RESEARCH HIGHLIGHTS

pro-survival BCL-2 proteins can establish a positive feedback loop

the interactions of pro-survival and pro-apoptotic BCL-2 proteins. Wu *et al.* demonstrated that BH3 mimetics also interfered with the interactions of pro-survival BCL-2 proteins with SUFU, resulting in increased SUFU levels and phosphorylation. Importantly, the application of BH3 mimetics reduced the levels of pro-survival BCL-2 proteins and restricted the growth of tumours induced by overactive Hedgehog signalling.

were linked to the cell cycle and

transcripts was generally observed at later timepoints (towards mitotic exit), suggesting that genes regulating

basic cell functions and cell growth

are prioritized over genes with more

Overall, low-level transcription

persists in mitosis and high-level

transcription is gradually reacti-

vated during progression through

mitosis and into G1. The biological

significance of mitotic transcription

remains to be determined, although

it is plausible that the maintenance

of gene expression during mitosis

supports daughter cell integration

into the surrounding extracellular

space following division and primes

them for the robust gene expression

ORIGINAL ARTICLE Palozola, K. C. et al. Mitotic

transcription and waves of gene reactivation during mitotic exit. Science http://dx.doi.org/

10.1126/science.aal4671 (2017)

Paulina Strzyz

necessary for their growth and

basic functions.

specialized functions.

DNA replication. Interestingly, the increase in cell type-specific

Overall, pro-survival BCL-2 proteins can reinforce their anti-apoptotic effects by driving their own expression through the Hedgehog effector GLI. This finding sheds new light on the complexity of apoptosis regulation and on the mechanisms of action of BH3 mimetics and their utility for cancer therapy.

Paulina Strzyz

ORIGINAL ARTICLE Wu, X. et al. Extramitochondrial prosurvival BCL-2 proteins regulate gene transcription by inhibiting the SUFU tumour suppressor. *Nat. Cell Biol.* **19**, 1226–1236 (2017)

FURTHER READING Czabotar, P. E. et al. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. **15**, 49–63 (2014)

Journal club

THE DISCOVERY OF CATALYTIC RNA

In 1978, Tom Cech started his lab at the University of Colorado and the project he set out on was to study the processing of ribosomal RNA (rRNA) in the ciliated protozoa, *Tetrahymena*. *Tetrahymena* was chosen because its rRNA genes are amplified about 10,000 times, so it is likely to provide a ready source of rRNA precursors. Of note is that the 26S rRNA gene in *Tetrahymena* is interrupted by an intron of 400 nucleotides.

A nuclear extract was developed to produce radioactive precursors (Zaug and Cech, 1980). A distinct 9S RNA molecule was evident in the gels and this turned out to be the 400-nucleotide intron. The appearance of this internal sequence indicated that RNA splicing was occurring in the nuclear extracts.

The *in vitro* transcribed RNA still underwent the self-splicing reaction

The obvious next thing was to characterize the splicing of the intron. To produce a ³²P-labelled RNA substrate, labelled RNA was phenol extracted from nuclei and characterized by gel electrophoresis. In a wonderfully understated paragraph the discovery of RNA catalysis is reported (Cech *et al.*, 1981):

"We hoped to use the unspliced pre-rRNA ... as a substrate to assay for splicing activity in nuclear extracts. This approach proved to be impossible, however, because excision of the intervening sequence occurred when the isolated RNA was incubated in transcription cocktail at normal salt concentration in the absence of a nuclear extract."

Papers rarely describe the actual circumstance of a discovery. In this case Art Zaug had carried out an *in vitro* splicing assay with a control lane containing no extract. The splicing reaction still took place. Exhaustive efforts to remove any protein still bound to the RNA after phenol extraction did not affect the reaction but this was not considered definite proof of the absence of a protein.

In a later paper, however, Kruger et al. (1982) described the cloning of a portion of the *Tetrahymena* rRNA gene containing the intron into an *Escherichia coli* plasmid. The *in vitro* transcribed RNA still underwent the self-splicing reaction, thereby proving that no protein is necessary.

Quite remarkably, Cech *et al.* (1981) also reported the correct mechanism of the reaction. GTP was found to be a required co-factor in the reaction, in which it forms a standard 3'–5' linkage with the 5' end of the intron, suggesting that the 3'-OH of GTP initiates the reaction by attacking the phosphodiester bond at the 5' splice site.

In addition to the revolutionary implications this result has for biochemistry, there are two additional points to be made. First, the paper by Cech et al. (1981) is science at its best. A bound protein catalyst would have been interesting but not revolutionary. Everything possible to prove or disprove the bound protein hypothesis was done. Second, that RNA can be a catalyst has profound implications for the origin of life. Protein enzymes might have appeared but they could not replicate, so there must have been a ribozyme that could catalyse its own replication. Such ribozymes were soon discovered (Doudna and Sjostak, 1989).

John Abelson Department of Biochemistry and Biophysics, University of California, San Francisco, USA johnabelson@gmail.com

The author declares no competing interests.

ORIGINAL ARTICLES Cech, T. R. et al. In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell **27**, 487–496 (1981) | Zaug, A, J. & Cech, T. R. In vitro splicing of the ribosomal RNA precursor in nuclei of Tetrahymena. Cell **19**, 331–338 (1980) | Kruger, K. et al. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell **31**, 147–157 (1982) | Doudna, J. A. & 5zostak, J. W. RNA-catalysed synthesis of complementarystrand RNA. Nature **339**, 519–522 (1989)