Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Caveolae — from ultrastructure to molecular mechanisms

Abstract

Almost 50 years after the first sighting of small pits that covered the surface of mammalian cells, investigators are now getting to grips with the detailed workings of these enigmatic structures that we now know as caveolae.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The fat-cell plasma membrane.
Figure 2: Caveolae in fat cells.
Figure 3: Caveolin-3 in muscle.

References

  1. Palade, G. E. Fine structure of blood capillaries. J. Appl. Phys. 24, 1424 (1953).

    Google Scholar 

  2. Yamada, E. The fine structures of the gall bladder epithelium of the mouse. J. Biophys. Biochem. Cytol. 1, 445–458 (1955).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bruns, R. R. & Palade, G. E. Studies on blood capillaries. II. Transport of ferritin molecules across the wall of muscle capillaries. J. Cell Biol. 37, 277–299 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Simionescu, N., Simionescu, M. & Palade, G. E. Permeability of muscle capillaries to small heme-peptides. Evidence for the existence of patent transendothelial channels. J. Cell Biol. 64, 586–607 (1975).

    Article  CAS  PubMed  Google Scholar 

  5. Bundgaard, M. Vesicular transport in capillary endothelium: does it occur? Fed. Proc. 42, 2425–2430 (1983).

    CAS  PubMed  Google Scholar 

  6. Bundgaard, M., Frokjaer-Jensen, J. & Crone, C. Endothelial plasmalemmal vesicles as elements in a system of branching invaginations from the cell surface. Proc. Natl Acad. Sci. USA 76, 6439–6442 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Popescu, L. Conceptual model of the excitation-contraction coupling in smooth muscle: the possible role of the surface microvesicles. Studia Biophysica 44, 141–153 (1974).

    CAS  Google Scholar 

  8. Severs, N. J. Caveolae: static inpocketings of the plasma membrane, dynamic vesicles or plain artifact? J. Cell Sci. 90, 341–348 (1988).

    Article  PubMed  Google Scholar 

  9. Rizzo, V., McIntosh, D. P., Oh, P. & Schnitzer, J. E. In situ flow activates endothelial nitric oxide synthase in luminal caveolae of endothelium with rapid caveolin dissociation and calmodulin association. J. Biol. Chem. 273, 34724–34729 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Isshiki, M. & Anderson, R. G. Calcium signal transduction from caveolae. Cell Calcium 26, 201–208 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Fujimoto, T. Calcium pump of the plasma membrane is localized in caveolae. J. Cell Biol. 120, 1147–1157 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Isshiki, M. et al. Sites of Ca(2+) wave initiation move with caveolae to the trailing edge of migrating cells. J. Cell Sci. 115, 475–484 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Isshiki, M., Ying, Y. S., Fujita, T. & Anderson, R. G. A molecular sensor detects signal transduction from caveolae in living cells. J. Biol. Chem. 277, 43389–43398 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Novikoff, A. B., Novikoff, P. M., Rosen, O. M. & Rubin, C. S. Organelle relationships in cultured 3T3-L1 preadipocytes. J. Cell Biol. 87, 180–196 (1980).

    Article  CAS  PubMed  Google Scholar 

  15. Ishikawa, H. Formation of elaborate networks of T-system tubules in cultured skeletal muscle with special reference to the T-system formation. J. Cell Biol. 38, 51–66 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Montesano, R., Roth, J., Robert, A. & Orci, L. Non-coated membrane invaginations are involved in binding and internalization of cholera and tetanus toxins. Nature 296, 651–653 (1982).

    Article  CAS  PubMed  Google Scholar 

  17. Rothberg, K. G., Ying, Y. S., Kamen, B. A. & Anderson, R. G. Cholesterol controls the clustering of the glycophospholipid-anchored membrane receptor for 5-methyltetrahydrofolate. J. Cell Biol. 111, 2931–2938 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Mayor, S., Rothberg, K. G. & Maxfield, F. R. Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking. Science 264, 1948–1951 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Schnitzer, J. E., McIntosh, D. P., Dvorak, A. M., Liu, J. & Oh, P. Separation of caveolae from associated microdomains of GPI-anchored proteins. Science 269, 1435–1439 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Smart, E. J., Mineo, C. & Anderson, R. G. Clustered folate receptors deliver 5-methyltetrahydrofolate to cytoplasm of MA104 cells. J. Cell Biol. 134, 1169–1177 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Sabharanjak, S., Sharma, P., Parton, R. G. & Mayor, S. GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev. Cell 2, 411–423 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Ritter, T. E., Fajardo, O., Matsue, H., Anderson, R. G. & Lacey, S. W. Folate receptors targeted to clathrin-coated pits cannot regulate vitamin uptake. Proc. Natl Acad. Sci. USA 92, 3824–3828 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Oh, P., McIntosh, D. P. & Schnitzer, J. E. Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J. Cell Biol. 141, 101–114 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thomsen, P., Roepstorff, K., Stahlhut, M. & van Deurs, B. Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol. Biol. Cell. 13, 238–250 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Parton, R. G., Joggerst, B. & Simons, K. Regulated internalization of caveolae. J. Cell Biol. 127, 1199–1215 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Smart, E. J., Foster, D. C., Ying, Y. S., Kamen, B. A. & Anderson, R. G. Protein kinase C activators inhibit receptor-mediated potocytosis by preventing internalization of caveolae. J. Cell Biol. 124, 307–313 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Kartenbeck, J., Stukenbrok, H. & Helenius, A. Endocytosis of simian virus 40 into the endoplasmic reticulum. J. Cell Biol. 109, 2721–2729 (1989).

    Article  CAS  PubMed  Google Scholar 

  28. Anderson, H. A., Chen, Y. & Norkin, L. C. Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Mol. Biol. Cell 7, 1825–1834 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stang, E., Kartenbeck, J. & Parton, R. G. Major histocompatibility complex class I molecules mediate association of SV40 with caveolae. Mol. Biol. Cell 8, 47–57 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Glenney, J. R. Jr. Tyrosine phosphorylation of a 22-kDa protein is correlated with transformation by Rous sarcoma virus. J. Biol. Chem. 264, 20163–20166 (1989).

    Article  CAS  PubMed  Google Scholar 

  31. Rothberg, K. G. et al. Caveolin, a protein component of caveolae membrane coats. Cell 68, 673–682 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Kurzchalia, T. V. et al. VIP21, a 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles. J. Cell Biol. 118, 1003–1014 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Dupree, P., Parton, R. G., Raposo, G., Kurzchalia, T. V. & Simons, K. Caveolae and sorting in the trans-Golgi network of epithelial cells. EMBO J. 12, 1597–1605 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fra, A. M., Williamson, E., Simons, K. & Parton, R. G. De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc. Natl Acad. Sci. USA 92, 8655–8659 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Scherer, P. E. et al. Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc. Natl Acad. Sci. USA 93, 131–135 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Way, M. & Parton, R. G. M-caveolin, a muscle-specific caveolin-related protein. FEBS Lett. 376, 108–112 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Tang, Z. et al. Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J. Biol. Chem. 271, 2255–2261 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Liu, P., Li, W. P., Machleidt, T. & Anderson, R. G. Identification of caveolin-1 in lipoprotein particles secreted by exocrine cells. Nature Cell Biol. 1, 369–375 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Tahir, S. A. et al. Secreted caveolin-1 stimulates cell survival/clonal growth and contributes to metastasis in androgen-insensitive prostate cancer. Cancer Res. 61, 3882–3885 (2001).

    CAS  PubMed  Google Scholar 

  40. Uittenbogaard, A., Ying, Y. & Smart, E. J. Characterization of a cytosolic heat-shock protein-caveolin chaperone complex. Involvement in cholesterol trafficking. J. Biol. Chem. 273, 6525–6532 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Couet, J., Li, S., Okamoto, T., Ikezu, T. & Lisanti, M. P. Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J. Biol. Chem. 272, 6525–6533 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Lisanti, M. P. et al. Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease. J. Cell Biol. 126, 111–126 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Mineo, C., James, G. L., Smart, E. J. & Anderson, R. G. Localization of epidermal growth factor-stimulated Ras/Raf-1 interaction to caveolae membrane. J. Biol. Chem. 271, 11930–11935 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Couet, J., Sargiacomo, M. & Lisanti, M. P. Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J. Biol. Chem. 272, 30429–30438 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Okamoto, T., Schlegel, A., Scherer, P. E. & Lisanti, M. P. Caveolins, a family of scaffolding proteins for organizing 'preassembled signalling complexes' at the plasma membrane. J. Biol. Chem. 273, 5419–5422 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Nomura, R., Inuo, C., Takahashi, Y., Asano, T. & Fujimoto, T. Two-dimensional distribution of Gi2α in the plasma membrane: a critical evaluation by immunocytochemistry. FEBS Lett. 415, 139–144 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Huang, C. et al. Organization of G proteins and adenylyl cyclase at the plasma membrane. Mol. Biol. Cell. 8, 2365–2378 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ringerike, T., Blystad, F. D., Levy, F. O., Madshus, I. H. & Stang, E. Cholesterol is important in control of EGF receptor kinase activity but EGF receptors are not concentrated in caveolae. J. Cell Sci. 115, 1331–1340 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nature Rev. Mol. Cell Biol. 1, 31–39 (2000).

    Article  CAS  Google Scholar 

  50. Garcia-Cardena, G. et al. Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. J. Biol. Chem. 272, 25437–25440 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Bucci, M. et al. In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nature Med. 6, 1362–1367 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Sowa, G., Pypaert, M. & Sessa, W. C. Distinction between signalling mechanisms in lipid rafts vs caveolae. Proc. Natl Acad. Sci. USA 98, 14072–14077 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Montesano, R. Inhomogeneous distribution of filipin–sterol complexes in smooth muscle cell plasma membrane. Nature 280, 328–329 (1979).

    Article  CAS  PubMed  Google Scholar 

  54. Anderson, R. G. Plasmalemmal caveolae and GPI-anchored membrane proteins. Curr. Opin. Cell. Biol. 5, 647–652 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Smart, E. J., Ying, Y. S., Conrad, P. A. & Anderson, R. G. Caveolin moves from caveolae to the Golgi apparatus in response to cholesterol oxidation. J. Cell Biol. 127, 1185–1197 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Murata, M. et al. VIP21/caveolin is a cholesterol-binding protein. Proc. Natl Acad. Sci. USA 92, 10339–10343 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Trigatti, B. L., Anderson, R. G. & Gerber, G. E. Identification of caveolin-1 as a fatty acid binding protein. Biochem. Biophys. Res. Commun. 255, 34–39 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Fielding, C. J. & Fielding, P. E. Caveolae and intracellular trafficking of cholesterol. Adv. Drug Deliv. Rev. 49, 251–264 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Roy, S. et al. Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nature Cell Biol. 1, 98–105 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Carozzi, A. J. et al. Inhibition of lipid raft-dependent signalling by a dystrophy-associated mutant of caveolin-3. J. Biol. Chem. 277, 17944–17949 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Henderson, L. P. et al. Embryonic striatal neurons from niemann-pick type C mice exhibit defects in cholesterol metabolism and neurotrophin responsiveness. J. Biol. Chem. 275, 20179–20187 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Feron, O., Dessy, C., Moniotte, S., Desager, J. P. & Balligand, J. L. Hypercholesterolemia decreases nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase. J. Clin. Invest. 103, 897–905 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hagiwara, Y. et al. Caveolin-3 deficiency causes muscle degeneration in mice. Hum. Mol. Genet. 9, 3047–3054 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Galbiati, F. et al. Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities. J. Biol. Chem. 276, 21425–21433 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Parton, R. G., Way, M., Zorzi, N. & Stang, E. Caveolin-3 associates with developing T-tubules during muscle differentiation. J. Cell Biol. 136, 137–154 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Drab, M. et al. Loss of Caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293, 2449–2552 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Razani, B. et al. Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J. Biol. Chem. 276, 38121–38138 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Schubert, W. et al. Caveolae-deficient endothelial cells show defects in the uptake and transport of albumin in vivo. J. Biol. Chem. 276, 48619–48622 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Sotgia, F. et al. Intracellular retention of glycosylphosphatidyl inositol-linked proteins in caveolin-deficient cells. Mol. Cell. Biol. 22, 3905–3926 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Razani, B. et al. Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. J. Biol. Chem. 277, 8635–8647 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Pol, A. et al. A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance. J. Cell Biol. 152, 1057–1070 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fernandez, I., Ying, Y., Albanesi, J. & Anderson, R. G. Mechanism of caveolin filament assembly. Proc. Natl Acad. Sci. USA 99, 11193–11198 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pelkmans, L. & Helenius, A. Endocytosis via caveolae. Traffic 3, 311–320 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Pelkmans, L., Puntener, D. & Helenius, A. Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296, 535–539 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Richterova, Z. et al. Caveolae are involved in the trafficking of mouse polyomavirus virions and artificial VP1 pseudocapsids toward cell nuclei. J. Virol. 75, 10880–10891 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Marjomaki, V. et al. Internalization of echovirus 1 in caveolae. J. Virol. 76, 1856–1865 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shin, J. S. & Abraham, S. N. Co-option of endocytic functions of cellular caveolae by pathogens. Immunology 102, 2–7 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Norkin, L. C., Wolfrom, S. A. & Stuart, E. S. Association of caveolin with Chlamydia trachomatis inclusions at early and late stages of infection. Exp. Cell Res. 266, 229–238 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Koleske, A. J., Baltimore, D. & Lisanti, M. P. Reduction of caveolin and caveolae in oncogenically transformed cells. Proc. Natl Acad. Sci. USA 92, 1381–1385 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lee, S. W., Reimer, C. L., Oh, P., Campbell, D. B. & Schnitzer, J. E. Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene 16, 1391–1397 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Hayashi, K. et al. Invasion activating caveolin-1 mutation in human scirrhous breast cancers. Cancer Res. 61, 2361–2364 (2001).

    CAS  PubMed  Google Scholar 

  82. Nasu, Y. et al. Suppression of caveolin expression induces androgen sensitivity in metastatic androgen-insensitive mouse prostate cancer cells. Nature Med. 4, 1062–1064 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Sotgia, F. et al. Caveolin-3 directly interacts with the C-terminal tail of β-dystroglycan. Identification of a central WW-like domain within caveolin family members. J. Biol. Chem. 275, 38048–38058 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Matsuda, C. et al. The sarcolemmal proteins dysferlin and caveolin-3 interact in skeletal muscle. Hum. Mol. Genet. 10, 1761–1766 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Li, L. et al. Caveolin-1 mediates testosterone-stimulated survival/clonal growth and promotes metastatic activities in prostate cancer cells. Cancer Res. 61, 4386–4392 (2001).

    CAS  PubMed  Google Scholar 

  86. Liscovitch, M. & Lavie, Y. Multidrug resistance: a role for cholesterol efflux pathways? Trends Biochem. Sci. 25, 530–534 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. McNally, E. M. et al. Caveolin-3 in muscular dystrophy. Hum. Mol. Genet. 7, 871–877 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Minetti, C. et al. Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nature Genet. 18, 365–368 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Vorgerd, M. et al. A sporadic case of rippling muscle disease caused by a de novo caveolin-3 mutation. Neurology 57, 2273–2277 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Carbone, I. et al. Mutation in the CAV3 gene causes partial caveolin-3 deficiency and hyperCKemia. Neurology 54, 1373–1376 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Merlini, L. et al. Familial isolated hyperCKaemia associated with a new mutation in the caveolin-3 (CAV-3) gene. J. Neurol. Neurosurg. Psychiatry 73, 65–67 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Razani, B. et al. Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Mol. Cell. Biol. 22, 2329–2344 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I am grateful to members of the Parton laboratory, past and present, for suggestions and encouragement. I also thank B. van Deurs, T. Thompson and T. Fujimoto for their comments. I apologise to authors whose primary work is not cited because of space constraints. Support from the National Health and Medical Research Council of Australia, the Heart Research Foundation and the Human Frontiers Science Foundation is gratefully acknowledged. The Centre for Functional and Applied Genomics is a Special Research Centre of the Australian Research Council.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

albumin

caveolin-1

caveolin-2

caveolin-3

dynamin

dysferlin

dystroglycan

folate receptor

NO synthase

protein kinase Cα

CancerNet

Breast cancer

prostate carcinoma

OMIM

Niemann-Pick disease type 2 C

FURTHER INFORMATION

Robert G. Parton's laboratory

Glossary

CAVEOLAE

'Cave-like' invaginations of the cell surface that contain caveolins.

CLATHRIN-COATED-PIT-MEDIATED INTERNALIZATION

The best-understood pathway by which macromolecules are internalized at the plasma membrane through pits that are coated in the structural protein clathrin. The macromolecules are then delivered to early endosomes, then late endosomes and, finally, to lysosomes, where they are degraded. Recycling back to the plasma membrane occurs from early endosomes.

LIPID RAFTS

Liquid ordered phase of membrane with specific lipid composition. They are dynamic assemblies of cholesterol and sphingolipids.

SIMIAN VIRUS 40

(SV40). Relatively simple, non-enveloped — that is, non-membrane-enclosed — oncogenic virus. SV40 is used as a model for transformation. To infect the cell, the virus passes from the cell surface to the endoplasmic reticulum and then to the nucleus, where uncoating and replication occurs.

TRANSVERSE (T)-TUBULES

A system of surface-connected membranes in muscle, which enables a nerve impulse to travel to the interior of the muscle fibre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parton, R. Caveolae — from ultrastructure to molecular mechanisms. Nat Rev Mol Cell Biol 4, 162–167 (2003). https://doi.org/10.1038/nrm1017

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1017

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing