Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Notch signalling in context

Key Points

  • The highly conserved Notch cell–cell signalling pathway operates in many different contexts across which the consequences can differ widely, despite the fact that the core pathway is very simple.

  • Many different types of regulation contribute to the differing outcomes of Notch signalling, ranging from tissue-level coordination to nuclear governance.

  • The pattern of expression of the ligands (which are transmembrane proteins), receptors and crucial modifying enzymes is one level of regulation that is common to many signalling pathways. However, the one-to-one interaction between ligand and receptor in Notch signalling places extra emphasis on this type of regulation, especially because the ligand and receptor can cis-inhibit one another when present in the same cells.

  • 'Topological' tissue organization and the extent of cell–cell contacts are likely to be of unusual importance in influencing the levels of Notch activation because the ligands are transmembrane proteins.

  • Nuclear context, in the form of cell-type-specific transcription factors and chromatin organization, is a primary level of control in generating qualitatively different outcomes after Notch activation. In addition, the wiring of the gene regulatory networks in the signal-receiving cells contributes to the diversity of responses and to the nature of its crosstalk with other signalling pathways.

  • Together, these regulatory mechanisms make the Notch pathway versatile and able to undertake many different roles. But they are also susceptible to perturbations, and may be a contributory factor in Notch-related diseases.

Abstract

The highly conserved Notch signalling pathway functions in many different developmental and homeostatic processes, which raises the question of how this pathway can achieve such diverse outcomes. With a direct route from the membrane to the nucleus, the Notch pathway has fewer opportunities for regulation than do many other signalling pathways, yet it generates exquisitely patterned structures, including sensory hair cells and branched arterial networks. More confusingly, its activity promotes tissue growth and cancers in some circumstances but cell death and tumour suppression in others. Many different regulatory mechanisms help to shape the activity of the Notch pathway, generating functional outputs that are appropriate for each context. These mechanisms include the receptor–ligand landscape, the tissue topology, the nuclear environment and the connectivity of the regulatory networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ligand binding leads to exposure of the cleavage site in Notch.
Figure 2: The consequences of cis inhibition and Fringe expression on Notch signalling.
Figure 3: Influence of cell contacts and tissue architecture on signalling.
Figure 4: Regulation of the nuclear context.
Figure 5: Transitions in Notch-responsive programmes.

Similar content being viewed by others

References

  1. Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Bray, S. J. Notch signalling: a simple pathway becomes complex. Nat. Rev. Mol. Cell Biol. 7, 678–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Kopan, R. & Ilagan, M. X. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137, 216–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kitagawa, M. Notch signalling in the nucleus: roles of Mastermind-like (MAML) transcriptional coactivators. J. Biochem. 159, 287–294 (2016).

    CAS  PubMed  Google Scholar 

  5. Collier, J. R., Monk, N. A., Maini, P. K. & Lewis, J. H. Pattern formation by lateral inhibition with feedback: a mathematical model of δ-notch intercellular signalling. J. Theor. Biol. 183, 429–446 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Vallejo, D. M., Caparros, E. & Dominguez, M. Targeting Notch signalling by the conserved miR-8/200 microRNA family in development and cancer cells. EMBO J. 30, 756–769 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brabletz, S. et al. The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. EMBO J. 30, 770–782 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim, J., Irvine, K. D. & Carroll, S. B. Cell recognition, signal induction, and symmetrical gene activation at the dorsal–ventral boundary of the developing Drosophila wing. Cell 82, 795–802 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Yan, S. J., Gu, Y., Li, W. X. & Fleming, R. J. Multiple signaling pathways and a selector protein sequentially regulate Drosophila wing development. Development 131, 285–298 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Shimojo, H. et al. Oscillatory control of Delta-like1 in cell interactions regulates dynamic gene expression and tissue morphogenesis. Genes Dev. 30, 102–116 (2016). This recent paper demonstrates Delta oscillations in neural stem cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bone, R. A. et al. Spatiotemporal oscillations of Notch1, Dll1 and NICD are coordinated across the mouse PSM. Development 141, 4806–4816 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wahi, K., Bochter, M. S. & Cole, S. E. The many roles of Notch signaling during vertebrate somitogenesis. Semin. Cell Dev. Biol. 49, 68–75 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Kiernan, A. E., Xu, J. & Gridley, T. The Notch ligand JAG1 is required for sensory progenitor development in the mammalian inner ear. PLoS Genet. 2, e4 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Neves, J., Parada, C., Chamizo, M. & Giraldez, F. Jagged 1 regulates the restriction of Sox2 expression in the developing chicken inner ear: a mechanism for sensory organ specification. Development 138, 735–744 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Haddon, C., Jiang, Y. J., Smithers, L. & Lewis, J. δ-Notch signalling and the patterning of sensory cell differentiation in the zebrafish ear: evidence from the mind bomb mutant. Development 125, 4637–4644 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Brooker, R., Hozumi, K. & Lewis, J. Notch ligands with contrasting functions: Jagged1 and Delta1 in the mouse inner ear. Development 133, 1277–1286 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Neves, J., Abello, G., Petrovic, J. & Giraldez, F. Patterning and cell fate in the inner ear: a case for Notch in the chicken embryo. Dev. Growth Differ. 55, 96–112 (2013).

    Article  PubMed  Google Scholar 

  18. Daudet, N., Ariza-McNaughton, L. & Lewis, J. Notch signalling is needed to maintain, but not to initiate, the formation of prosensory patches in the chick inner ear. Development 134, 2369–2378 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Benedito, R. & Hellstrom, M. Notch as a hub for signaling in angiogenesis. Exp. Cell Res. 319, 1281–1288 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Hellstrom, M. et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445, 776–780 (2007).

    Article  PubMed  CAS  Google Scholar 

  21. Kopan, R., Chen, S. & Liu, Z. Alagille, Notch, and robustness: why duplicating systems does not ensure redundancy. Pediatr. Nephrol. 29, 651–657 (2014).

    Article  PubMed  Google Scholar 

  22. Luca, V. C. et al. Structural biology. Structural basis for Notch1 engagement of Delta-like 4. Science 347, 847–853 (2015). This paper describes the binding interface between a ligand and Notch, and suggests a contribution from glycosylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gama-Norton, L. et al. Notch signal strength controls cell fate in the haemogenic endothelium. Nat. Commun. 6, 8510 (2015). By using different Cre derivatives of Notch1, this paper revealed differences in signalling strengths associated with two outcomes.

    Article  CAS  PubMed  Google Scholar 

  24. Petrovic, J. et al. Ligand-dependent Notch signaling strength orchestrates lateral induction and lateral inhibition in the developing inner ear. Development 141, 2313–2324 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Bellavia, D. et al. Notch3: from subtle structural differences to functional diversity. Oncogene 27, 5092–5098 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Penton, A. L., Leonard, L. D. & Spinner, N. B. Notch signaling in human development and disease. Semin. Cell Dev. Biol. 23, 450–457 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fan, X. et al. Notch1 and notch2 have opposite effects on embryonal brain tumor growth. Cancer Res. 64, 7787–7793 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Liu, Z. et al. The intracellular domains of Notch1 and Notch2 are functionally equivalent during development and carcinogenesis. Development 142, 2452–2463 (2015). This paper investigates functional differences between Notch1 and Notch2 by swapping their intracellular domains in the endogenous loci.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, Z. et al. The extracellular domain of Notch2 increases its cell-surface abundance and ligand responsiveness during kidney development. Dev. Cell 25, 585–598 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. del Alamo, D., Rouault, H. & Schweisguth, F. Mechanism and significance of cis-inhibition in Notch signalling. Curr. Biol. 21, R40–R47 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. de Celis, J. F. & Bray, S. Feed-back mechanisms affecting Notch activation at the dorsoventral boundary in the Drosophila wing. Development 124, 3241–3251 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Micchelli, C. A., Rulifson, E. J. & Blair, S. S. The function and regulation of cut expression on the wing margin of Drosophila: Notch, Wingless and a dominant negative role for Delta and Serrate. Development 124, 1485–1495 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Becam, I., Fiuza, U. M., Arias, A. M. & Milan, M. A role of receptor Notch in ligand cis-inhibition in Drosophila. Curr. Biol. 20, 554–560 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Glittenberg, M., Pitsouli, C., Garvey, C., Delidakis, C. & Bray, S. Role of conserved intracellular motifs in Serrate signalling. cis-inhibition and endocytosis. EMBO J. 25, 4697–4706 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sprinzak, D. et al. Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature 465, 86–90 (2010). These elegant modelling experiments suggest cis inhibition could make the switch between two mutually exclusive cell states ultra-sensitive.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Miller, A. C., Lyons, E. L. & Herman, T. G. cis-Inhibition of Notch by endogenous Delta biases the outcome of lateral inhibition. Curr. Biol. 19, 1378–1383 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Boareto, M. et al. Jagged–Delta asymmetry in Notch signaling can give rise to a Sender/Receiver hybrid phenotype. Proc. Natl Acad. Sci. USA 112, E402–E409 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. James, A. C. et al. Notch4 reveals a novel mechanism regulating Notch signal transduction. Biochim. Biophys. Acta 1843, 1272–1284 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Ladi, E. et al. The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands. J. Cell Biol. 170, 983–992 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hoyne, G. F., Chapman, G., Sontani, Y., Pursglove, S. E. & Dunwoodie, S. L. A cell autonomous role for the Notch ligand Delta-like 3 in αβ T-cell development. Immunol. Cell Biol. 89, 696–705 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Chapman, G., Sparrow, D. B., Kremmer, E. & Dunwoodie, S. L. Notch inhibition by the ligand Delta-like 3 defines the mechanism of abnormal vertebral segmentation in spondylocostal dysostosis. Hum. Mol. Genet. 20, 905–916 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Takeuchi, H. & Haltiwanger, R. S. Significance of glycosylation in Notch signaling. Biochem. Biophys. Res. Commun. 453, 235–242 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rana, N. A. & Haltiwanger, R. S. Fringe benefits: functional and structural impacts of O-glycosylation on the extracellular domain of Notch receptors. Curr. Opin. Struct. Biol. 21, 583–589 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang, L. T. et al. Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1. Mol. Biol. Cell 16, 927–942 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Panin, V. M., Papayannopoulos, V., Wilson, R. & Irvine, K. D. Fringe modulates Notch-ligand interactions. Nature 387, 908–912 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Doherty, D., Feger, G., Younger-Shepherd, S., Jan, L. Y. & Jan, Y. N. Delta is a ventral to dorsal signal complementary to Serrate, another Notch ligand, in Drosophila wing formation. Genes Dev. 10, 421–434 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Benedito, R. et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137, 1124–1135 (2009). This is an example of a context that illustrates divergent consequences from activation by different ligands.

    Article  CAS  PubMed  Google Scholar 

  48. D'Amato, G. et al. Sequential Notch activation regulates ventricular chamber development. Nat. Cell Biol. 18, 7–20 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Marklund, U. et al. Domain-specific control of neurogenesis achieved through patterned regulation of Notch ligand expression. Development 137, 437–445 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. LeBon, L., Lee, T. V., Sprinzak, D., Jafar-Nejad, H. & Elowitz, M. B. Fringe proteins modulate Notch-ligand cis and trans interactions to specify signaling states. eLife 3, e02950 (2014). This paper shows modelling experiments that shed light on how Fringe proteins can affect signalling capabilities.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Parks, A. L., Klueg, K. M., Stout, J. R. & Muskavitch, M. A. Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development 127, 1373–1385 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Weinmaster, G. & Fischer, J. A. Notch ligand ubiquitylation: what is it good for? Dev. Cell 21, 134–144 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fortini, M. E. & Bilder, D. Endocytic regulation of Notch signaling. Curr. Opin. Genet. Dev. 19, 323–328 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yamamoto, S., Charng, W. L. & Bellen, H. J. Endocytosis and intracellular trafficking of Notch and its ligands. Curr. Top. Dev. Biol. 92, 165–200 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Meloty-Kapella, L., Shergill, B., Kuon, J., Botvinick, E. & Weinmaster, G. Notch ligand endocytosis generates mechanical pulling force dependent on dynamin, epsins, and actin. Dev. Cell 22, 1299–1312 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gordon, W. R. et al. Structural basis for autoinhibition of Notch. Nat. Struct. Mol. Biol. 14, 295–300 (2007). This paper described the structure of the Notch NRR, providing insights into mechanisms of activation.

    Article  CAS  PubMed  Google Scholar 

  57. Gordon, W. R. et al. Mechanical allostery: evidence for a force requirement in the proteolytic activation of Notch. Dev. Cell 33, 729–736 (2015). These elegant experiments show that application of force could activate the receptor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang, W. & Struhl, G. Distinct roles for Mind bomb, Neuralized and Epsin in mediating DSL endocytosis and signaling in Drosophila. Development 132, 2883–2894 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Overstreet, E., Fitch, E. & Fischer, J. A. Fat facets and liquid facets promote Delta endocytosis and Delta signaling in the signaling cells. Development 131, 5355–5366 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Lai, E. C., Roegiers, F., Qin, X., Jan, Y. N. & Rubin, G. M. The ubiquitin ligase Drosophila Mind bomb promotes Notch signaling by regulating the localization and activity of Serrate and Delta. Development 132, 2319–2332 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Daskalaki, A. et al. Distinct intracellular motifs of Delta mediate its ubiquitylation and activation by Mindbomb1 and Neuralized. J. Cell Biol. 195, 1017–1031 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Le Borgne, R., Remaud, S., Hamel, S. & Schweisguth, F. Two distinct E3 ubiquitin ligases have complementary functions in the regulation of Delta and Serrate signaling in Drosophila. PLoS Biol. 3, e96 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Fontana, J. R. & Posakony, J. W. Both inhibition and activation of Notch signaling rely on a conserved Neuralized-binding motif in Bearded proteins and the Notch ligand Delta. Dev. Biol. 333, 373–385 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Koo, B. K. et al. An obligatory role of Mind bomb-1 in Notch signaling of mammalian development. PLoS ONE 2, e1221 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Le Borgne, R. & Schweisguth, F. Unequal segregation of Neuralized biases Notch activation during asymmetric cell division. Dev. Cell 5, 139–148 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Yoon, K. J. et al. Mind bomb 1-expressing intermediate progenitors generate notch signaling to maintain radial glial cells. Neuron 58, 519–531 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Dong, Z., Yang, N., Yeo, S. Y., Chitnis, A. & Guo, S. Intralineage directional Notch signaling regulates self-renewal and differentiation of asymmetrically dividing radial glia. Neuron 74, 65–78 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vaccari, T., Lu, H., Kanwar, R., Fortini, M. E. & Bilder, D. Endosomal entry regulates Notch receptor activation in Drosophila melanogaster. J. Cell Biol. 180, 755–762 (2008). This paper takes a systematic approach to assess the contribution made by endocytosis in the signal receiving cell.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Giebel, B. & Wodarz, A. Tumor suppressors: control of signaling by endocytosis. Curr. Biol. 16, R91–R92 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Thompson, B. J. et al. Tumor suppressor properties of the ESCRT-II complex component Vps25 in Drosophila. Dev. Cell 9, 711–720 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Troost, T., Jaeckel, S., Ohlenhard, N. & Klein, T. The tumour suppressor Lethal (2) giant discs is required for the function of the ESCRT-III component Shrub/CHMP4. J. Cell Sci. 125, 763–776 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Vaccari, T. & Bilder, D. The Drosophila tumor suppressor vps25 prevents nonautonomous overproliferation by regulating Notch trafficking. Dev. Cell 9, 687–698 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Chastagner, P., Israel, A. & Brou, C. Itch/AIP4 mediates Deltex degradation through the formation of K29-linked polyubiquitin chains. EMBO Rep. 7, 1147–1153 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hori, K., Sen, A., Kirchhausen, T. & Artavanis-Tsakonas, S. Synergy between the ESCRT-III complex and Deltex defines a ligand-independent Notch signal. J. Cell Biol. 195, 1005–1015 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shimizu, H. et al. Compensatory flux changes within an endocytic trafficking network maintain thermal robustness of Notch signaling. Cell 157, 1160–1174 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kechad, A. et al. Numb is required for the production of terminal asymmetric cell divisions in the developing mouse retina. J. Neurosci. 32, 17197–17210 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Frise, E., Knoblich, J. A., Younger-Shepherd, S., Jan, L. Y. & Jan, Y. N. The Drosophila Numb protein inhibits signaling of the Notch receptor during cell–cell interaction in sensory organ lineage. Proc. Natl Acad. Sci. USA 93, 11925–11932 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Spana, E. P. & Doe, C. Q. Numb antagonizes Notch signaling to specify sibling neuron cell fates. Neuron 17, 21–26 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Zilian, O. et al. Multiple roles of mouse Numb in tuning developmental cell fates. Curr. Biol. 11, 494–501 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Lin, S. et al. Lineage-specific effects of Notch/Numb signaling in post-embryonic development of the Drosophila brain. Development 137, 43–51 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kandachar, V. & Roegiers, F. Endocytosis and control of Notch signaling. Curr. Opin. Cell Biol. 24, 534–540 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Couturier, L., Mazouni, K. & Schweisguth, F. Numb localizes at endosomes and controls the endosomal sorting of notch after asymmetric division in Drosophila. Curr. Biol. 23, 588–593 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. O'Connor-Giles, K. M. & Skeath, J. B. Numb inhibits membrane localization of Sanpodo, a four-pass transmembrane protein, to promote asymmetric divisions in Drosophila. Dev. Cell 5, 231–243 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Hutterer, A. & Knoblich, J. A. Numb and α-Adaptin regulate Sanpodo endocytosis to specify cell fate in Drosophila external sensory organs. EMBO Rep. 6, 836–842 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Couturier, L., Vodovar, N. & Schweisguth, F. Endocytosis by Numb breaks Notch symmetry at cytokinesis. Nat. Cell Biol. 14, 131–139 (2012). Pioneering use of live imaging to track Numb and Notch during cell-fate decision.

    Article  CAS  PubMed  Google Scholar 

  86. Coumailleau, F., Furthauer, M., Knoblich, J. A. & Gonzalez-Gaitan, M. Directional Delta and Notch trafficking in Sara endosomes during asymmetric cell division. Nature 458, 1051–1055 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Kressmann, S., Campos, C., Castanon, I., Furthauer, M. & Gonzalez-Gaitan, M. Directional Notch trafficking in Sara endosomes during asymmetric cell division in the spinal cord. Nat. Cell Biol. 17, 333–339 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Herranz, H., Stamataki, E., Feiguin, F. & Milan, M. Self-refinement of Notch activity through the transmembrane protein Crumbs: modulation of γ-secretase activity. EMBO Rep. 7, 297–302 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Singh, J. & Mlodzik, M. Hibris, a Drosophila nephrin homolog, is required for presenilin-mediated Notch and APP-like cleavages. Dev. Cell 23, 82–96 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Khait, I. et al. Quantitative analysis of Delta-like 1 membrane dynamics elucidates the role of contact geometry on Notch signaling. Cell Rep. 14, 225–233 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Cohen, M., Georgiou, M., Stevenson, N. L., Miodownik, M. & Baum, B. Dynamic filopodia transmit intermittent Delta–Notch signaling to drive pattern refinement during lateral inhibition. Dev. Cell 19, 78–89 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Huang, H. & Kornberg, T. B. Myoblast cytonemes mediate Wg signaling from the wing imaginal disc and Delta–Notch signaling to the air sac primordium. eLife 4, e06114 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Eom, D. S., Bain, E. J., Patterson, L. B., Grout, M. E. & Parichy, D. M. Long-distance communication by specialized cellular projections during pigment pattern development and evolution. eLife 4, e12401 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hamada, H. et al. Involvement of Delta/Notch signaling in zebrafish adult pigment stripe patterning. Development 141, 318–324 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hatakeyama, J. et al. Cadherin-based adhesions in the apical endfoot are required for active Notch signaling to control neurogenesis in vertebrates. Development 141, 1671–1682 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Clark, B. S. et al. Loss of Llgl1 in retinal neuroepithelia reveals links between apical domain size, Notch activity and neurogenesis. Development 139, 1599–1610 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kobayashi, I. et al. Jam1a–Jam2a interactions regulate haematopoietic stem cell fate through Notch signalling. Nature 512, 319–323 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rios, A. C., Serralbo, O., Salgado, D. & Marcelle, C. Neural crest regulates myogenesis through the transient activation of NOTCH. Nature 473, 532–535 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Jakobsson, L. et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol. 12, 943–953 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Nelson, B. R., Hodge, R. D., Bedogni, F. & Hevner, R. F. Dynamic interactions between intermediate neurogenic progenitors and radial glia in embryonic mouse neocortex: potential role in Dll1–Notch signaling. J. Neurosci. 33, 9122–9139 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bertet, C. et al. Temporal patterning of neuroblasts controls Notch-mediated cell survival through regulation of Hid or Reaper. Cell 158, 1173–1186 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Radtke, F. & Raj, K. The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat. Rev. Cancer 3, 756–767 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Lake, R. J., Tsai, P. F., Choi, I., Won, K. J. & Fan, H. Y. RBPJ, the major transcriptional effector of Notch signaling, remains associated with chromatin throughout mitosis, suggesting a role in mitotic bookmarking. PLoS Genet. 10, e1004204 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Skalska, L. et al. Chromatin signatures at Notch-regulated enhancers reveal large-scale changes in H3K56ac upon activation. EMBO J. 34, 1889–1904 (2015). Together with reference 105, this paper demonstrates that large-scale chromatin changes occur at Notch-regulated enhancers, and together with references 112 and 113 shows that CSL binding is increased in Notch active cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang, H. et al. NOTCH1–RBPJ complexes drive target gene expression through dynamic interactions with superenhancers. Proc. Natl Acad. Sci. USA 111, 705–710 (2014). Together with references 112 and 113, this reference demonstrates that CSL binding is dynamic, leading to a questioning of the original 'switch models', and, together with reference 104, also demonstrates large-scale changes in chromatin.

    Article  CAS  PubMed  Google Scholar 

  106. Yashiro-Ohtani, Y. et al. Long-range enhancer activity determines Myc sensitivity to Notch inhibitors in T cell leukemia. Proc. Natl Acad. Sci. USA 111, E4946–E4953 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ntziachristos, P. et al. Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat. Med. 18, 298–301 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hass, M. R. et al. SpDamID: marking DNA bound by protein complexes identifies Notch-dimer responsive eEnhancers. Mol. Cell 59, 685–697 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kao, H. Y. et al. A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes Dev. 12, 2269–2277 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Collins, K. J., Yuan, Z. & Kovall, R. A. Structure and function of the CSL-KyoT2 corepressor complex: a negative regulator of Notch signaling. Structure 22, 70–81 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. VanderWielen, B. D., Yuan, Z., Friedmann, D. R. & Kovall, R. A. Transcriptional repression in the Notch pathway: thermodynamic characterization of CSL-MINT (Msx2-interacting nuclear target protein) complexes. J. Biol. Chem. 286, 14892–14902 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Krejci, A. & Bray, S. Notch activation stimulates transient and selective binding of Su(H)/CSL to target enhancers. Genes Dev. 21, 1322–1327 (2007). This paper was the first to demonstrate that CSL binding is increased after Notch activation in Drosophila cells, confirmed by genome-wide studies by references 104, 105 and 113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Castel, D. et al. Dynamic binding of RBPJ is determined by Notch signaling status. Genes Dev. 27, 1059–1071 (2013). Together with references 104, 105 and 112, this reference demonstrates that CSL binding is dynamic, leading to a questioning of the original 'switch models'.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Housden, B. E. et al. Transcriptional dynamics elicited by a short pulse of notch activation involves feed-forward regulation by E(spl)/Hes genes. PLoS Genet. 9, e1003162 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Procopio, M. G. et al. Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation. Nat. Cell Biol. 17, 1193–1204 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Braune, E. B. et al. Loss of CSL unlocks a hypoxic response and enhanced tumor growth potential in breast cancer cells. Stem Cell Rep. 6, 643–651 (2016).

    Article  CAS  Google Scholar 

  117. Mulligan, P. et al. A SIRT1–LSD1 corepressor complex regulates Notch target gene expression and development. Mol. Cell 42, 689–699 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kurth, P., Preiss, A., Kovall, R. A. & Maier, D. Molecular analysis of the notch repressor-complex in Drosophila: characterization of potential hairless binding sites on suppressor of hairless. PLoS ONE 6, e27986 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Borggrefe, T. & Oswald, F. The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell. Mol. Life Sci. 66, 1631–1646 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Bray, S. & Bernard, F. Notch targets and their regulation. Curr. Top. Dev. Biol. 92, 253–275 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Cave, J. W., Loh, F., Surpris, J. W., Xia, L. & Caudy, M. A. A. DNA transcription code for cell-specific gene activation by Notch signaling. Curr. Biol. 15, 94–104 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Neves, A., English, K. & Priess, J. R. Notch–GATA synergy promotes endoderm-specific expression of ref-1 in C. elegans. Development 134, 4459–4468 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Barbarulo, A. et al. Notch3 and canonical NF-κB signaling pathways cooperatively regulate Foxp3 transcription. J. Immunol. 186, 6199–6206 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Terriente-Felix, A. et al. Notch cooperates with Lozenge/Runx to lock haemocytes into a differentiation programme. Development 140, 926–937 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Geimer Le Lay, A. S. et al. The tumor suppressor Ikaros shapes the repertoire of notch target genes in T cells. Sci. Signal. 7, ra28 (2014).

    Article  PubMed  CAS  Google Scholar 

  126. Kleinmann, E., Geimer Le Lay, A. S., Sellars, M., Kastner, P. & Chan, S. Ikaros represses the transcriptional response to Notch signaling in T-cell development. Mol. Cell. Biol. 28, 7465–7475 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Witkowski, M. T. et al. Activated Notch counteracts Ikaros tumor suppression in mouse and human T-cell acute lymphoblastic leukemia. Leukemia 29, 1301–1311 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kim, H. S., Jeong, H., Lim, S. O. & Jung, G. Snail inhibits Notch1 intracellular domain mediated transcriptional activation via competing with MAML1. Biochem. Biophys. Res. Commun. 433, 6–10 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Gao, J. et al. RUNX3 directly interacts with intracellular domain of Notch1 and suppresses Notch signaling in hepatocellular carcinoma cells. Exp. Cell Res. 316, 149–157 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Sakano, D. et al. BCL6 canalizes Notch-dependent transcription, excluding Mastermind-like1 from selected target genes during left-right patterning. Dev. Cell 18, 450–462 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tiberi, L. et al. BCL6 controls neurogenesis through Sirt1-dependent epigenetic repression of selective Notch targets. Nat. Neurosci. 15, 1627–1635 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Dai, Q. et al. Common and distinct DNA-binding and regulatory activities of the BEN-solo transcription factor family. Genes Dev. 29, 48–62 (2013).

    Article  CAS  Google Scholar 

  133. Schwanbeck, R. The role of epigenetic mechanisms in Notch signaling during development. J. Cell. Physiol. 230, 969–981 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Endo, K. et al. Chromatin modification of Notch targets in olfactory receptor neuron diversification. Nat. Neurosci. 15, 224–233 (2011).

    Article  PubMed  CAS  Google Scholar 

  135. Farnsworth, D. R., Bayraktar, O. A. & Doe, C. Q. Aging neural progenitors lose competence to respond to mitogenic Notch signaling. Curr. Biol. 25, 3058–3068 (2015). This is an example illustrating how the presence of specific transcription factors can change a cell's response to Notch.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Felician, G. et al. Epigenetic modification at Notch responsive promoters blunts efficacy of inducing notch pathway reactivation after myocardial infarction. Circ. Res. 115, 636–649 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Martinez, A. M. et al. Polyhomeotic has a tumor suppressor activity mediated by repression of Notch signaling. Nat. Genet. 41, 1076–1082 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Blokzijl, A. et al. Cross-talk between the Notch and TGF-β signaling pathways mediated by interaction of the Notch intracellular domain with Smad3. J. Cell Biol. 163, 723–728 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Manderfield, L. J. et al. Hippo signaling is required for Notch-dependent smooth muscle differentiation of neural crest. Development 142, 2962–2971 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. O'Neil, J. et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors. J. Exp. Med. 204, 1813–1824 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Oberg, C. et al. The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog. J. Biol. Chem. 276, 35847–35853 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Fryer, C. J., White, J. B. & Jones, K. A. Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol. Cell 16, 509–520 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Kourtis, N., Strikoudis, A. & Aifantis, I. Emerging roles for the FBXW7 ubiquitin ligase in leukemia and beyond. Curr. Opin. Cell Biol. 37, 28–34 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Davis, M. A. et al. The SCF-Fbw7 ubiquitin ligase degrades MED13 and MED13L and regulates CDK8 module association with Mediator. Genes Dev. 27, 151–156 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hoeck, J. D. et al. Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c-Jun. Nat. Neurosci. 13, 1365–1372 (2010).

    Article  CAS  PubMed  Google Scholar 

  146. Tetzlaff, M. T. et al. Defective cardiovascular development and elevated cyclin E and Notch proteins in mice lacking the Fbw7 F-box protein. Proc. Natl Acad. Sci. USA 101, 3338–3345 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Guarani, V. et al. Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 473, 234–238 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hein, K. et al. Site-specific methylation of Notch1 controls the amplitude and duration of the Notch1 response. Sci. Signal. 8, ra30 (2015).

    Article  PubMed  CAS  Google Scholar 

  149. Zheng, X. et al. Interaction with factor inhibiting HIF-1 defines an additional mode of cross-coupling between the Notch and hypoxia signaling pathways. Proc. Natl Acad. Sci. USA 105, 3368–3373 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Espinosa, L., Ingles-Esteve, J., Aguilera, C. & Bigas, A. Phosphorylation by glycogen synthase kinase-3β down-regulates Notch activity, a link for Notch and Wnt pathways. J. Biol. Chem. 278, 32227–32235 (2003).

    Article  CAS  PubMed  Google Scholar 

  151. Song, J., Park, S., Kim, M. & Shin, I. Down-regulation of Notch-dependent transcription by Akt in vitro. FEBS Lett. 582, 1693–1699 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Mund, T. et al. Disinhibition of the HECT E3 ubiquitin ligase WWP2 by polymerized Dishevelled. Open Biol. 5, 150185 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Jung, J. G. et al. Notch3 interactome analysis identified WWP2 as a negative regulator of Notch3 signaling in ovarian cancer. PLoS Genet. 10, e1004751 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Ishitani, T. et al. Nemo-like kinase suppresses Notch signalling by interfering with formation of the Notch active transcriptional complex. Nat. Cell Biol. 12, 278–285 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Fernandez-Martinez, J. et al. Attenuation of Notch signalling by the Down-syndrome-associated kinase DYRK1A. J. Cell Sci. 122, 1574–1583 (2009).

    Article  CAS  PubMed  Google Scholar 

  156. Borggrefe, T. et al. The Notch intracellular domain integrates signals from Wnt, Hedgehog, TGFβ/BMP and hypoxia pathways. Biochim. Biophys. Acta 1863, 303–313 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Yatim, A. et al. NOTCH1 nuclear interactome reveals key regulators of its transcriptional activity and oncogenic function. Mol. Cell 48, 445–458 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Fischer, A. & Gessler, M. Delta–Notch — and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factors. Nucleic Acids Res. 35, 4583–4596 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Eddison, M., Le Roux, I. & Lewis, J. Notch signaling in the development of the inner ear: lessons from Drosophila. Proc. Natl Acad. Sci. USA 97, 11692–11699 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Djiane, A. et al. Dissecting the mechanisms of Notch induced hyperplasia. EMBO J. 32, 60–71 (2013).

    Article  CAS  PubMed  Google Scholar 

  161. Palomero, T. et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat. Med. 13, 1203–1210 (2007). This paper uncovered an indirect regulation of PTEN by HES genes in T-ALL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Serra, H. et al. PTEN mediates Notch-dependent stalk cell arrest in angiogenesis. Nat. Commun. 6, 7935 (2015). In contrast to reference 161, this paper shows that PTEN is positively regulated by Notch activation in stalk cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sundaram, M. V. The love–hate relationship between Ras and Notch. Genes Dev. 19, 1825–1839 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Flores, G. V. et al. Combinatorial signaling in the specification of unique cell fates. Cell 103, 75–85 (2000). This is a good example of signals being integrated through a common enhancer.

    Article  CAS  PubMed  Google Scholar 

  165. Doroquez, D. B. & Rebay, I. Signal integration during development: mechanisms of EGFR and Notch pathway function and cross-talk. Crit. Rev. Biochem. Mol. Biol. 41, 339–385 (2006).

    Article  CAS  PubMed  Google Scholar 

  166. Yoo, A. S., Bais, C. & Greenwald, I. Crosstalk between the EGFR and LIN-12/Notch pathways in C. elegans vulval development. Science 303, 663–666 (2004).

    Article  CAS  PubMed  Google Scholar 

  167. Lien, W. H. & Fuchs, E. Wnt some lose some: transcriptional governance of stem cells by Wnt/β-catenin signaling. Genes Dev. 28, 1517–1532 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Cordle, J. et al. A conserved face of the Jagged/Serrate DSL domain is involved in Notch trans-activation and cis-inhibition. Nat. Struct. Mol. Biol. 15, 849–857 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Chillakuri, C. R. et al. Structural analysis uncovers lipid-binding properties of Notch ligands. Cell Rep. 5, 861–867 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. van Tetering, G. et al. Metalloprotease ADAM10 is required for Notch1 site 2 cleavage. J. Biol. Chem. 284, 31018–31027 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kovall, R. A. & Blacklow, S. C. Mechanistic insights into Notch receptor signaling from structural and biochemical studies. Curr. Top. Dev. Biol. 92, 31–71 (2010).

    Article  CAS  PubMed  Google Scholar 

  172. Nam, Y., Sliz, P., Song, L., Aster, J. C. & Blacklow, S. C. Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell 124, 973–983 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Wilson, J. J. & Kovall, R. A. Crystal structure of the CSL–Notch–Mastermind ternary complex bound to DNA. Cell 124, 985–996 (2006). Together with reference 172, this paper made a key contribution by revealing how NICD binds to CSL and forms an interface that recruits MAM. This led to the design of inhibitors.

    Article  CAS  PubMed  Google Scholar 

  174. Lin, S. et al. DDX5 is a positive regulator of oncogenic NOTCH1 signaling in T cell acute lymphoblastic leukemia. Oncogene 32, 4845–4853 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Jung, C., Mittler, G., Oswald, F. & Borggrefe, T. RNA helicase Ddx5 and the noncoding RNA SRA act as coactivators in the Notch signaling pathway. Biochim. Biophys. Acta 1833, 1180–1189 (2013).

    Article  CAS  PubMed  Google Scholar 

  176. Wang, H., Zang, C., Liu, X. S. & Aster, J. C. The role of Notch receptors in transcriptional regulation. J. Cell. Physiol. 230, 982–988 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Lee, M. C. & Spradling, A. C. The progenitor state is maintained by lysine-specific demethylase 1-mediated epigenetic plasticity during Drosophila follicle cell development. Genes Dev. 28, 2739–2749 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Liefke, R. et al. Histone demethylase KDM5A is an integral part of the core Notch–RBP-J repressor complex. Genes Dev. 24, 590–601 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Maier, D. Hairless: the ignored antagonist of the Notch signalling pathway. Hereditas 143, 212–221 (2006).

    Article  PubMed  Google Scholar 

  180. Rayon, T. et al. Notch and Hippo converge on Cdx2 to specify the trophectoderm lineage in the mouse blastocyst. Dev. Cell 30, 410–422 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Sacilotto, N. et al. Analysis of Dll4 regulation reveals a combinatorial role for Sox and Notch in arterial development. Proc. Natl Acad. Sci. USA 110, 11893–11898 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Lopez-Arribillaga, E. et al. Bmi1 regulates murine intestinal stem cell proliferation and self-renewal downstream of Notch. Development 142, 41–50 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author apologizes for the many articles that could not be cited owing to space limitations. She also thanks M. Gomez-Lamarca for help in preparing the figures and A. Asselin for the drawings in Figure 3. Work in the Bray laboratory is supported by a programme grant from the UK Medical Research Council as well as by funding from the UK Biology and Biotechnology Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah J. Bray.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Glossary

Paralogues

Sequences, or genes, that have originated from a common ancestral sequence, or gene, by a duplication event.

Lateral inhibition

The process by which a cell with a particular fate interacts with its immediate neighbours to prevent them from adopting the same fate.

Growth organizer

Group of cells that produces signals necessary to promote growth of a tissue.

Somitogenesis

The process by which somites, blocks of mesoderm that give rise to axial muscles, bones and dermis in vertebrates, are formed.

Somite clock

Oscillatory mechanism that ensures periodic formation of somites.

Placode

Ectodermal thickening from which a sense organ or ganglion develops.

Tip cells

Leading cells of sprouting blood vessels that sense their environment for guidance cues.

Sprouting

Initiation of a branch from blood vessels during angiogenesis

Haemangiogenic endothelium

A subset of endothelial cells that can give rise to haematopoietic stem cells as well as to blood vessels.

EGF repeats

Protein domains, commonly found in the extracellular domain of membrane-bound proteins, that are related to a sequence in EGF and include cysteine residues involved in disulfide bonds. EGF-like domains frequently occur in numerous tandem copies in proteins, as in Notch.

SOP cells

(Sensory organ precursor cells). Cells that give rise to all of the cells in a Drosophila species sensory organ.

Endosomal sorting complex required for transport

(ESCRT). The multiprotein ESCRT machinery (ESCRT-I, -II and -III) promotes inward vesiculation at the limiting membrane of the sorting endosome, and selects cargo proteins for delivery to the intra-luminal vesicles of multivesicular bodies.

Filopodia

Thin cellular processes containing long, unbranched, parallel bundles of actin filaments.

Adherens junctions

Actin-filament-associated, epithelial cell–cell junctions that have classical cadherins as their core component.

End feet

The name given to the apical membrane surface as a consequence of cortical neuroepithelial progenitors becoming very tall and thin over the course of development.

Notum

Structure that is part of the back of an animal; in insects, the back of the thorax.

Xanthophores

Yellow chromatophores, pigment-containing and light-reflecting cells, of a fish, amphibian or reptile.

Melanophores

Melanin-containing cells of a fish, amphibian or reptile that appear black or dark-brown because of melanin's light-absorbing qualities.

Pioneer factor

A subset of transcription factors that are capable of binding to their target-motifs even when located in DNA that is wrapped around nucleosomes, enabling them to initiate changes in regulation at silent enhancers.

Enhancers

DNA segments that increase transcription of a linked promoter if placed in either orientation, upstream or downstream.

HES family

A family of genes related to Hairy and Enhancer of split that encode basic helix–loop–helix nuclear proteins that suppress transcription.

Basic helix–loop–helix

(bHLH). A basic domain adjacent to two α-helices separated by a loop (the HLH domain), which binds DNA in a sequence-specific manner.

GATA transcription factors

A family of transcription factors that contain a zinc-finger motif that was first identified in the vertebrate GATA1 protein. These transcription factors bind the consensus sequence GATA in the regulatory regions of genes.

Zinc finger

A motif in proteins that contains conserved cysteine residues. The sulfydryl groups of the cysteines coordinate a Zn2+ ion.

BEN-SOLO proteins

Proteins containing only a BEN domain, a sequence-specific DNA-binding domain that has been identified in some transcription repressors.

Neurogenic transition

Change in the competence of neural precursor cells that enable them to generate different types of neural or glial progeny.

Mediator complex

A multiprotein complex that is required for gene transcription by RNA polymerase II.

Homologous to E6-AP carboxyl terminus

(HECT). The HECT domain is an 350-amino-acid domain that is highly conserved among a family of E3 enzymes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bray, S. Notch signalling in context. Nat Rev Mol Cell Biol 17, 722–735 (2016). https://doi.org/10.1038/nrm.2016.94

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2016.94

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing