Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulating Rho GTPases and their regulators

Key Points

  • Rho GTPases regulate a wide range of cellular responses, including changes to the cytoskeleton and cell adhesion. Their activity therefore needs to be precisely controlled to determine which response occurs, depending on the context and stimulus.

  • Most Rho GTPases cycle between an active GTP-bound and an inactive GDP-bound form, a process that is regulated by guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs) and guanine nucleotide dissociation inhibitors (GDIs). In their GTP-bound form, they interact with a diverse range of different targets to induce cellular responses.

  • In addition to GTP–GDP cycling, Rho GTPases are regulated by a diverse range of post-translational modifications, including phosphorylation, ubiquitylation and sumoylation, which alter their localization, activity and stability.

  • GEFs, GAPs and GDIs are also regulated by post-translational modifications, which in turn affect their activity, stability and ability to form protein complexes. These changes then impinge on where and when Rho GTPases are activated.

  • The spatiotemporal activation of Rho GTPases is coordinated by a complex network of post-translational modifications and protein–protein interactions. This determines which Rho GTPase targets are activated, and hence the cellular outcome.

Abstract

Rho GTPases regulate cytoskeletal and cell adhesion dynamics and thereby coordinate a wide range of cellular processes, including cell migration, cell polarity and cell cycle progression. Most Rho GTPases cycle between a GTP-bound active conformation and a GDP-bound inactive conformation to regulate their ability to activate effector proteins and to elicit cellular responses. However, it has become apparent that Rho GTPases are regulated by post-translational modifications and the formation of specific protein complexes, in addition to GTP–GDP cycling. The canonical regulators of Rho GTPases — guanine nucleotide exchange factors, GTPase-activating proteins and guanine nucleotide dissociation inhibitors — are regulated similarly, creating a complex network of interactions to determine the precise spatiotemporal activation of Rho GTPases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of Rho GTPase regulation.
Figure 2: Regulation of Rho GTPases by lipid modifications.
Figure 3: Phosphorylation has diverse effects on Rho GTPase signalling.

Similar content being viewed by others

References

  1. Vega, F. M. & Ridley, A. J. Rho GTPases in cancer cell biology. FEBS Lett. 582, 2093–2101 (2008).

    CAS  PubMed  Google Scholar 

  2. Heasman, S. J. & Ridley, A. J. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat. Rev. Mol. Cell Biol. 9, 690–701 (2008).

    CAS  PubMed  Google Scholar 

  3. Ridley, A. J. Life at the leading edge. Cell 145, 1012–1022 (2011).

    CAS  PubMed  Google Scholar 

  4. Rossman, K. L., Der, C. J. & Sondek, J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat. Rev. Mol. Cell Biol. 6, 167–180 (2005).

    CAS  PubMed  Google Scholar 

  5. Liu, M., Bi, F., Zhou, X. & Zheng, Y. Rho GTPase regulation by miRNAs and covalent modifications. Trends Cell Biol. 22, 365–373 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Croft, D. R. & Olson, M. F. Transcriptional regulation of Rho GTPase signaling. Transcription 2, 211–215 (2011).

    PubMed  PubMed Central  Google Scholar 

  7. Berthold, J., Schenkova, K. & Rivero, F. Rho GTPases of the RhoBTB subfamily and tumorigenesis. Acta Pharmacol. Sin. 29, 285–295 (2008).

    CAS  PubMed  Google Scholar 

  8. Michaelson, D. et al. Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding. J. Cell Biol. 152, 111–126 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Katayama, M. et al. The posttranslationally modified C-terminal structure of bovine aortic smooth muscle rho A p21. J. Biol. Chem. 266, 12639–12645 (1991).

    CAS  PubMed  Google Scholar 

  10. Adamson, P., Marshall, C. J., Hall, A. & Tilbrook, P. A. Post-translational modifications of p21rho proteins. J. Biol. Chem. 267, 20033–20038 (1992).

    CAS  PubMed  Google Scholar 

  11. Hamel, B. et al. SmgGDS is a guanine nucleotide exchange factor that specifically activates RhoA and RhoC. J. Biol. Chem. 286, 12141–12148 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Berg, T. J. et al. Splice variants of SmgGDS control small GTPase prenylation and membrane localization. J. Biol. Chem. 285, 35255–35266 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, D. A. & Sebti, S. M. Palmitoylated cysteine 192 is required for RhoB tumor-suppressive and apoptotic activities. J. Biol. Chem. 280, 19243–19249 (2005).

    CAS  PubMed  Google Scholar 

  14. Perez-Sala, D., Boya, P., Ramos, I., Herrera, M. & Stamatakis, K. The C-terminal sequence of RhoB directs protein degradation through an endo-lysosomal pathway. PLoS ONE 4, e8117 (2009).

    PubMed  PubMed Central  Google Scholar 

  15. Berzat, A. C. et al. Transforming activity of the Rho family GTPase, Wrch-1, a Wnt-regulated Cdc42 homolog, is dependent on a novel carboxyl-terminal palmitoylation motif. J. Biol. Chem. 280, 33055–33065 (2005).

    CAS  PubMed  Google Scholar 

  16. Chenette, E. J., Mitin, N. Y. & Der, C. J. Multiple sequence elements facilitate Chp Rho GTPase subcellular location, membrane association, and transforming activity. Mol. Biol. Cell 17, 3108–3121 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Linder, M. E. & Deschenes, R. J. Palmitoylation: policing protein stability and traffic. Nat. Rev. Mol. Cell Biol. 8, 74–84 (2007).

    CAS  PubMed  Google Scholar 

  18. Rocks, O. et al. The palmitoylation machinery is a spatially organizing system for peripheral membrane proteins. Cell 141, 458–471 (2010).

    CAS  PubMed  Google Scholar 

  19. Navarro-Lerida, I. et al. A palmitoylation switch mechanism regulates Rac1 function and membrane organization. EMBO J. 31, 534–551 (2012).

    CAS  PubMed  Google Scholar 

  20. Nishimura, A. & Linder, M. E. Identification of a novel prenyl and palmitoyl modification at the CaaX motif of Cdc42 that regulates RhoGDI binding. Mol. Cell. Biol. 33, 1417–1429 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lang, P. et al. Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. EMBO J. 15, 510–519 (1996). The first paper to demonstrate that a Rho GTPase is modified by phosphorylation.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tkachenko, E. et al. Protein kinase A governs a RhoA–RhoGDI protrusion–retraction pacemaker in migrating cells. Nat. Cell Biol. 13, 660–667 (2011).

    PubMed  PubMed Central  Google Scholar 

  23. Ellerbroek, S. M., Wennerberg, K. & Burridge, K. Serine phosphorylation negatively regulates RhoA in vivo. J. Biol. Chem. 278, 19023–19031 (2003).

    CAS  PubMed  Google Scholar 

  24. Sauzeau, V. et al. Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2+ sensitization of contraction in vascular smooth muscle. J. Biol. Chem. 275, 21722–21729 (2000).

    CAS  PubMed  Google Scholar 

  25. Forget, M., Desrosiers, R. R., Gingras, D. & Beliveau, R. Phosphorylation states of Cdc42 and RhoA regulate their interactions with Rho GDP dissociation inhibitor and their extraction from biological membranes. Biochem. J. 361, 243–254 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Takemoto, K., Ishihara, S., Mizutani, T., Kawabata, K. & Haga, H. Compressive stress induces dephosphorylation of the myosin regulatory light chain via RhoA phosphorylation by the adenylyl cyclase/protein kinase A signaling pathway. PLoS ONE 10, e0117937 (2015).

    PubMed  PubMed Central  Google Scholar 

  27. Nusser, N. et al. Serine phosphorylation differentially affects RhoA binding to effectors: implications to NGF-induced neurite outgrowth. Cell Signal 18, 704–714 (2006).

    CAS  PubMed  Google Scholar 

  28. Rolli-Derkinderen, M., Toumaniantz, G., Pacaud, P. & Loirand, G. RhoA phosphorylation induces Rac1 release from guanine dissociation inhibitor α and stimulation of vascular smooth muscle cell migration. Mol. Cell. Biol. 30, 4786–4796 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rolli-Derkinderen, M. et al. Phosphorylation of serine 188 protects RhoA from ubiquitin/proteasome-mediated degradation in vascular smooth muscle cells. Circ. Res. 96, 1152–1160 (2005).

    CAS  PubMed  Google Scholar 

  30. Chang, F., Lemmon, C., Lietha, D., Eck, M. & Romer, L. Tyrosine phosphorylation of Rac1: a role in regulation of cell spreading. PLoS ONE 6, e28587 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kwon, T., Kwon, D. Y., Chun, J., Kim, J. H. & Kang, S. S. Akt protein kinase inhibits Rac1-GTP binding through phosphorylation at serine 71 of Rac1. J. Biol. Chem. 275, 423–428 (2000).

    CAS  PubMed  Google Scholar 

  32. Tong, J., Li, L., Ballermann, B. & Wang, Z. Phosphorylation of Rac1 T108 by extracellular signal-regulated kinase in response to epidermal growth factor: a novel mechanism to regulate Rac1 function. Mol. Cell. Biol. 33, 4538–4551 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Navarro-Lerida, I. et al. Rac1 nucleocytoplasmic shuttling drives nuclear shape changes and tumor invasion. Dev. Cell 32, 318–334 (2015).

    CAS  PubMed  Google Scholar 

  34. Jamieson, C., Lui, C., Brocardo, M. G., Martino-Echarri, E. & Henderson, B. R. Rac1 augments Wnt signaling by stimulating β-catenin-lymphoid enhancer factor-1 complex assembly independent of β-catenin nuclear import. J. Cell Sci. 128, 3933–3946 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Cuadrado, A., Martin-Moldes, Z., Ye, J. & Lastres-Becker, I. Transcription factors NRF2 and NF-κB are coordinated effectors of the Rho family, GTP-binding protein RAC1 during inflammation. J. Biol. Chem. 289, 15244–15258 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Riento, K. et al. RhoE function is regulated by ROCK I-mediated phosphorylation. EMBO J. 24, 1170–1180 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Madigan, J. P. et al. Regulation of Rnd3 localization and function by protein kinase Cα-mediated phosphorylation. Biochem. J. 424, 153–161 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Riou, P. et al. 14-3-3 proteins interact with a hybrid prenyl-phosphorylation motif to inhibit G proteins. Cell 153, 640–653 (2013). Describes how phosphate-binding 14-3-3 proteins function as pseudo-RhoGDIs by interacting with a dual prenyl-phosphorylation motif to extract Rho proteins from membranes.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Alan, J. K., Berzat, A. C., Dewar, B. J., Graves, L. M. & Cox, A. D. Regulation of the Rho family small GTPase Wrch-1/RhoU by C-terminal tyrosine phosphorylation requires Src. Mol. Cell. Biol. 30, 4324–4338 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tamehiro, N., Oda, H., Shirai, M. & Suzuki, H. Overexpression of RhoH permits to bypass the pre-TCR checkpoint. PLoS ONE 10, e0131047 (2015).

    PubMed  PubMed Central  Google Scholar 

  41. Gu, Y. et al. RhoH GTPase recruits and activates Zap70 required for T cell receptor signaling and thymocyte development. Nat. Immunol. 7, 1182–1190 (2006).

    CAS  PubMed  Google Scholar 

  42. Riou, P., Villalonga, P. & Ridley, A. J. Rnd proteins: multifunctional regulators of the cytoskeleton and cell cycle progression. Bioessays 32, 986–992 (2010).

    CAS  PubMed  Google Scholar 

  43. Hornbeck, P. V. et al. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 43, 512–520 (2015).

    Google Scholar 

  44. Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012).

    CAS  PubMed  Google Scholar 

  45. Deng, S. & Huang, C. E3 ubiquitin ligases in regulating stress fiber, lamellipodium, and focal adhesion dynamics. Cell Adh. Migr. 8, 49–54 (2014).

    PubMed  Google Scholar 

  46. Deshaies, R. J. & Joazeiro, C. A. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78, 399–434 (2009).

    CAS  PubMed  Google Scholar 

  47. Wei, J. et al. A new mechanism of RhoA ubiquitination and degradation: Roles of SCFFBXL19 E3 ligase and Erk2. Biochim. Biophys. Acta 1833, 2757–2764 (2013).

    CAS  PubMed  Google Scholar 

  48. Wang, H. et al. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 302, 1775–1779 (2003). The first paper to demonstrate that the protein turnover of a Rho GTPase is regulated by ubiquitylation.

    CAS  PubMed  Google Scholar 

  49. Ozdamar, B. et al. Regulation of the polarity protein Par6 by TGFB receptors controls epithelial cell plasticity. Science 307, 1603–1609 (2005).

    CAS  PubMed  Google Scholar 

  50. Tian, M. et al. Binding of RhoA by the C2 domain of E3 ligase Smurf1 is essential for Smurf1-regulated RhoA ubiquitination and cell protrusive activity. FEBS Lett. 585, 2199–2204 (2011).

    CAS  PubMed  Google Scholar 

  51. Deglincerti, A. et al. Coupled local translation and degradation regulate growth cone collapse. Nat. Commun. 6, 6888 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen, Y. et al. Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement. Mol. Cell 35, 841–855 (2009). Describes how BTB domain adaptors, named BACURDs, form an ubiquitin ligase complex with cullin to selectively ubiquitylate RhoA.

    CAS  PubMed  Google Scholar 

  53. Ibeawuchi, S. R., Agbor, L. N., Quelle, F. W. & Sigmund, C. D. Hypertension-causing mutations in Cullin3 protein impair RhoA protein ubiquitination and augment the association with substrate adaptors. J. Biol. Chem. 290, 19208–19217 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Yu, L. et al. SND1 acts downstream of TGFβ1 and upstream of Smurf1 to promote breast cancer metastasis. Cancer Res. 75, 1275–1286 (2015).

    CAS  PubMed  Google Scholar 

  55. Cheng, P. L., Lu, H., Shelly, M., Gao, H. & Poo, M. M. Phosphorylation of E3 ligase Smurf1 switches its substrate preference in support of axon development. Neuron 69, 231–243 (2011).

    CAS  PubMed  Google Scholar 

  56. Wang, M. et al. ATR/Chk1/Smurf1 pathway determines cell fate after DNA damage by controlling RhoB abundance. Nat. Commun. 5, 4901 (2014).

    CAS  PubMed  Google Scholar 

  57. Berthold, J. et al. Characterization of RhoBTB-dependent Cul3 ubiquitin ligase complexes — evidence for an autoregulatory mechanism. Exp. Cell Res. 314, 3453–3465 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wilkins, A., Ping, Q. & Carpenter, C. L. RhoBTB2 is a substrate of the mammalian Cul3 ubiquitin ligase complex. Genes Dev. 18, 856–861 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Oberoi, T. K. et al. IAPs regulate the plasticity of cell migration by directly targeting Rac1 for degradation. EMBO J. 31, 14–28 (2012).

    CAS  PubMed  Google Scholar 

  60. Oberoi-Khanuja, T. K. & Rajalingam, K. IAPs as E3 ligases of Rac1: shaping the move. Small GTPases 3, 131–136 (2012).

    PubMed  PubMed Central  Google Scholar 

  61. Torrino, S. et al. The E3 ubiquitin-ligase HACE1 catalyzes the ubiquitylation of active Rac1. Dev. Cell 21, 959–965 (2011).

    CAS  PubMed  Google Scholar 

  62. Castillo-Lluva, S., Tan, C. T., Daugaard, M., Sorensen, P. H. & Malliri, A. The tumour suppressor HACE1 controls cell migration by regulating Rac1 degradation. Oncogene 32, 1735–1742 (2013).

    CAS  PubMed  Google Scholar 

  63. Mettouchi, A. & Lemichez, E. Ubiquitylation of active Rac1 by the E3 ubiquitin-ligase HACE1. Small GTPases 3, 102–106 (2012).

    PubMed  PubMed Central  Google Scholar 

  64. Goka, E. T. & Lippman, M. E. Loss of the E3 ubiquitin ligase HACE1 results in enhanced Rac1 signaling contributing to breast cancer progression. Oncogene 34, 5395–5405 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhao, J. et al. SCF E3 ligase F-box protein complex SCFFBXL19 regulates cell migration by mediating Rac1 ubiquitination and degradation. FASEB J. 27, 2611–2619 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Dong, S. et al. F-box protein complex FBXL19 regulates TGF-β1-induced E-cadherin down-regulation by mediating Rac3 ubiquitination and degradation. Mol. Cancer 13, 1–13 (2014).

    Google Scholar 

  67. Castillo-Lluva, S. et al. SUMOylation of the GTPase Rac1 is required for optimal cell migration. Nat. Cell Biol. 12, 1078–1085 (2010). The first paper to demonstrate that a Rho GTPase is modified by sumoylation.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Goicoechea, S. M., Awadia, S. & Garcia-Mata, R. I'm coming to GEF you: Regulation of RhoGEFs during cell migration. Cell Adh. Migr. 8, 535–549 (2014).

    PubMed  PubMed Central  Google Scholar 

  69. Laurin, M. & Cote, J. F. Insights into the biological functions of Dock family guanine nucleotide exchange factors. Genes Dev. 28, 533–547 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Bustelo, X. R. Vav family exchange factors: an integrated regulatory and functional view. Small GTPases 5, e973757 (2014).

    PubMed Central  Google Scholar 

  71. Fujishiro, S. H. et al. ERK1/2 phosphorylate GEF-H1 to enhance its guanine nucleotide exchange activity toward RhoA. Biochem. Biophys. Res. Commun. 368, 162–167 (2008).

    CAS  PubMed  Google Scholar 

  72. Kakiashvili, E. et al. GEF-H1 mediates tumor necrosis factor-α-induced Rho activation and myosin phosphorylation: role in the regulation of tubular paracellular permeability. J. Biol. Chem. 284, 11454–11466 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Guilluy, C. et al. The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins. Nat. Cell Biol. 13, 722–727 (2011). Describes how RhoGEFs can be activated and relocalized to adhesion containing complexes by tensional force-stimulated integrin signalling.

    PubMed  PubMed Central  Google Scholar 

  74. Zenke, F. T. et al. p21-activated kinase 1 phosphorylates and regulates 14-3-3 binding to GEF-H1, a microtubule-localized Rho exchange factor. J. Biol. Chem. 279, 18392–18400 (2004).

    CAS  PubMed  Google Scholar 

  75. Ngok, S. P., Geyer, R., Kourtidis, A., Storz, P. & Anastasiadis, P. Z. Phosphorylation-mediated 14-3-3 protein binding regulates the function of the Rho-specific guanine nucleotide exchange factor (RhoGEF) Syx. J. Biol. Chem. 288, 6640–6650 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhu, G. et al. An EGFR/PI3K/AKT axis promotes accumulation of the Rac1-GEF Tiam1 that is critical in EGFR-driven tumorigenesis. Oncogene 34, 5971–5982 (2015).

    CAS  PubMed  Google Scholar 

  77. O'Toole, T. E., Bialkowska, K., Li, X. & Fox, J. E. Tiam1 is recruited to β1-integrin complexes by 14-3-3ζ where it mediates integrin-induced Rac1 activation and motility. J. Cell. Physiol. 226, 2965–2978 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Magliozzi, R., Kim, J., Low, T. Y., Heck, A. J. & Guardavaccaro, D. Degradation of Tiam1 by casein kinase 1 and the SCFβTrCP ubiquitin ligase controls the duration of mTOR-S6K signaling. J. Biol. Chem. 289, 27400–27409 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Whalley, H. J. et al. Cdk1 phosphorylates the Rac activator Tiam1 to activate centrosomal Pak and promote mitotic spindle formation. Nat. Commun. 6, 7437 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Woodcock, S. A. et al. SRC-induced disassembly of adherens junctions requires localized phosphorylation and degradation of the Rac activator Tiam1. Mol. Cell 33, 639–653 (2009).

    CAS  PubMed  Google Scholar 

  81. Birkenfeld, J. et al. GEF-H1 modulates localized RhoA activation during cytokinesis under the control of mitotic kinases. Dev. Cell 12, 699–712 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Helms, M. C. et al. Mitotic-dependent phosphorylation of leukemia-associated RhoGEF (LARG) by Cdk1. Cell Signal. 28, 43–52 (2015).

    PubMed  PubMed Central  Google Scholar 

  83. Wu, D., Asiedu, M., Matsumura, F. & Wei, Q. Phosphorylation of myosin II-interacting guanine nucleotide exchange factor (MyoGEF) at threonine 544 by aurora B kinase promotes the binding of polo-like kinase 1 to MyoGEF. J. Biol. Chem. 289, 7142–7150 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Miyamoto, Y. et al. Akt and PP2A reciprocally regulate the guanine nucleotide exchange factor Dock6 to control axon growth of sensory neurons. Sci. Signal. 6, 1–12 (2013).

    Google Scholar 

  85. Vaughan, L. et al. HUWE1 ubiquitylates and degrades the RAC activator TIAM1 promoting cell–cell adhesion disassembly, migration, and invasion. Cell Rep. 10, 88–102 (2015).

    CAS  PubMed  Google Scholar 

  86. Margolis, S. S. et al. EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation. Cell 143, 442–455 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Song, E. H. et al. Acetylation of the RhoA GEF Net1A controls its subcellular localization and activity. J. Cell Sci. 128, 913–922 (2015). The first paper to demonstrate that a RhoGEF undergoes acetylation.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Radu, M., Semenova, G., Kosoff, R. & Chernoff, J. PAK signalling during the development and progression of cancer. Nat. Rev. Cancer 14, 13–25 (2013).

    Google Scholar 

  89. Tian, Y. et al. Hepatocyte growth factor-induced Asef-IQGAP1 complex controls cytoskeletal remodeling and endothelial barrier. J. Biol. Chem. 290, 4097–4109 (2015).

    CAS  PubMed  Google Scholar 

  90. Marei, H. et al. Differential Rac1 signalling by guanine nucleotide exchange factors implicates FLII in regulating Rac1-driven cell migration. Nat. Commun. 7, 10664 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Toret, C. P., Collins, C. & Nelson, W. J. An Elmo–Dock complex locally controls Rho GTPases and actin remodeling during cadherin-mediated adhesion. J. Cell Biol. 207, 577–587 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Carr, H. S., Cai, C., Keinanen, K. & Frost, J. A. Interaction of the RhoA exchange factor Net1 with discs large homolog 1 protects it from proteasome-mediated degradation and potentiates Net1 activity. J. Biol. Chem. 284, 24269–24280 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Garcia-Mata, R. et al. The nuclear RhoA exchange factor Net1 interacts with proteins of the Dlg family, affects their localization, and influences their tumor suppressor activity. Mol. Cell. Biol. 27, 8683–8697 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Razidlo, G. L. et al. Dynamin 2 potentiates invasive migration of pancreatic tumor cells through stabilization of the Rac1 GEF Vav1. Dev. Cell 24, 573–585 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Chikumi, H. et al. Homo- and hetero-oligomerization of PDZ-RhoGEF, LARG and p115RhoGEF by their C-terminal region regulates their in vivo Rho GEF activity and transforming potential. Oncogene 23, 233–240 (2004).

    CAS  PubMed  Google Scholar 

  96. Baisamy, L., Jurisch, N. & Diviani, D. Leucine zipper-mediated homo-oligomerization regulates the Rho-GEF activity of AKAP-Lbc. J. Biol. Chem. 280, 15405–15412 (2005).

    CAS  PubMed  Google Scholar 

  97. Moon, S. Y. & Zheng, Y. Rho GTPase-activating proteins in cell regulation. Trends Cell Biol. 13, 13–22 (2003).

    CAS  PubMed  Google Scholar 

  98. Peck, J., Douglas, G. 4th, Wu, C. H. & Burbelo, P. D. Human RhoGAP domain-containing proteins: structure, function and evolutionary relationships. FEBS Lett. 528, 27–34 (2002).

    CAS  PubMed  Google Scholar 

  99. Kim, T. Y. et al. CRL4A-FBXW5-mediated degradation of DLC1 Rho GTPase-activating protein tumor suppressor promotes non-small cell lung cancer cell growth. Proc. Natl Acad. Sci. USA 110, 16868–16873 (2013).

    CAS  PubMed  Google Scholar 

  100. Ko, F. C. et al. PKA-induced dimerization of the RhoGAP DLC1 promotes its inhibition of tumorigenesis and metastasis. Nat. Commun. 4, 1618 (2013).

    PubMed  Google Scholar 

  101. Tripathi, B. K. et al. CDK5 is a major regulator of the tumor suppressor DLC1. J. Cell Biol. 207, 627–642 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Morishita, Y., Tsutsumi, K. & Ohta, Y. Phosphorylation of serine 402 regulates RacGAP activity of FilGAP. J. Biol. Chem. 290, 26328–26338 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kannan, M., Lee, S. J., Schwedhelm-Domeyer, N., Nakazawa, T. & Stegmuller, J. p250GAP is a novel player in the Cdh1-APC/Smurf1 pathway of axon growth regulation. PLoS ONE 7, e50735 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Bigarella, C. L. et al. Post-translational modification of the RhoGTPase activating protein 21, ARHGAP21, by SUMO2/3. FEBS Lett. 586, 3522–3528 (2012).

    CAS  PubMed  Google Scholar 

  105. Endris, V. et al. SrGAP3 interacts with lamellipodin at the cell membrane and regulates Rac-dependent cellular protrusions. J. Cell Sci. 124, 3941–3955 (2011).

    CAS  PubMed  Google Scholar 

  106. Law, A. L. et al. Lamellipodin and the Scar/WAVE complex cooperate to promote cell migration in vivo. J. Cell Biol. 203, 673–689 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Zebda, N. et al. Interaction of p190RhoGAP with C-terminal domain of p120-catenin modulates endothelial cytoskeleton and permeability. J. Biol. Chem. 288, 18290–18299 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Shih, Y. P., Sun, P., Wang, A. & Lo, S. H. Tensin1 positively regulates RhoA activity through its interaction with DLC1. Biochim. Biophys. Acta 1853, 3258–3265 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Kawai, K., Kitamura, S. Y., Maehira, K., Seike, J. & Yagisawa, H. START-GAP1/DLC1 is localized in focal adhesions through interaction with the PTB domain of tensin2. Adv. Enzyme Regul. 50, 202–215 (2010).

    PubMed  Google Scholar 

  110. Chan, L. K., Ko, F. C., Ng, I. O. & Yam, J. W. Deleted in liver cancer 1 (DLC1) utilizes a novel binding site for Tensin2 PTB domain interaction and is required for tumor-suppressive function. PLoS ONE 4, e5572 (2009).

    PubMed  PubMed Central  Google Scholar 

  111. Cao, X. et al. A phosphorylation switch controls the spatiotemporal activation of Rho GTPases in directional cell migration. Nat. Commun. 6, 7721 (2015). This study describes how phosphorylation initiates a swap in GAP-containing protein complexes to regulate RAC1 and RhoA activity.

    PubMed  PubMed Central  Google Scholar 

  112. Campa, C. C., Ciraolo, E., Ghigo, A., Germena, G. & Hirsch, E. Crossroads of PI3K and Rac pathways. Small GTPases 6, 71–80 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Huang, T. Y. et al. A novel Rac1 GAP splice variant relays poly-Ub accumulation signals to mediate Rac1 inactivation. Mol. Biol. Cell 24, 194–209 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Um, K. et al. Dynamic control of excitatory synapse development by a Rac1 GEF/GAP regulatory complex. Dev. Cell 29, 701–715 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Kutys, M. L. & Yamada, K. M. An extracellular-matrix-specific GEF-GAP interaction regulates Rho GTPase crosstalk for 3D collagen migration. Nat. Cell Biol. 16, 909–917 (2014). This study describes how a GEF–GAP complex maintains suppressive crosstalk between CDC42 and RhoA during cell migration.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Abraham, S. et al. A Rac/Cdc42 exchange factor complex promotes formation of lateral filopodia and blood vessel lumen morphogenesis. Nat. Commun. 6, 7286 (2015).

    PubMed  PubMed Central  Google Scholar 

  117. Vaughan, E. M., Miller, A. L., Yu, H. Y. & Bement, W. M. Control of local Rho GTPase crosstalk by Abr. Curr. Biol. 21, 270–277 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Garcia-Mata, R., Boulter, E. & Burridge, K. The 'invisible hand': regulation of RHO GTPases by RHOGDIs. Nat. Rev. Mol. Cell Biol. 12, 493–504 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Hoffman, G. R., Nassar, N. & Cerione, R. A. Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI. Cell 100, 345–356 (2000).

    CAS  PubMed  Google Scholar 

  120. Johnson, J. L., Erickson, J. W. & Cerione, R. A. New insights into how the Rho guanine nucleotide dissociation inhibitor regulates the interaction of Cdc42 with membranes. J. Biol. Chem. 284, 23860–23871 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. DerMardirossian, C., Rocklin, G., Seo, J. Y. & Bokoch, G. M. Phosphorylation of RhoGDI by Src regulates Rho GTPase binding and cytosol-membrane cycling. Mol. Biol. Cell 17, 4760–4768 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Dovas, A. et al. Serine 34 phosphorylation of Rho guanine dissociation inhibitor (RhoGDIα) links signaling from conventional protein kinase C to RhoGTPase in cell adhesion. J. Biol. Chem. 285, 23296–23308 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Sabbatini, M. E. & Williams, J. A. Cholecystokinin-mediated RhoGDI phosphorylation via PKCα promotes both RhoA and Rac1 signaling. PLoS ONE 8, e66029 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. DerMardirossian, C., Schnelzer, A. & Bokoch, G. M. Phosphorylation of RhoGDI by Pak1 mediates dissociation of Rac GTPase. Mol. Cell 15, 117–127 (2004).

    CAS  PubMed  Google Scholar 

  125. Fei, F. et al. The Fer tyrosine kinase regulates interactions of Rho GDP-Dissociation Inhibitor α with the small GTPase Rac. BMC Biochem. 11, 48 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Oishi, A., Makita, N., Sato, J. & Iiri, T. Regulation of RhoA signaling by the cAMP-dependent phosphorylation of RhoGDIα. J. Biol. Chem. 287, 38705–38715 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Yu, J. et al. RhoGDI SUMOylation at Lys-138 increases its binding activity to Rho GTPase and its inhibiting cancer cell motility. J. Biol. Chem. 287, 13752–13760 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Cao, Z. et al. SUMOylation of RhoGDIα is required for its repression of cyclin D1 expression and anchorage-independent growth of cancer cells. Mol. Oncol. 8, 285–296 (2014).

    CAS  PubMed  Google Scholar 

  129. Liu, J. et al. X-linked inhibitor of apoptosis protein (XIAP) mediates cancer cell motility via Rho GDP dissociation inhibitor (RhoGDI)-dependent regulation of the cytoskeleton. J. Biol. Chem. 286, 15630–15640 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Xiao, Y. et al. 14-3-3τ promotes breast cancer invasion and metastasis by inhibiting RhoGDIα. Mol. Cell. Biol. 34, 2635–2649 (2014).

    PubMed  PubMed Central  Google Scholar 

  131. Pu, J. et al. FERM domain containing protein 7 interacts with the Rho GDP dissociation inhibitor and specifically activates Rac1 signaling. PLoS ONE 8, e73108 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Lu, Y. et al. TROY interacts with Rho guanine nucleotide dissociation inhibitor α (RhoGDIα) to mediate Nogo-induced inhibition of neurite outgrowth. J. Biol. Chem. 288, 34276–34286 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Dart, A. E. et al. PAK4 promotes kinase-independent stabilization of RhoU to modulate cell adhesion. J. Cell Biol. 211, 863–879 (2015). This study describes how changes in RhoU protein levels owing to ubiquitylation are crucial in focal adhesion turnover and cell migration, and how the RhoU effector protein PAK4 has a kinase-independent role in protecting RhoU from degradation.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Schuld, N. J. et al. The chaperone protein SmgGDS interacts with small GTPases entering the prenylation pathway by recognizing the last amino acid in the CAAX motif. J. Biol. Chem. 289, 6862–6876 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Ntantie, E. et al. An adenosine-mediated signaling pathway suppresses prenylation of the GTPase Rap1B and promotes cell scattering. Sci. Signal. 6, 1–10 (2013).

    Google Scholar 

  136. Flotho, A. & Melchior, F. Sumoylation: a regulatory protein modification in health and disease. Annu. Rev. Biochem. 82, 357–385 (2013).

    CAS  PubMed  Google Scholar 

  137. Tu, S., Wu, W. J., Wang, J. & Cerione, R. A. Epidermal growth factor-dependent regulation of Cdc42 is mediated by the Src tyrosine kinase. J. Biol. Chem. 278, 49293–49300 (2003).

    CAS  PubMed  Google Scholar 

  138. Okada, S. et al. CDK5-dependent phosphorylation of the Rho family GTPase TC10α regulates insulin-stimulated GLUT4 translocation. J. Biol. Chem. 283, 35455–35463 (2008).

    CAS  PubMed  Google Scholar 

  139. Guilluy, C. et al. Ste20-related kinase SLK phosphorylates Ser188 of RhoA to induce vasodilation in response to angiotensin II type 2 receptor activation. Circ. Res. 102, 1265–1274 (2008).

    CAS  PubMed  Google Scholar 

  140. Bryan, B. et al. Ubiquitination of RhoA by Smurf1 promotes neurite outgrowth. FEBS Lett. 579, 1015–1019 (2005).

    CAS  PubMed  Google Scholar 

  141. Li, H. et al. Fbxw7 regulates tumor apoptosis, growth arrest and the epithelial-to-mesenchymal transition in part through the RhoA signaling pathway in gastric cancer. Cancer Lett. 370, 39–55 (2015).

    PubMed  Google Scholar 

  142. Tillement, V. et al. Phosphorylation of RhoB by CK1 impedes actin stress fiber organization and epidermal growth factor receptor stabilization. Exp. Cell Res. 314, 2811–2821 (2008).

    CAS  PubMed  Google Scholar 

  143. Xu, J. et al. The neddylation–cullin 2–RBX1 E3 ligase axis targets tumor suppressor RhoB for degradation in liver cancer. Mol. Cell. Proteomics 14, 499–509 (2015).

    CAS  PubMed  Google Scholar 

  144. Lehman, H. L. et al. Regulation of inflammatory breast cancer cell invasion through Akt1/PKBα phosphorylation of RhoC GTPase. Mol. Cancer. Res. 10, 1306–1318 (2012).

    CAS  PubMed  Google Scholar 

  145. Lonjedo, M. et al. The Rho family member RhoE interacts with Skp2 and is degraded at the proteasome during cell cycle progression. J. Biol. Chem. 288, 30872–30882 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Duan, L. et al. Negative regulation of EGFR–Vav2 signaling axis by Cbl ubiquitin ligase controls EGF receptor-mediated epithelial cell adherens junction dynamics and cell migration. J. Biol. Chem. 286, 620–633 (2011).

    CAS  PubMed  Google Scholar 

  147. Genau, H. M. et al. CUL3-KBTBD6/KBTBD7 ubiquitin ligase cooperates with GABARAP proteins to spatially restrict TIAM1–RAC1 signaling. Mol. Cell 57, 995–1010 (2015).

    CAS  PubMed  Google Scholar 

  148. Chikumi, H., Fukuhara, S. & Gutkind, J. S. Regulation of G protein-linked guanine nucleotide exchange factors for Rho, PDZ-RhoGEF, and LARG by tyrosine phosphorylation: evidence of a role for focal adhesion kinase. J. Biol. Chem. 277, 12463–12473 (2002).

    CAS  PubMed  Google Scholar 

  149. Yang, Y. et al. CYLD regulates RhoA activity by modulating LARG ubiquitination. PLoS ONE 8, e55833 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Yamahashi, Y., Saito, Y., Murata-Kamiya, N. & Hatakeyama, M. Polarity-regulating kinase partitioning-defective 1b (PAR1b) phosphorylates guanine nucleotide exchange factor H1 (GEF-H1) to regulate RhoA-dependent actin cytoskeletal reorganization. J. Biol. Chem. 286, 44576–44584 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Gupta, M., Qi, X., Thakur, V. & Manor, D. Tyrosine phosphorylation of Dbl regulates GTPase signaling. J. Biol. Chem. 289, 17195–17202 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Kamynina, E., Kauppinen, K., Duan, F., Muakkassa, N. & Manor, D. Regulation of proto-oncogenic Dbl by chaperone-controlled, ubiquitin-mediated degradation. Mol. Cell. Biol. 27, 1809–1822 (2007).

    CAS  PubMed  Google Scholar 

  153. Justilien, V., Jameison, L., Der, C. J., Rossman, K. L. & Fields, A. P. Oncogenic activity of Ect2 is regulated through protein kinase Cι-mediated phosphorylation. J. Biol. Chem. 286, 8149–8157 (2011).

    CAS  PubMed  Google Scholar 

  154. Liot, C. et al. APCcdh1 mediates degradation of the oncogenic Rho-GEF Ect2 after mitosis. PLoS ONE 6, e23676 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Barac, A. et al. Direct interaction of p21-activated kinase 4 with PDZ-RhoGEF, a G protein-linked Rho guanine exchange factor. J. Biol. Chem. 279, 6182–6189 (2004).

    CAS  PubMed  Google Scholar 

  156. Lin, M. Y., Lin, Y. M., Kao, T. C., Chuang, H. H. & Chen, R. H. PDZ-RhoGEF ubiquitination by Cullin3-KLHL20 controls neurotrophin-induced neurite outgrowth. J. Cell Biol. 193, 985–994 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Scholz, R. P. et al. The tumor suppressor protein DLC1 is regulated by PKD-mediated GAP domain phosphorylation. Exp. Cell Res. 317, 496–503 (2011).

    CAS  PubMed  Google Scholar 

  158. Ravi, A., Kaushik, S., Ravichandran, A., Pan, C. Q. & Low, B. C. Epidermal growth factor activates the Rho GTPase-activating protein (GAP) Deleted in Liver Cancer 1 via focal adhesion kinase and protein phosphatase 2A. J. Biol. Chem. 290, 4149–4162 (2015).

    CAS  PubMed  Google Scholar 

  159. Danek, E. I., Tcherkezian, J., Triki, I., Meriane, M. & Lamarche-Vane, N. Glycogen synthase kinase-3 phosphorylates CdGAP at a consensus ERK1 regulatory site. J. Biol. Chem. 282, 3624–3631 (2007).

    CAS  PubMed  Google Scholar 

  160. Tcherkezian, J., Danek, E. I., Jenna, S., Triki, I. & Lamarche-Vane, N. Extracellular signal-regulated kinase 1 interacts with and phosphorylates CdGAP at an important regulatory site. Mol. Cell. Biol. 25, 6314–6329 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Minoshima, Y. et al. Phosphorylation by Aurora B kinase converts MgcRacGAP to a RhoGAP during cytokinesis. Dev. Cell 4, 549–560 (2003).

    CAS  PubMed  Google Scholar 

  162. Nishimura, K. et al. APCCDH1 targets MgcRacGAP for destruction in the late M phase. PLoS ONE 8, e63001 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Jiang, W. et al. An FF domain-dependent protein interaction mediates a signaling pathway for growth factor-induced gene expression. Mol. Cell 17, 23–35 (2005).

    CAS  PubMed  Google Scholar 

  164. Mori, K. et al. Rho-kinase contributes to sustained RhoA activation through phosphorylation of p190A RhoGAP. J. Biol. Chem. 284, 5067–5076 (2009).

    CAS  PubMed  Google Scholar 

  165. Jiang, W. et al. p190A RhoGAP is a glycogen synthase kinase-3-β substrate required for polarized cell migration. J. Biol. Chem. 283, 20978–20988 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Pullikuth, A. K. & Catling, A. D. Extracellular signal-regulated kinase promotes Rho-dependent focal adhesion formation by suppressing p190A RhoGAP. Mol. Cell. Biol. 30, 3233–3248 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Naoe, H. et al. The anaphase-promoting complex/cyclosome activator Cdh1 modulates Rho GTPase by targeting p190 RhoGAP for degradation. Mol. Cell. Biol. 30, 3994–4005 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Su, L., Lineberry, N., Huh, Y., Soares, L. & Fathman, C. G. A novel E3 ubiquitin ligase substrate screen identifies Rho guanine dissociation inhibitor as a substrate of gene related to anergy in lymphocytes. J. Immunol. 177, 7559–7566 (2006).

    CAS  PubMed  Google Scholar 

  169. Wu, Y. et al. Src phosphorylation of RhoGDI2 regulates its metastasis suppressor function. Proc. Natl Acad. Sci. USA 106, 5807–5812 (2009).

    CAS  PubMed  Google Scholar 

  170. Griner, E. M., Churchill, M. E., Brautigan, D. L. & Theodorescu, D. PKCα phosphorylation of RhoGDI2 at Ser31 disrupts interactions with Rac1 and decreases GDI activity. Oncogene 32, 1010–1017 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to G. Cantelli and R. Brandão-Haga for helpful discussions and comments on the manuscript. This work was supported by Cancer Research UK (C6620/A15961). R.G.H. was supported by the King's Bioscience Institute and the Guy's and St Thomas' Charity Prize Ph.D. Programme in Biomedical and Translational Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne J. Ridley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Related links

Related links

FURTHER INFORMATION

PhosphoSitePlus

Glossary

Integrins

A family of transmembrane cell adhesion receptors that bind to extracellular matrix ligands and other cell adhesion receptors, and interact intracellularly with cytoskeletal proteins.

Prenylation

The attachment of an isoprenoid group to a carboxy-terminal Cys residue or residues. An isoprenoid is a compound that is derived from 5-carbon isoprene (2-methyl-1,3-butadiene) units, which can be linked together in a head-to-tail or a tail-to-tail conformation and include farnesyl diphosphate or geranylgeranyl diphosphate molecules.

Chaperone protein

A protein that contributes to the folding or unfolding of other proteins, and/or the assembly of multiprotein complexes.

S-palmitoylation

Palmitoylation is the process by which a 16-carbon palmitate group is added to a Cys residue by a palmitoyltransferase enzyme. In most cases, palmitate is attached through reversible thioester linkage (S-palmitoylation).

Actomyosin contractility

A process whereby myosin II filaments interact with and move along anti-parallel actin filaments.

CAAX box

A conserved carboxy-terminal amino acid recognition motif, in which C is Cys, A is an aliphatic amino acid and X is variable. The motif is recognized by prenyltransferases that attach an isoprenoid moiety to the Cys residue.

14-3-3 proteins

14-3-3 proteins are homodimeric proteins that bind to a wide range of intracellular proteins, usually by interacting with phosphorylated Ser or Thr residues.

26S proteasome

A protein complex found in mammalian cells that degrades proteins by proteolysis. Polyubiquitylation is a common signal for proteasome-mediated degradation.

BTB domain

A domain that was identified in 'Broad-complex, Tramtrack and Bric-a-brac' proteins in Drosophila melanogaster and that is usually located in the amino-terminal region of proteins. Originally known as the POZ domain, this motif is found in several virus proteins. Many BTB-domain proteins contain a second protein–protein interaction motif, such as zinc-finger or Kelch motifs.

DBL-homology (DH) domain

A domain of approximately 200 amino acids that induces release of GDP from Rho GTPase family members.

Pleckstrin homology (PH) domain

A domain of approximately 120 amino acids. Some pleckstrin homology domains bind to headgroups of membrane lipids on cellular membranes and recruit intracellular signalling proteins to specific compartments.

WAVE regulatory complex

A 400 kDa protein complex composed of five subunits — WAVE, HSPC300, ABI, NAP1 and PIR121 — that activates the ARP2/3 complex via the VCA domain of WAVE. This initiates the polymerization of branched actin filaments.

RING domain

A Cys-rich tandem zinc-finger domain of 40–60 amino acids, often found in E3 ubiquitin ligases.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hodge, R., Ridley, A. Regulating Rho GTPases and their regulators. Nat Rev Mol Cell Biol 17, 496–510 (2016). https://doi.org/10.1038/nrm.2016.67

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2016.67

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing