Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms and regulation of endothelial VEGF receptor signalling

Key Points

  • Vascular endothelial growth factor receptor (VEGFR) signalling is tightly regulated at different levels: ligand and receptor expression, the presence of co-receptors and accessory proteins (that is, neuropilins, proteoglycans and integrins, among others) and inactivating tyrosine phosphatases. Together, these control the rate of cellular uptake, degradation and recycling.

  • Canonical versus non-canonical signalling indicates VEGF-dependent versus non-VEGF-dependent activation of VEGFR2. Among the latter are mechanical forces, gremlins, galectins, lactate and low-density lipoprotein (LDL) cholesterol.

  • VEGFR signalling output is regulated by crosstalk with numerous receptor systems, including fibroblast growth factor receptor (FGFR), AXL, Delta–Notch and Hippo pathways.

  • VEGFR2 endocytosis and subsequent cytoplasmic trafficking have a key role in regulation of ERK signalling, which is crucial for numerous VEGF biological activities, including arterial fate determination, proliferation and migration.

  • VEGF-dependent regulation of permeability involves T cell-soecific adapter (TSAd) and junctional SRC activation and crosstalk with AXL-dependent PI3K activation.

  • Protein tyrosine phosphatases have important roles in regulation of specific VEGFR2-activated intracellular signalling events.

Abstract

Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are uniquely required to balance the formation of new blood vessels with the maintenance and remodelling of existing ones, during development and in adult tissues. Recent advances have greatly expanded our understanding of the tight and multi-level regulation of VEGFR2 signalling, which is the primary focus of this Review. Important insights have been gained into the regulatory roles of VEGFR-interacting proteins (such as neuropilins, proteoglycans, integrins and protein tyrosine phosphatases); the dynamics of VEGFR2 endocytosis, trafficking and signalling; and the crosstalk between VEGF-induced signalling and other endothelial signalling cascades. A clear understanding of this multifaceted signalling web is key to successful therapeutic suppression or stimulation of vascular growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: VEGFR2 structure and receptor signalling complexes.
Figure 2: VEGFR2 signal transduction pathways.
Figure 3: Regulation of VEGFR2 signalling by receptor crosstalk.
Figure 4: Plasma membrane versus endocytic VEGFR2 signalling.

Similar content being viewed by others

References

  1. Chung, A. S. & Ferrara, N. Developmental and pathological angiogenesis. Annu. Rev. Cell Dev. Biol. 27, 563–584 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Potente, M., Gerhardt, H. & Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell 146, 873–887 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Shibuya, M. VEGFR and type-V RTK activation and signaling. Cold Spring Harb. Perspect. Biol. 5, a009092 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Lemmon, M. A. & Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 141, 1117–1134 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Koch, S., Tugues, S., Li, X., Gualandi, L. & Claesson-Welsh, L. Signal transduction by vascular endothelial growth factor receptors. Biochem. J. 437, 169–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Shibuya, M. Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J. Biochem. 153, 13–19 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Nakayama, M. et al. Spatial regulation of VEGF receptor endocytosis in angiogenesis. Nat. Cell Biol. 15, 249–260 (2013). This paper shows how local VEGFR endocytosis and the activity of cell polarity proteins dynamically control angiogenesis in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Simons, M. An inside view: VEGF receptor trafficking and signaling. Physiology 27, 213–222 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Chen, T. T. et al. Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells. J. Cell Biol. 188, 595–609 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ferrara, N. Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Mol. Biol. Cell 21, 687–690 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McColl, B. K. et al. Plasmin activates the lymphangiogenic growth factors VEGF-C and VEGF-D. J. Exp. Med. 198, 863–868 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grunewald, F. S., Prota, A. E., Giese, A. & Ballmer-Hofer, K. Structure–function analysis of VEGF receptor activation and the role of coreceptors in angiogenic signaling. Biochim. Biophys. Acta 1804, 567–580 (2010).

    Article  PubMed  CAS  Google Scholar 

  13. Sarabipour, S., Ballmer-Hofer, K. & Hristova, K. VEGFR-2 conformational switch in response to ligand binding. eLife 5, e13876 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Anisimov, A. et al. The basis for the distinct biological activities of vascular endothelial growth factor receptor-1 ligands. Sci. Signal. 6, ra52 (2013). This study provides a mechanistic understanding for the inefficient activation of VEGFR1 by VEGFB, which, unlike PlGF, fails to bind to the IgG D3 loop in the receptor.

    Article  PubMed  CAS  Google Scholar 

  15. Bates, D. O. et al. VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res. 62, 4123–4131 (2002).

    CAS  PubMed  Google Scholar 

  16. Kawamura, H., Li, X., Harper, S. J., Bates, D. O. & Claesson-Welsh, L. Vascular endothelial growth factor (VEGF)-A165b is a weak in vitro agonist for VEGF receptor-2 due to lack of coreceptor binding and deficient regulation of kinase activity. Cancer Res. 68, 4683–4692 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Mac Gabhann, F. & Popel, A. S. Dimerization of VEGF receptors and implications for signal transduction: a computational study. Biophys. Chem. 128, 125–139 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Deng, Y., Zhang, X. & Simons, M. Molecular controls of lymphatic VEGFR3 signaling. Arterioscler. Thromb. Vasc. Biol. 35, 421–429 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Dixelius, J. et al. Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites. J. Biol. Chem. 278, 40973–40979 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Yao, L. C. et al. Pulmonary lymphangiectasia resulting from vascular endothelial growth factor-C overexpression during a critical period. Circ. Res. 114, 806–822 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nilsson, I. et al. VEGF receptor 2/-3 heterodimers detected in situ by proximity ligation on angiogenic sprouts. EMBO J. 29, 1377–1388 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Imoukhuede, P. I. & Popel, A. S. Quantification and cell-to-cell variation of vascular endothelial growth factor receptors. Exp. Cell Res. 317, 955–965 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Papadopoulos, N. et al. Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF trap, ranibizumab and bevacizumab. Angiogenesis 15, 171–185 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Autiero, M. et al. Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat. Med. 9, 936–943 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Jin, Z. G. et al. Ligand-independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase. Circ. Res. 93, 354–363 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Meyer, R. D. et al. PEST motif serine and tyrosine phosphorylation controls vascular endothelial growth factor receptor 2 stability and downregulation. Mol. Cell. Biol. 31, 2010–2025 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van der Zwaag, B. et al. PLEXIN-D1, a novel plexin family member, is expressed in vascular endothelium and the central nervous system during mouse embryogenesis. Dev. Dyn. 225, 336–343 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Ochsenbein, A. M. et al. Endothelial cell-derived semaphorin 3A inhibits filopodia formation by blood vascular tip cells. Development 143, 589–594 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Parker, M. W., Xu, P., Li, X. & Vander Kooi, C. W. Structural basis for selective vascular endothelial growth factor-A (VEGF-A) binding to neuropilin-1. J. Biol. Chem. 287, 11082–11089 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fantin, A. et al. Neuropilin 1 (NRP1) hypomorphism combined with defective VEGF-A binding reveals novel roles for NRP1 in developmental and pathological angiogenesis. Development 141, 556–562 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Plein, A., Fantin, A. & Ruhrberg, C. Neuropilin regulation of angiogenesis, arteriogenesis, and vascular permeability. Microcirculation 21, 315–323 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lanahan, A. et al. The neuropilin 1 cytoplasmic domain is required for VEGF-A-dependent arteriogenesis. Dev. Cell 25, 156–168 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lanahan, A. A. et al. VEGF receptor 2 endocytic trafficking regulates arterial morphogenesis. Dev. Cell 18, 713–724 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kawamura, H. et al. Neuropilin-1 in regulation of VEGF-induced activation of p38MAPK and endothelial cell organization. Blood 112, 3638–3649 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Koch, S. et al. NRP1 presented in trans to the endothelium arrests VEGFR2 endocytosis, preventing angiogenic signaling and tumor initiation. Dev. Cell 28, 633–646 (2014). This paper describes how VEGF–VEGFR2 on an endothelial cell can bind to NRP1 on an adjacent cell (that is, trans -binding), regulating VEGFR2 endocytosis, tumour initiation and tumour angiogenesis.

    Article  CAS  PubMed  Google Scholar 

  36. Okabe, K. et al. Neurons limit angiogenesis by titrating VEGF in retina. Cell 159, 584–596 (2014). VEGFR2 expressed in neurons serves to regulate VEGF availability and angiogenesis.

    Article  CAS  PubMed  Google Scholar 

  37. Tillo, M. et al. VEGF189 binds NRP1 and is sufficient for VEGF/NRP1-dependent neuronal patterning in the developing brain. Development 142, 314–319 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cariboni, A. et al. VEGF signalling controls GnRH neuron survival via NRP1 independently of KDR and blood vessels. Development 138, 3723–3733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kawasaki, T. et al. A requirement for neuropilin-1 in embryonic vessel formation. Development 126, 4895–4902 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Jones, E. A., Yuan, L., Breant, C., Watts, R. J. & Eichmann, A. Separating genetic and hemodynamic defects in neuropilin 1 knockout embryos. Development 135, 2479–2488 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Gelfand, M. V. et al. Neuropilin-1 functions as a VEGFR2 co-receptor to guide developmental angiogenesis independent of ligand binding. eLife 3, e03720 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Fantin, A. et al. The cytoplasmic domain of neuropilin 1 is dispensable for angiogenesis, but promotes the spatial separation of retinal arteries and veins. Development 138, 4185–4191 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hirota, S. et al. Neuropilin-1 balances β8 integrin-activated TGFβ signaling to control sprouting angiogenesis in the brain. Development 142, 4363–4373 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Aspalter, I. M. et al. Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch. Nat. Commun. 6, 7264 (2015).

    Article  PubMed  Google Scholar 

  45. Byzova, T. V. et al. A mechanism for modulation of cellular responses to VEGF: activation of the integrins. Mol. Cell 6, 851–860 (2000).

    CAS  PubMed  Google Scholar 

  46. West, X. Z. et al. Integrin β3 crosstalk with VEGFR accommodating tyrosine phosphorylation as a regulatory switch. PLoS ONE 7, e31071 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rapraeger, A. C. et al. Vascular endothelial-cadherin stimulates syndecan-1-coupled insulin-like growth factor-1 receptor and cross-talk between αVβ3 integrin and vascular endothelial growth factor receptor 2 at the onset of endothelial cell dissemination during angiogenesis. FEBS J. 280, 2194–2206 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tugues, S. et al. Tetraspanin CD63 promotes vascular endothelial growth factor receptor 2–β1 integrin complex formation, thereby regulating activation and downstream signaling in endothelial cells in vitro and in vivo. J. Biol. Chem. 288, 19060–19071 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tzima, E. et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437, 426–431 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Wang, S. et al. P2Y2 and Gq/G11 control blood pressure by mediating endothelial mechanotransduction. J. Clin. Invest. 125, 3077–3086 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Planas-Paz, L. et al. Mechanoinduction of lymph vessel expansion. EMBO J. 31, 788–804 (2012). This paper demonstrates mechanosensory activation of VEGFR3 and its regulation of lymph vessel function in vivo.

    Article  CAS  PubMed  Google Scholar 

  52. Baeyens, N. et al. Vascular remodeling is governed by a VEGFR3-dependent fluid shear stress set point. eLife 4, e04645 (2015).

    Article  PubMed Central  Google Scholar 

  53. Coon, B. G. et al. Intramembrane binding of VE-cadherin to VEGFR2 and VEGFR3 assembles the endothelial mechanosensory complex. J. Cell Biol. 208, 975–986 (2015). This paper identifies the direct interaction between the transmembrane domains of VE-cadherin, VEGFR2 and VEGFR3, forming a junctional mechanosensory complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chiu, Y. J., McBeath, E. & Fujiwara, K. Mechanotransduction in an extracted cell model: Fyn drives stretch- and flow-elicited PECAM-1 phosphorylation. J. Cell Biol. 182, 753–763 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. dela Paz, N. G., Walshe, T. E., Leach, L. L., Saint-Geniez, M. & D'Amore, P. A. Role of shear-stress-induced VEGF expression in endothelial cell survival. J. Cell Sci. 125, 831–843 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Masumura, T., Yamamoto, K., Shimizu, N., Obi, S. & Ando, J. Shear stress increases expression of the arterial endothelial marker ephrinB2 in murine ES cells via the VEGF–Notch signaling pathways. Arterioscler. Thromb. Vasc. Biol. 29, 2125–2131 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. dela Paz, N. G., Melchior, B. & Frangos, J. A. Early VEGFR2 activation in response to flow is VEGF-dependent and mediated by MMP activity. Biochem. Biophys. Res. Commun. 434, 641–646 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stabile, H. et al. Bone morphogenic protein antagonist Drm/gremlin is a novel proangiogenic factor. Blood 109, 1834–1840 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Mitola, S. et al. Gremlin is a novel agonist of the major proangiogenic receptor VEGFR2. Blood 116, 3677–3680 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Ravelli, C. et al. β3 integrin promotes long-lasting activation and polarization of vascular endothelial growth factor receptor 2 by immobilized ligand. Arterioscler. Thromb. Vasc. Biol. 35, 2161–2171 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dalziel, M., Crispin, M., Scanlan, C. N., Zitzmann, N. & Dwek, R. A. Emerging principles for the therapeutic exploitation of glycosylation. Science 343, 1235681 (2014).

    Article  PubMed  CAS  Google Scholar 

  62. Markowska, A. I., Jefferies, K. C. & Panjwani, N. Galectin-3 protein modulates cell surface expression and activation of vascular endothelial growth factor receptor 2 in human endothelial cells. J. Biol. Chem. 286, 29913–29921 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kumar, V. B., Viji, R. I., Kiran, M. S. & Sudhakaran, P. R. Endothelial cell response to lactate: implication of PAR modification of VEGF. J. Cell. Physiol. 211, 477–485 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Ruan, G. X. & Kazlauskas, A. Lactate engages receptor tyrosine kinases Axl, Tie2, and vascular endothelial growth factor receptor 2 to activate phosphoinositide 3-kinase/Akt and promote angiogenesis. J. Biol. Chem. 288, 21161–21172 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jin, F. et al. LDL attenuates VEGF-induced angiogenesis via mechanisms involving VEGFR2 internalization and degradation following endosome–trans-Golgi network trafficking. Angiogenesis 16, 625–637 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Simons, M. & Eichmann, A. Molecular controls of arterial morphogenesis. Circ. Res. 116, 1712–1724 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhuang, G. et al. Phosphoproteomic analysis implicates the mTORC2–FoxO1 axis in VEGF signaling and feedback activation of receptor tyrosine kinases. Sci. Signal. 6, ra25 (2013).

    PubMed  Google Scholar 

  68. Rodrigues, S. F. & Granger, D. N. Blood cells and endothelial barrier function. Tissue Barriers 3, e978720 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Hong, C. C., Peterson, Q. P., Hong, J. Y. & Peterson, R. T. Artery/vein specification is governed by opposing phosphatidylinositol-3 kinase and MAP kinase/ERK signaling. Curr. Biol. 16, 1366–1372 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Murakami, M. et al. FGF-dependent regulation of VEGF receptor 2 expression in mice. J. Clin. Invest. 121, 2668–2678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Deng, Y., Atri, D., Eichmann, A. & Simons, M. Endothelial ERK signaling controls lymphatic fate specification. J. Clin. Invest. 123, 1202–1215 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sakurai, Y., Ohgimoto, K., Kataoka, Y., Yoshida, N. & Shibuya, M. Essential role of Flk-1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice. Proc. Natl Acad. Sci. USA 102, 1076–1081 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Takahashi, T., Yamaguchi, S., Chida, K. & Shibuya, M. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-γ and DNA synthesis in vascular endothelial cells. EMBO J. 20, 2768–2778 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Takahashi, T., Ueno, H. & Shibuya, M. VEGF activates protein kinase C-dependent, but Ras-independent Raf–MEK–MAP kinase pathway for DNA synthesis in primary endothelial cells. Oncogene 18, 2221–2230 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Xia, P. et al. Characterization of vascular endothelial growth factor's effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. J. Clin. Invest. 98, 2018–2026 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lawson, N. D., Mugford, J. W., Diamond, B. A. & Weinstein, B. M. Phospholipase C gamma-1 is required downstream of vascular endothelial growth factor during arterial development. Genes Dev. 17, 1346–1351 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Leitges, M. et al. Immunodeficiency in protein kinase cβ-deficient mice. Science 273, 788–791 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. De Val, S. et al. Combinatorial regulation of endothelial gene expression by Ets and forkhead transcription factors. Cell 135, 1053–1064 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wei, G. et al. Ets1 and Ets2 are required for endothelial cell survival during embryonic angiogenesis. Blood 114, 1123–1130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lammerts van Bueren, K. & Black, B. L. Regulation of endothelial and hematopoietic development by the ETS transcription factor Etv2. Curr. Opin. Hematol. 19, 199–205 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Wythe, J. D. et al. ETS factors regulate Vegf-dependent arterial specification. Dev. Cell 26, 45–58 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang, S. et al. Control of endothelial cell proliferation and migration by VEGF signaling to histone deacetylase 7. Proc. Natl Acad. Sci. USA 105, 7738–7743 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Jinnin, M. et al. Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma. Nat. Med. 14, 1236–1246 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chang, C. P. et al. A field of myocardial–endocardial NFAT signaling underlies heart valve morphogenesis. Cell 118, 649–663 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Ryeom, S. et al. Targeted deletion of the calcineurin inhibitor DSCR1 suppresses tumor growth. Cancer Cell 13, 420–431 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Shiojima, I. & Walsh, K. Role of Akt signaling in vascular homeostasis and angiogenesis. Circ. Res. 90, 1243–1250 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Ju, R. et al. Angiopoietin-2 secretion by endothelial cell exosomes: regulation by the phosphatidylinositol 3-kinase (PI3K)/Akt/endothelial nitric oxide synthase (eNOS) and syndecan-4/syntenin pathways. J. Biol. Chem. 289, 510–519 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Chen, J. et al. Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo. Nat. Med. 11, 1188–1196 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lee, M. Y. et al. Endothelial Akt1 mediates angiogenesis by phosphorylating multiple angiogenic substrates. Proc. Natl Acad. Sci. USA 111, 12865–12870 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ackah, E. et al. Akt1/protein kinase Bα is critical for ischemic and VEGF-mediated angiogenesis. J. Clin. Invest. 115, 2119–2127 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Carmeliet, P. et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98, 147–157 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Ruan, G. X. & Kazlauskas, A. Axl is essential for VEGF-A-dependent activation of PI3K/Akt. EMBO J. 31, 1692–1703 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Graupera, M. et al. Angiogenesis selectively requires the p110α isoform of PI3K to control endothelial cell migration. Nature 453, 662–666 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Tan, W. et al. An essential role for Rac1 in endothelial cell function and vascular development. FASEB J. 22, 1829–1838 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Kaur, S. et al. RhoJ/TCL regulates endothelial motility and tube formation and modulates actomyosin contractility and focal adhesion numbers. Arterioscler. Thromb. Vasc. Biol. 31, 657–664 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Hoang, M. V., Whelan, M. C. & Senger, D. R. Rho activity critically and selectively regulates endothelial cell organization during angiogenesis. Proc. Natl Acad. Sci. USA 101, 1874–1879 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Abraham, S. et al. A Rac/Cdc42 exchange factor complex promotes formation of lateral filopodia and blood vessel lumen morphogenesis. Nat. Commun. 6, 7286 (2015).

    Article  PubMed  Google Scholar 

  98. Barry, D. M. et al. Cdc42 is required for cytoskeletal support of endothelial cell adhesion during blood vessel formation in mice. Development 142, 3058–3070 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dubrac, A. et al. Targeting NCK-mediated endothelial cell front-rear polarity inhibits neovascularization. Circulation 133, 409–421 (2016).

    Article  PubMed  Google Scholar 

  100. Collins, C. & Tzima, E. Rac[e] to the pole: setting up polarity in endothelial cells. Small GTPases 5, e28650 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Li, X. et al. VEGFR2 pY949 signalling regulates adherens junction integrity and metastatic spread. Nat. Commun. 7, 11017 (2016). This study identifies the signal transduction pathway that is initiated by VEGFR2 phosphosite Y949, leading to transient opening of vascular junctions in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sun, Z. et al. VEGFR2 induces c-Src signaling and vascular permeability in vivo via the adaptor protein TSAd. J. Exp. Med. 209, 1363–1377 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jalali, S. et al. Shear stress activates p60src–Ras–MAPK signaling pathways in vascular endothelial cells. Arterioscler. Thromb. Vasc. Biol. 18, 227–234 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Ferrando, I. M. et al. Identification of targets of c-Src tyrosine kinase by chemical complementation and phosphoproteomics. Mol. Cell. Proteomics 11, 355–369 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Westhoff, M. A., Serrels, B., Fincham, V. J., Frame, M. C. & Carragher, N. O. SRC-mediated phosphorylation of focal adhesion kinase couples actin and adhesion dynamics to survival signaling. Mol. Cell. Biol. 24, 8113–8133 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chen, X. L. et al. VEGF-induced vascular permeability is mediated by FAK. Dev. Cell 22, 146–157 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Weis, S., Cui, J., Barnes, L. & Cheresh, D. Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J. Cell Biol. 167, 223–229 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tornavaca, O. et al. ZO-1 controls endothelial adherens junctions, cell–cell tension, angiogenesis, and barrier formation. J. Cell Biol. 208, 821–838 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gee, E., Milkiewicz, M. & Haas, T. L. p38 MAPK activity is stimulated by vascular endothelial growth factor receptor 2 activation and is essential for shear stress-induced angiogenesis. J. Cell. Physiol. 222, 120–126 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. McMullen, M. E., Bryant, P. W., Glembotski, C. C., Vincent, P. A. & Pumiglia, K. M. Activation of p38 has opposing effects on the proliferation and migration of endothelial cells. J. Biol. Chem. 280, 20995–21003 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Issbrucker, K. et al. p38 MAP kinase — a molecular switch between VEGF-induced angiogenesis and vascular hyperpermeability. FASEB J. 17, 262–264 (2003).

    Article  PubMed  CAS  Google Scholar 

  112. Yilmaz, A., Kliche, S., Mayr-Beyrle, U., Fellbrich, G. & Waltenberger, J. p38 MAPK inhibition is critically involved in VEGFR-2-mediated endothelial cell survival. Biochem. Biophys. Res. Commun. 306, 730–736 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. McMullen, M., Keller, R., Sussman, M. & Pumiglia, K. Vascular endothelial growth factor-mediated activation of p38 is dependent upon Src and RAFTK/Pyk2. Oncogene 23, 1275–1282 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Bartoli, M. et al. Vascular endothelial growth factor activates STAT proteins in aortic endothelial cells. J. Biol. Chem. 275, 33189–33192 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Bromberg, J. & Darnell, J. E. Jr. The role of STATs in transcriptional control and their impact on cellular function. Oncogene 19, 2468–2473 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Kostromina, E. et al. Glucose intolerance and impaired insulin secretion in pancreas-specific signal transducer and activator of transcription-3 knockout mice are associated with microvascular alterations in the pancreas. Endocrinology 151, 2050–2059 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Fong, G. H., Rossant, J., Gertsenstein, M. & Breitman, M. L. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66–70 (1995).

    Article  CAS  PubMed  Google Scholar 

  118. Hiratsuka, S., Minowa, O., Kuno, J., Noda, T. & Shibuya, M. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc. Natl Acad. Sci. USA 95, 9349–9354 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fey, D., Croucher, D. R., Kolch, W. & Kholodenko, B. N. Crosstalk and signaling switches in mitogen-activated protein kinase cascades. Front. Physiol. 3, 355 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Pepper, M. S., Ferrara, N., Orci, L. & Montesano, R. Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem. Biophys. Res. Commun. 189, 824–831 (1992).

    Article  CAS  PubMed  Google Scholar 

  121. Presta, M. et al. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 16, 159–178 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Murakami, M. & Simons, M. Fibroblast growth factor regulation of neovascularization. Curr. Opin. Hematol. 15, 215–220 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kubo, H. et al. Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea. Proc. Natl Acad. Sci. USA 99, 8868–8873 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chen, P. Y. et al. The docking protein FRS2α is a critical regulator of VEGF receptors signaling. Proc. Natl Acad. Sci. USA 111, 5514–5519 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lax, I. et al. The docking protein FRS2α controls a MAP kinase-mediated negative feedback mechanism for signaling by FGF receptors. Mol. Cell 10, 709–719 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Romano, D. et al. Protein interaction switches coordinate Raf-1 and MST2/Hippo signalling. Nat. Cell Biol. 16, 673–684 (2014). Crosstalk between signalling pathways can result in a switch from one biological response to another, downstream of one common stimulus.

    Article  CAS  PubMed  Google Scholar 

  127. Wellbrock, C., Karasarides, M. & Marais, R. The RAF proteins take centre stage. Nat. Rev. Mol. Cell Biol. 5, 875–885 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Zhou, X. et al. Relaxin inhibits cardiac fibrosis and endothelial–mesenchymal transition via the Notch pathway. Drug Des. Devel. Ther. 9, 4599–4611 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ren, B. et al. ERK1/2–Akt1 crosstalk regulates arteriogenesis in mice and zebrafish. J. Clin. Invest. 120, 1217–1228 (2010). This paper demonstrates the important role of PI3K–ERK1/2 crosstalk in the regulation of arterial growth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Dai, X. et al. Phosphorylation of angiomotin by Lats1/2 kinases inhibits F-actin binding, cell migration, and angiogenesis. J. Biol. Chem. 288, 34041–34051 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nejigane, S., Takahashi, S., Haramoto, Y., Michiue, T. & Asashima, M. Hippo signaling components, Mst1 and Mst2, act as a switch between self-renewal and differentiation in Xenopus hematopoietic and endothelial progenitors. Int. J. Dev. Biol. 57, 407–414 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Zhou, J. An emerging role for Hippo–YAP signaling in cardiovascular development. J. Biomed. Res. 28, 251–254 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Herbert, S. P. & Stainier, D. Y. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat. Rev. Mol. Cell Biol. 12, 551–564 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gale, N. W. et al. Haploinsufficiency of δ-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc. Natl Acad. Sci. USA 101, 15949–15954 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Limbourg, F. P. et al. Essential role of endothelial Notch1 in angiogenesis. Circulation 111, 1826–1832 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Tammela, T. et al. VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nat. Cell Biol. 13, 1202–1213 (2011). This paper provides evidence for an important role for VEGFR3 expressed in tip cells to reinforce Notch signalling, thereby regulating branching morphogenesis in the blood vasculature.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Suchting, S. et al. The Notch ligand δ-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc. Natl Acad. Sci. USA 104, 3225–3230 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hellstrom, M. et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445, 776–780 (2007).

    Article  PubMed  CAS  Google Scholar 

  139. Benedito, R. et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137, 1124–1135 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Tammela, T. et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454, 656–660 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Jakobsson, L. et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol. 12, 943–953 (2010). This is the first evidence of the VEGF-dependent dynamic shuffling of endothelial cells along the growing angiogenic sprout.

    Article  CAS  PubMed  Google Scholar 

  142. Larrivee, B. et al. ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway. Dev. Cell 22, 489–500 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Rumjahn, S. M., Yokdang, N., Baldwin, K. A., Thai, J. & Buxton, I. L. Purinergic regulation of vascular endothelial growth factor signaling in angiogenesis. Br. J. Cancer 100, 1465–1470 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zeng, H., Zhao, D. & Mukhopadhyay, D. KDR stimulates endothelial cell migration through heterotrimeric G protein Gq/11-mediated activation of a small GTPase RhoA. J. Biol. Chem. 277, 46791–46798 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Gaengel, K. et al. The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR2. Dev. Cell 23, 587–599 (2012). This study elegantly demonstrates how S1PR1 signalling decreases endothelial hyper-sprouting through stabilization of junctional VE-cadherin, thereby suppressing VEGFR2 phosphorylation and downstream signalling.

    Article  CAS  PubMed  Google Scholar 

  146. Baumer, S. et al. Vascular endothelial cell-specific phosphotyrosine phosphatase (VE-PTP) activity is required for blood vessel development. Blood 107, 4754–4762 (2006).

    Article  PubMed  CAS  Google Scholar 

  147. Kuppers, V., Vockel, M., Nottebaum, A. F. & Vestweber, D. Phosphatases and kinases as regulators of the endothelial barrier function. Cell Tissue Res. 355, 577–586 (2014).

    Article  PubMed  CAS  Google Scholar 

  148. Frye, M. et al. Interfering with VE-PTP stabilizes endothelial junctions in vivo via Tie-2 in the absence of VE-cadherin. J. Exp. Med. 212, 2267–2287 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hayashi, M. et al. VE-PTP regulates VEGFR2 activity in stalk cells to establish endothelial cell polarity and lumen formation. Nat. Commun. 4, 1672 (2013).

    Article  PubMed  CAS  Google Scholar 

  150. Stuible, M. & Tremblay, M. L. In control at the ER: PTP1B and the down-regulation of RTKs by dephosphorylation and endocytosis. Trends Cell Biol. 20, 672–679 (2010).

    Article  CAS  PubMed  Google Scholar 

  151. Anderie, I., Schulz, I. & Schmid, A. Direct interaction between ER membrane-bound PTP1B and its plasma membrane-anchored targets. Cell. Signall. 19, 582–592 (2007).

    Article  CAS  Google Scholar 

  152. Lanahan, A. A. et al. PTP1b is a physiologic regulator of vascular endothelial growth factor signaling in endothelial cells. Circulation 130, 902–909 (2014). This paper demonstrates the important role of PTP1B in the regulation of VEGFR2 pY1175 signalling and ERK1/2 pathway activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Mattila, E., Auvinen, K., Salmi, M. & Ivaska, J. The protein tyrosine phosphatase TCPTP controls VEGFR2 signalling. J. Cell Sci. 121, 3570–3580 (2008).

    Article  CAS  PubMed  Google Scholar 

  154. Gampel, A. et al. VEGF regulates the mobilization of VEGFR2/KDR from an intracellular endothelial storage compartment. Blood 108, 2624–2631 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Hudson, N. et al. Differential apicobasal VEGF signaling at vascular blood–neural barriers. Dev. Cell 30, 541–552 (2014). This is the first identification of distinct polarity of VEGFR1 and VEGFR2 expression in the CNS endothelium.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Saharinen, P. et al. Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell–cell and cell–matrix contacts. Nat. Cell Biol. 10, 527–537 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Manickam, V. et al. Regulation of vascular endothelial growth factor receptor 2 trafficking and angiogenesis by Golgi localized t-SNARE syntaxin 6. Blood 117, 1425–1435 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Tiwari, A., Jung, J. J., Inamdar, S. M., Nihalani, D. & Choudhury, A. The myosin motor Myo1c is required for VEGFR2 delivery to the cell surface and for angiogenic signaling. Am J Physiol. Heart Circ. Physiol. 304, H687–H696 (2013).

    Article  CAS  PubMed  Google Scholar 

  159. McMahon, H. T. & Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 12, 517–533 (2011).

    Article  CAS  PubMed  Google Scholar 

  160. Ballmer-Hofer, K., Andersson, A. E., Ratcliffe, L. E. & Berger, P. Neuropilin-1 promotes VEGFR-2 trafficking through Rab11 vesicles thereby specifying signal output. Blood 118, 816–826 (2011).

    Article  CAS  PubMed  Google Scholar 

  161. Zhang, X. & Simons, M. Receptor tyrosine kinase endocytosis in endothelium: biology and signaling. Arterioscler. Thromb. Vasc. Biol 34, 1831–1837 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Sawamiphak, S. et al. Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 465, 487–491 (2010).

    Article  CAS  PubMed  Google Scholar 

  163. Wang, Y. et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465, 483–486 (2010).

    Article  CAS  PubMed  Google Scholar 

  164. Lampugnani, G. M. et al. Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, β-catenin, and the phosphatase DEP-1/CD148. J. Cell Biol. 161, 793–804 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  165. Lampugnani, M. G., Orsenigo, F., Gagliani, M. C., Tacchetti, C. & Dejana, E. Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. J. Cell Biol. 174, 593–604 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Pasula, S. et al. Endothelial epsin deficiency decreases tumor growth by enhancing VEGF signaling. J. Clin. Invest. 122, 4424–4438 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Tessneer, K. L. et al. Genetic reduction of vascular endothelial growth factor receptor 2 rescues aberrant angiogenesis caused by epsin deficiency. Arterioscler. Thromb. Vasc. Biol. 34, 331–337 (2014).

    Article  CAS  PubMed  Google Scholar 

  168. Liu, X. et al. Temporal and spatial regulation of epsin abundance and VEGFR3 signaling are required for lymphatic valve formation and function. Sci. Signal. 7, ra97 (2014).

    PubMed  PubMed Central  Google Scholar 

  169. van Lessen, M. et al. Regulation of vascular endothelial growth factor receptor function in angiogenesis by numb and numb-like. Arterioscler. Thromb. Vasc. Biol. 35, 1815–1825 (2015).

    Article  CAS  PubMed  Google Scholar 

  170. Duval, M., Bedard-Goulet, S., Delisle, C. & Gratton, J. P. Vascular endothelial growth factor-dependent down-regulation of Flk-1/KDR involves Cbl-mediated ubiquitination. Consequences on nitric oxide production from endothelial cells. J. Biol. Chem. 278, 20091–20097 (2003).

    Article  CAS  PubMed  Google Scholar 

  171. Husain, D. et al. Role of c-Cbl-dependent regulation of phospholipase Cγ1 activation in experimental choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 51, 6803–6809 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Meyer, R. D., Husain, D. & Rahimi, N. c-Cbl inhibits angiogenesis and tumor growth by suppressing activation of PLCγ1. Oncogene 30, 2198–2206 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Shaik, S. et al. SCF(β-TRCP) suppresses angiogenesis and thyroid cancer cell migration by promoting ubiquitination and destruction of VEGF receptor 2. J. Exp. Med. 209, 1289–1307 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Dokun, A. O., Chen, L., Lanjewar, S. S., Lye, R. J. & Annex, B. H. Glycaemic control improves perfusion recovery and VEGFR2 protein expression in diabetic mice following experimental PAD. Cardiovasc. Res. 101, 364–372 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Selvaraj, D. et al. A functional role for VEGFR1 expressed in peripheral sensory neurons in cancer pain. Cancer Cell 27, 780–796 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Cudmore, M. J. et al. The role of heterodimerization between VEGFR-1 and VEGFR-2 in the regulation of endothelial cell homeostasis. Nat. Commun. 3, 972 (2012).

    Article  PubMed  CAS  Google Scholar 

  177. Ito, N., Wernstedt, C., Engstrom, U. & Claesson-Welsh, L. Identification of vascular endothelial growth factor receptor-1 tyrosine phosphorylation sites and binding of SH2 domain-containing molecules. J. Biol. Chem. 273, 23410–23418 (1998).

    Article  CAS  PubMed  Google Scholar 

  178. Patten, I. S. et al. Cardiac angiogenic imbalance leads to peripartum cardiomyopathy. Nature 485, 333–338 (2012). The physiological and pathological role of sVEGFR1 is demonstrated in the negative regulation of VEGFA bioactivity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zeisler, H. et al. Predictive value of the sFlt-1:PlGF ratio in women with suspected preeclampsia. N. Engl. J. Med. 374, 13–22 (2016).

    Article  CAS  PubMed  Google Scholar 

  180. Fischer, C. et al. Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131, 463–475 (2007).

    Article  CAS  PubMed  Google Scholar 

  181. Aase, K. et al. Vascular endothelial growth factor-B-deficient mice display an atrial conduction defect. Circulation 104, 358–364 (2001).

    Article  CAS  PubMed  Google Scholar 

  182. Bellomo, D. et al. Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ. Res. 86, E29–E35 (2000).

    Article  CAS  PubMed  Google Scholar 

  183. Usui, R., Shibuya, M., Ishibashi, S. & Maru, Y. Ligand-independent activation of vascular endothelial growth factor receptor 1 by low-density lipoprotein. EMBO Rep. 8, 1155–1161 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Avraham-Davidi, I. et al. ApoB-containing lipoproteins regulate angiogenesis by modulating expression of VEGF receptor 1. Nat. Med. 18, 967–973 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Han, J. et al. Vascular endothelial growth factor receptor 3 controls neural stem cell activation in mice and humans. Cell Rep. 10, 1158–1172 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Cha, Y. R. et al. Chemokine signaling directs trunk lymphatic network formation along the preexisting blood vasculature. Dev. Cell 22, 824–836 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Alitalo, K. The lymphatic vasculature in disease. Nat. Med. 17, 1371–1380 (2011).

    Article  CAS  PubMed  Google Scholar 

  188. Benedito, R. et al. Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF–VEGFR2 signalling. Nature 484, 110–114 (2012).

    Article  CAS  PubMed  Google Scholar 

  189. Karkkainen, M. J. et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat. Immunol. 5, 74–80 (2004).

    Article  CAS  PubMed  Google Scholar 

  190. Zhou, F. et al. Akt/protein kinase B is required for lymphatic network formation, remodeling, and valve development. Am. J. Pathol. 177, 2124–2133 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Koltowska, K. et al. Mafba is a downstream transcriptional effector of Vegfc signaling essential for embryonic lymphangiogenesis in zebrafish. Genes Dev. 29, 1618–1630 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Au, A. C. et al. Protein tyrosine phosphatase PTPN14 is a regulator of lymphatic function and choanal development in humans. Am. J. Hum. Genet. 87, 436–444 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the following agencies for support of their work: grants from the Swedish Science Council, Swedish Cancer Foundation, World-wide Cancer Research and the Knut and Alice Wallenberg Foundation (L.C.-W.); US National Institutes of Health (NIH) grants R01 HL053793, HL084619 and P01 HL107205 (M.S.); and a Wenner–Gren foundation grant (E.G.). The authors also thank their colleagues at Yale Cardiovascular Research Center (YCVRC) and Uppsala University, as well as close colleagues around the world, for productive discussions and advice.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Simons or Lena Claesson-Welsh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Receptor tyrosine kinases

Cell surface receptors that, on binding ligands, dimerize and undergo a conformation change that activates intracellular tyrosine kinase, leading to tyrosine phosphorylation of the receptor's intracellular domain as well as signal transducers.

Neuropilins

(NRPs). Transmembrane glycoproteins that can bind to vascular endothelial growth factors (VEGFs) and semaphorins and act either as receptors or co-receptors (together with VEGF receptors and plexins) to modulate intracellular signalling.

Heparan sulfate proteoglycans

(HSPGs). Proteoglycans carrying heparan sulfate chains that can bind to various heparin-binding growth factors found on the plasma membrane or the extracellular matrix. They can function as vascular endothelial growth factor co-receptors or signal independently.

Integrins

Transmembrane receptors that link the extracellular matrix to the cell and transmit signals to communicate the characteristics of the surrounding environment across the membrane.

Extracellular matrix

(ECM). The non-cellular component of tissues and organs comprising proteins and carbohydrates that provide structural and biochemical support for cellular structures.

Semaphorins

Secreted or membrane-bound guidance proteins that control cell movement through multimeric cognate receptor complexes.

Focal adhesions

Contact points between the cell and the extracellular matrix comprising integrins and actin filament bundles.

Tetraspanin

Transmembrane-4 glycoproteins that interact both with themselves and with other transmembrane receptors to regulate various cellular processes, such as fusion, receptor trafficking and motility.

VE-cadherin

Adherens junction type II cadherin expressed on endothelial cells and localized at cell–cell junctions. Involved in the regulation of vascular integrity and permeability.

Tip cells

Highly migratory endothelial cells with polarized filopodial extensions at the leading position of the growing angiogenic sprout.

Stalk cells

Highly proliferative endothelial cells that follow tip cells and contribute to the elongation, lumenization and stabilization of the nascent sprout.

Lipid rafts

Specialized, dynamically assembled regions of the membrane enriched in certain proteins and lipids.

Clathrin-enriched pits

Invaginations in the plasma membrane assembled by the growth of a clathrin lattice that are involved in receptor endocytosis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simons, M., Gordon, E. & Claesson-Welsh, L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol 17, 611–625 (2016). https://doi.org/10.1038/nrm.2016.87

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2016.87

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing