  PubMed  Google Scholar 

  30. Seedorf, M., Waegemann, K. & Soll, J. A constituent of the chloroplast import complex represents a new type of GTP-binding protein. Plant J. 7, 401–411 (1995).

    CAS  PubMed  Google Scholar 

  31. Perry, S. E. & Keegstra, K. Envelope membrane proteins that interact with chloroplastic precursor proteins. Plant Cell 6, 93–105 (1994). Used a chemical-crosslinking approach to identify chloroplast translocon subunits.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Schnell, D. J., Kessler, F. & Blobel, G. Isolation of components of the chloroplast protein import machinery. Science 266, 1007–1012 (1994).

    CAS  PubMed  Google Scholar 

  33. Waegemann, K. & Soll, J. Characterisation of the protein import apparatus in isolated outer envelopes of chloroplast. Plant J. 1, 149–159 (1991). Established that isolated outer-envelope membranes are a bona fide system to study the early steps in protein translocation.

    Google Scholar 

  34. Ma, Y., Kouranov, A., LaSala, S. & Schnell, D. J. Two components of the chloroplast protein import apparatus, IAP86 and IAP75, interact with the transit sequence during the recognition and translocation of precursor proteins at the outer envelope. J. Cell. Biol. 134, 315–327 (1996).

    CAS  PubMed  Google Scholar 

  35. Kouranov, A. & Schnell, D. Analysis of the interaction of preproteins with the import machinery over the course of protein import into chloroplasts. J. Cell Biol. 139, 1677–1685 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lübeck, J. & Soll, J. Nucleoside diphosphate kinase from pea chloroplasts: purification, cDNA cloning and import into chloroplasts. Planta 196, 668–673 (1995).

    PubMed  Google Scholar 

  37. Tranel, P. J., Froehlich, J., Goyal, A. & Keegstra, K. A component of the chloroplastic protein import apparatus is targeted to the outer envelope membrane via a novel pathway. EMBO J. 14, 2436–2446 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sohrt, K. & Soll, J. Toc64, a new component of the protein translocon of chloroplasts. J. Cell Biol. 148, 1213–1221 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Schleiff, E., Soll, J., Küchler, M., Kühlbrandt, W. & Harrer, R. Characterisation of the translocon of the outer envelope of chloroplasts. J. Cell. Biol. 160, 541–551 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jackson-Constan, D. & Keegstra, K. Arabidopsis genes encoding components of the chloroplastic protein import apparatus. Plant Physiol. 125, 1567–1576 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Schleiff, E., Jelic, M. & Soll, J. A GTP-driven motor moves proteins across the outer envelope of chloroplasts. Proc. Natl Acad. Sci. USA 100, 4604–4609 (2003). Reports the reconstitution of protein translocation in a liposome system using single purified TOC components.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Schleiff, E. et al. Structural and GTP/GDP requirements for transit peptide recognition by the cytosolic domain of the chloroplast outer envelope receptor, Toc34. Biochemistry 41, 1934–1946 (2002).

    CAS  PubMed  Google Scholar 

  43. Jelic, M. et al. The chloroplast import receptor Toc34 functions as preprotein-regulated GTPase. Biol. Chem. 383, 1875–1883 (2002). Showed that endogenous TOC34 GTPase activity is stimulated specifically by preproteins.

    CAS  PubMed  Google Scholar 

  44. Scheffzek, K., Ahmadian, M. R., & Wittinghofer, A. GTPase-activating proteins: helping hands to complement an active site. Trends Biochem. Sci. 23, 257–262 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Cherfils, J. & Chardin, P. GEFs: structural basis for their activation of small GTP-binding proteins. Trends Biochem. Sci. 24, 306–311 (1999).

    CAS  PubMed  Google Scholar 

  46. Fulgosi, H. & Soll, J. The chloroplast protein import receptors Toc34 and Toc159 are phosphorylated by distinct protein kinases. J. Biol. Chem. 277, 8934–8940 (2002).

    CAS  PubMed  Google Scholar 

  47. Jelic, M., Schleiff, E. & Soll, J. Two Toc34 homologues with different properties. Biochemistry 42, 5906–5916 (2003). Showed that At TOC33 and At TOC34 are differently regulated and that they have different affinities for certain preproteins.

    CAS  PubMed  Google Scholar 

  48. Gutensohn, M., Schulz, B., Nicolay, P. & Flügge, U. Functional analysis of the two Arabidopsis homologues of Toc34, a component of the chloroplast protein import apparatus. Plant J. 23, 771–783 (2000). Used an antisense approach to investigate the roles of At TOC33 and At TOC34 in plastid biogenesis and import.

    CAS  PubMed  Google Scholar 

  49. Yu, T. -S. & Li, H. Chloroplast protein translocon components atToc159 and atToc33 are not essential for chloroplast biogenesis in guard cells and root cells. Plant Physiol. 127, 90–96 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Jarvis. P. et al. An Arabidopsis mutant defective in the plastid general protein import apparatus. Science 282, 100–103 (1998). Used T-DNA insertion lines were to elucidate the phenotype of an At toc33 knockout.

    CAS  PubMed  Google Scholar 

  51. Kubis, S. et al. The Arabidopsis ppi1 mutant is specifically defective in the expression, chloroplast import and accumulation of photosynthetic proteins. Plant Cell 15, 1859–1871 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bauer, J. et al. The major protein import receptor of plastids is essential for chloroplast biogenesis. Nature 403, 203–207 (2000). Describes an At toc159 T-DNA knockout line, including the resulting phenotype and ultrastructure changes.

    CAS  PubMed  Google Scholar 

  53. Hiltbrunner, A., Bauer, J., Alvarez-Huerta, M. & Kessler, F. Protein translocon at the Arabidopsis outer chloroplast membrane. Biochem. Cell Biol. 79, 629–635 (2001).

    CAS  PubMed  Google Scholar 

  54. Hiltbrunner, A. et al. Targeting of an abundant cytosolic form of the protein import receptor at Toc159 to the outer chloroplast membrane. J. Cell Biol. 154, 309–316 (2001). Proposes that TOC159 functions as a receptor that shuttles between the cytosol and the chloroplast surface.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bauer, J. et al. Essential role of the G-domain in targeting of the protein import receptor atToc159 to the chloroplast outer membrane. J. Cell Biol. 159, 845–854 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Weibel, P., Hiltbrunner, A., Brand, L. & Kessler, F. Dimerization of Toc-GTPases at the chloroplast protein import machinery. J. Biol. Chem. 278, 37321–37329 (2003).

    CAS  PubMed  Google Scholar 

  57. Wallas, T., Smith, M., Sanchez-Nieto, S. & Schnell, D. The roles of Toc34 and Toc75 in targeting the Toc159 preprotein receptor to chloroplasts. J. Biol. Chem. 278, 44289–44297 (2003).

    CAS  PubMed  Google Scholar 

  58. Lee, K. H., Kim, S. J., Lee, X. J. & Hwang, I. The M domain of atToc159 plays an essential role in the import of proteins into chloroplasts and chloroplast biogenesis. J. Biol. Chem. 278, 36794–36805 (2003).

    CAS  PubMed  Google Scholar 

  59. Sickmann, A. et al. The proteome of Saccharomyces cerevisiae mitochondria. Proc. Natl Acad. Sci. USA 100, 13207–13212 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen, K., Chen, X. & Schnell, D. Initial binding of preproteins involving the Toc159 receptor can be bypassed during protein import into chloroplasts. Plant Physiol. 122, 813–822 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Friedman, A. & Keegstra, K. Chloroplast protein import — quantitative analysis of precursor binding. Plant Physiol. 89, 993–999 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Cline, K., Werner-Washburne, M., Lubben, T. & Keegstra, K. Precursors to two nuclear-encoded chloroplast proteins bind to the outer envelope membrane before being imported into chloroplasts. J. Biol. Chem. 260, 3691–3696 (1985).

    CAS  PubMed  Google Scholar 

  63. Svesnikova, N., Grimm, R., Soll, J. & Schleiff, E. Topology studies of the chloroplast protein import channel Toc75. Biol. Chem. 381, 687–693 (2000).

    Google Scholar 

  64. Hinnah, S., Hill, K., Wagner, R., Schlicher, T. & Soll, J. Reconstitution of a chloroplast protein import channel. EMBO J. 16, 7351–7360 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hinnah, S. C., Wagner, R., Sveshnikova, N., Harrer, R. & Soll, J. The chloroplast protein import channel Toc75: pore properties and interaction with transit peptides. Biophys. J. 83, 899–911 (2002). Describes the electrophysical characterization of the protein-import channel TOC75.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Eckart, K., Eichacker, L., Sohrt, K., Schleiff, E., Heins, L. & Soll, J. A Toc75-like protein import channel is abundant in chloroplasts. EMBO rep. 3, 557–562 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bölter, B., Soll, J., Schulz, A., Hinnah, S. & Wagner, R. Origin of a chloroplast protein importer. Proc. Natl Acad. Sci USA 95, 15831–15836 (1998).

    PubMed  PubMed Central  Google Scholar 

  68. Reumann, S., Davila-Aponte, J. & Keegstra, K. The evolutionary origin of the protein-translocating channel of chloroplastic envelope membranes: identification of a cyanobacterial homologue. Proc. Natl Acad. Sci. USA 96, 784–789 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Young, J. C., Hoogenraad, N. J. & Hartl, F. U. Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112, 41–50 (2003). Characterized the role of the TOM70–HSP70 interaction, which occurs through tetratricopeptide-repeat domains of TOM70, in mitochondrial import.

    CAS  PubMed  Google Scholar 

  70. Wiedemann, N., Pfanner, N. & Ryan, M. T. The three modules of ADP/ATP carrier cooperate in receptor recruitment and translocation into mitochondria. EMBO J. 20, 951–960 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Soll, J. & Waegemann, K. A functionally active protein import complex from chloroplasts. Plant J. 2, 253–256 (1992).

    CAS  Google Scholar 

  72. Sun J. -Y. et al. Crystal structure of pea Toc34, a novel GTPase of the chloroplast protein translocon. Nature Struct. Biol. 9, 95–100 (2002). The first crystal structure of a chloroplast import machinery subunit, TOC34.

    PubMed  Google Scholar 

  73. Smith, M., Hiltbrunner, A., Kessler, F. & Schnell, D. The targeting of the atToc159 preprotein receptor to the chloroplast outer membrane is mediated by its GTPase domain and is regulated by GTP. J. Cell Biol. 159, 833–843 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Driessen, A., Manting, E. & van der Does, C. The structural basis of protein targeting and translocation in bacteria. Nature Struct. Biol. 8, 492–498 (2001).

    CAS  PubMed  Google Scholar 

  75. Scott, S. V. & Theg, S. M. A new chloroplast protein import intermediate reveals distinct translocation machineries in the two envelope membranes: energetics and mechanistic implications. J. Cell Biol. 132, 63–75 (1996).

    CAS  PubMed  Google Scholar 

  76. Schindler, C., Hracky, R. & Soll, J. Protein transport in chloroplasts: ATP is prerequisite. Z. Naturforsch. 42c, 103–108 (1987).

    Google Scholar 

  77. Flügge, U. I. & Hinz, G. Energy dependence of protein translocation into chloroplasts. Eur. J. Biochem. 160, 563–567 (1986). The initial report that established that ATP hydrolysis is required for preprotein import.

    PubMed  Google Scholar 

  78. Pain, D. & Blobel, G. Protein import into chloroplasts requires a chloroplast ATPase. Proc. Natl Acad. Sci. USA 84, 3288–3292 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kessler, F. & Blobel, G. Interaction of the protein import and folding machineries of the chloroplast. Proc. Natl Acad. Sci. USA 93, 7684–7689 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Nielsen, E., Akita, M., Davila-Aponte, J. & Keegstra, K. Stable association of chloroplastic precursors with protein translocation complexes that contain proteins from both envelope membranes and a stromal Hsp100 molecular chaperone. EMBO J. 16, 935–946 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lübeck, J., Soll, J., Akita, M., Nielsen, E. & Keegstra, K. Topology of IEP110, a component of the chloroplastic protein import machinery present in the inner envelope membrane. EMBO J. 15, 4230–4238 (1996).

    PubMed  PubMed Central  Google Scholar 

  82. Akita, M., Nielsen, E. & Keegstra, K. Identification of protein transport complexes in the chloroplastic envelope membranes via chemical cross-linking. J. Cell. Biol. 136, 9983–9994 (1997).

    Google Scholar 

  83. Heins, L. et al. The preprotein conducting channel at the inner envelope membrane of plastids. EMBO J. 21, 2616–2625 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kouranov, A., Chen, X., Fuks, B. & Schnell, D. J. Tic20 and Tic22 are new components of the protein import apparatus at the chloroplast inner envelope membrane. J. Chem. Biol. 143, 991–1002 (1998).

    CAS  Google Scholar 

  85. Jackson, D., Froehlich, J. & Keegstra, K. The hydrophilic domain of Tic110, an inner envelope membrane component of the chloroplastic protein translocation apparatus, faces the stromal compartment. J. Biol. Chem. 273, 16583–16588 (1998).

    CAS  PubMed  Google Scholar 

  86. Inaba, T., Li, M., Avarez-Huerta, M., Kessler, F. & Schnell, D. atTic110 functions as a scaffold for coordinating the stromal events of protein import into chloroplasts. J. Biol. Chem. 278, 38617–38627 (2003).

    CAS  PubMed  Google Scholar 

  87. Caliebe, A., Grimm, R., Kaiser, G., Lübeck, J., Soll, J. & Heins, L. The chloroplastic protein import machinery contains a Rieske-type iron-sulfur cluster and a mononuclear iron-binding protein. EMBO J. 16, 7342–7350 (1997). Blue-native polyacrylamide gel electrophoresis was used to analyse the composition of the TIC complex.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Küchler, M., Decker, S., Soll, J. & Heins, L. Protein import into chloroplasts involves redox-regulated proteins. EMBO J. 21, 6136–6145 (2002).

    PubMed  PubMed Central  Google Scholar 

  89. Hirohashi, T., Hase, T. & Nakai, M. Maize non-photosynthetic ferredoxin precursor is missorted to the intermembrane space of chloroplasts in the presence of light. Plant Physiol. 125, 2154–2163 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Stahl, T., Glockmann, C., Soll, J. & Heins, L. Tic40, a new 'old' subunit of the chloroplast protein import translocon. J. Biol. Chem. 274, 37467–37472 (1999).

    CAS  PubMed  Google Scholar 

  91. Chou, M. -L. et al. Tic40, a membrane-anchored co-chaperone homolog in the chloroplast protein translocon. EMBO J. 22, 2970–2980 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Rassow, J., Dekker, P., van Wilpe, S., Meijer M. & Soll, J. The preprotein translocase of the mitochondrial inner membrane: function and evolution. J. Mol. Biol. 286, 105–120 (1999).

    CAS  PubMed  Google Scholar 

  93. Chen, X., Smith, M. D., Fitzpatrick, L. & Schnell, D. J. In vivo analysis of the role of atTic20 in protein import into chloroplasts. Plant Cell 14, 641–654 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Sun, C. -W., Chen, L. -J., Lin, L. -C. & Li, H. Leaf-specific upregulation of chloroplast translocon genes by a CCT motif-containing protein, CIA2. Plant Cell 13, 2053–2061 (2001). Describes the design of a new screen that enabled the authors to select new types of import mutant.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Heins, L. & Soll, J. Chloroplast biogenesis: mixing the prokaryotic and the eukaryotic? Curr. Biol. 8, 215–217 (1998).

    Google Scholar 

  96. Reumann, S. & Keegstra, K. The endosymbiotic origin of the protein import machinery of chloroplastic envelope membranes. Trends Plant Sci. 4, 302–307 (1999). Contains a compilation of the genes and gene families that encode the subunits of the TOC and TIC translocons.

    CAS  PubMed  Google Scholar 

  97. Becker, T., Jelic, M., Vojta, A., Radunz, A., Soll, J. & Schleiff, E. Preprotein recognition by the Toc complex. EMBO J. 23, 520–530 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank colleagues who made manuscripts available to us before their publication. The work described from our laboratory was supported by grants from the Deutsche Forschungsgemeinschaft, Fonds der Chemischen Industrie and the Volkswagenstiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Soll.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

TAIR

HSP70

TOC34

TOC75

TOC132

TOC159

Glossary

PLASTID

A plant-specific family of organelles, the differentiation of which is dependent on the plant organ and on plant development.

APICOPLAST

A non-photosynthetic plastid that is surrounded by four membranes and that still synthesizes essential metabolites for the host.

HSP70 FAMILY

Heat shock proteins that have a molecular weight of 70 kDa and that function as molecular chaperones.

14-3-3 PROTEINS

A family of ubiquitous regulatory molecules that function through protein–protein interactions.

T-DNA

(transfer DNA). The part of the Agrobacterium tumefaciens tumour-inducing (Ti) plasmid that is incorporated into the genome of infected plant cells. These conjugative plasmids can be used as tools to insert foreign DNA into plant cells.

PHOTOAUTOTROPHIC

Organisms — for example, plants or cyanobacteria — that use light as an energy source to convert inorganic material into organic matter.

SEED ABORTION

The development of a seed — that is, an embryo — is stopped because of a fatal error in differentiation.

MERISTEMATIC

Actively dividing plant issue.

COTYLEDON STAGE

This stage corresponds to the appearance of the first 'leaves' that emerge during germination of the embryo.

TETRATRICOPEPTIDE MOTIF

A loosely conserved domain of 30–40 amino acids that is involved in protein–protein interactions.

IRON–SULPHUR CENTRE

Iron ions that are complexed by inorganic sulphur and by the amino-acid cysteine function as redox elements in electron-transfer reactions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soll, J., Schleiff, E. Protein import into chloroplasts. Nat Rev Mol Cell Biol 5, 198–208 (2004). https://doi.org/10.1038/nrm1333

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1333

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing